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 Since the last couple of years, the expansion of grid-connected wind farms 

(WFs) has increased dramatically. The wind turbine might be a fixed-speed 

squirrel cage induction generator (FSWT-SCIG) or a variable speed wind 

turbine with a doubly-fed induction generator (VSWT-DFIG). The main 

disadvantage of FSWT-SCIG is its lack of ability to adjust power quality. 

Inversely, the VSWT-DFIG is a competitive wind turbine technology that 

allows for the effective management of both active and reactive power 

outputs. Moreover, it has some extraordinary functionaries rather than 

FSWT-SCIG. However, the major downside to this system is that it only has 

a partial rating AC/DC/AC power converter, which is extremely expensive. 

Hence, to reduce the overall cost combining the implementation of VSWT-

DFIG and FSWT-SCIG in a WF could be a feasible alternative. Therefore, a 

novel DFIG control technique is proposed in this article, which can keep the 

connection point voltage of the hybrid WF stable during dynamic analysis. 

To evaluate the proposed controller responses PSCAD/EMTDC software has 

been used. 
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1. INTRODUCTION 

The huge usage of fossil fuels, market volatility, and growing concern for the environment have all 

indicated the need for renewable and clean energy sources in recent history. Furthermore, renewable energy 

sources are practically unlimited, free, clean, and easily accessible. The wind market had a phenomenal year 

in 2019, as it installed 60.4 GW of systems, making it the second largest in history. Furthermore, the global 

cumulative wind power (WP) capacity reaches up to 651 GW which is highlighting 19% growth of year-

over-year (YoY). Meanwhile, onshore wind new installations reached 54.2 GW, even while offshore wind 

recent units exceeded 6 GW, accounting for 10% of overall new installations in 2019, the fastest-growing 

percentage to date. Moreover, based on the Global Wind Energy Council (GWEC), nearly 355 GW of new 

installation will be incorporated in the following five years, with a yearly installment rate of 71 GW until 

2024. Therefore, WP might satisfy up to 20% of worldwide power demand by 2030, exceeding 2010 GW. 

However, worldwide the WP sector gets affected because of the novel COVID-19 virus. Through these 

difficulties, the GWEC has determined to preserve its critical factors unaffected, and when the world will 

recover from this pandemic, it would take proactive measures to manage the situation [1], [2]. Stability is 
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significantly affected by the enormous quantity of WP incorporated into the power system. All the wind 

farms (WFs) must need to stay in stable condition during the long run.  

Fixed-speed wind turbines with squirrel cage induction generators (FSWT-SCIGs) are by far the most 

often employed wind turbines (WTs) since they are easy to build, robust, and most importantly they are cost-

effective [3]. Despite this, the SCIG is directly tied to the electrical grid and as the voltage of a bus-connected 

FSWT-SCIG based WF fluctuates significantly during starting phase, a sufficient amount of reactive power is 

required [4], [5]. Nevertheless, at the steady state phase, SCIG requires reactive power. Hence, a capacitor 

bank is utilized to supply reactive power [6]. Therefore, to make the terminal voltage stable several flexible 

AC transmissions (FACTs) device has been used, such as static synchronous compensator (STATCOM) [7]–

[11], energy capacitor system (ECS) [12], static var compensator (SVC) [13], thyristor-controlled series 

capacitor (TCSC) [14], static synchronous series compensator (SSSC) [15], and superconducting magnetic 

energy storage (SMES) [16]. Therefore, the overall expenditures have been increased. 

Nevertheless, variable speed wind turbine with a doubly-fed induction generator (VSWT-DFIG) is one 

of the most competitive wind turbines in the wind industry. Since it has some remarkable benefits VSWT-DFIG 

has a massive market share in the world, such as high efficiency, lower converter rating, relatable control on 

active and reactive power, and lightweight [17], [18]. The control of the rotor side converter (RSC), which is 

commonly rated at around 30% of the generator rating when the rotor speed is between 75% and 125% under 

standard conditions, is predominantly responsible for these benefits [19]. Apart from this, the key disadvantage 

of VSWT-DFIG-based WFs is they are quite expensive due to their partial rating power electronic AC/DC/AC 

converter. Hence, hybrid installation of FSWT-SCIG and VSWT-DFIG has been implemented. As a result, 

SCIG's stability may be achieved at a cheaper cost. Consequently, the foremost objective of this study is the 

develop a novel DFIG control strategy that focuses on the PI controller to regulate the RSC controller's outer 

and inner loop in order to keep the connection point voltage of the hybrid WF stable during dynamic analysis. 

The following section is presented as follows, section 2 is the model of power system, section 3 is the DFIG 

system with the cascaded control system, section 4 is the proposed controller, section 5 is the grid-side converter 

(GSC) controller, section 6 is simulation analysis and discussion, and section 7 is conclusion.  
 

 

2. MODEL OF POWER SYSTEM 

A double circuit transmission line and transformers with voltage ratings of 0.69 kV/6.6 kV and  

6.6 kV/66 kV are employed to connect the SCIG and DFIG to an infinite bus in the power system 

architecture illustrated in Figure 1. The required and the power rating of both WTs are 35 MW and 15 MW, 

respectively. The base power of the system has been chosen 100 MVA and the frequency has been chosen  

50 Hz. All the essential attributes of both generators have been taken from [20]. 
 
 

 
 

Figure 1. Power system model 
 

 

3. DFIG SYSTEM WITH CASCADED CONTROLLER 

Figure 2 shows the MPPT curve of DFIG system [21]. According to the available wind speed, the 

MPPT curve for DFIG is segmented into four functioning regions as described in the following [22]:  

i) minimum operating region from point A to point B, ii) optimal speed region from point B to point C,  

iii) maximum operating region from point C to point D, and iv) the limited speed region where the pitch 

controller take action. Besides, Figure 3 shows the layout of VSWT-DFIG and its controller. Aerodynamic 

wind turbine system with drive-train, wound rotor induction generator (WRIG), pitch angle controller, RSC, 

and GSC comprise up the system. Two levels of insulated gate bipolar transistors (IGBTs) are employed to 

regulate the RSC and GSC. However, WRIG transforms WP into electrical power. The rotor position (θr) and 

speed (ωr) are collected from the WRIG rotor shaft. As demonstrated in Figure 3, the stator junction is directly 

coupled to the grid while the rotor is coupled to the grid via RSC and GSC. The power converter rating is one-

third of the WRIG rating. The RSC supplies the rotor windings variable frequency excitement according to the 
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wind speed and integrates the GSC through the transformer with the grid system. This work employs the pulse 

width modulation (PWM) approach, with a carrier frequency of 3.0 kHz for both converters. In the DC-Link 

circuit is a DC chopper. The comparator block is in charge of it. The comparator triggers the DC chopper and 

protects the DC-Link circuit when the DC-link voltage (Vdc) is 1.15 pu. The rated voltage is 1.2 kV. 
 

 

 
 

Figure 2. MPPT diagram of DFIG 
 

 

 
 

Figure 3. DFIG system with cascaded controller 
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In the synchronous reference frame, the DFIG system is defined. Using (1) and (2), the d and q-axis 

stator and rotor voltages are calculated [23]. 

 

{
 
 

 
 𝑉𝑠𝑑 = 𝑅𝑠. 𝑖𝑠𝑑 +

𝑑𝜑𝑠𝑑

𝑑𝑡
− 𝜔𝑠. 𝜑𝑠𝑞

𝑉𝑠𝑞 = 𝑅𝑠 . 𝑖𝑠𝑞 +
𝑑𝜑𝑠𝑞

𝑑𝑡
+𝜔𝑠. 𝜑𝑠𝑑

𝑉𝑟𝑑=𝑅𝑟 .𝑖𝑟𝑑+
𝑑𝜑𝑟𝑑
𝑑𝑡

−𝜔𝑟.𝜑𝑟𝑞

𝑉𝑟𝑞=𝑅𝑟 .𝑖𝑟𝑞+
𝑑𝜑𝑟𝑞

𝑑𝑡
+𝜔𝑟.𝜑𝑟𝑑

 (1) 

 

{

𝜑𝑠𝑑 = 𝐿𝑠𝑡𝑖𝑠𝑑 + 𝐿𝑚𝑖𝑟𝑑
𝜑𝑠𝑞 = 𝐿𝑠𝑡𝑖𝑆𝑞 + 𝐿𝑚𝑖𝑟𝑞

𝜑𝑟𝑑=𝐿𝑟𝑡𝑖𝑟𝑑+𝐿𝑚𝑖𝑠𝑑
𝜑𝑟𝑞=𝐿𝑟𝑡𝑖𝑟𝑞+𝐿𝑚𝑖𝑠𝑞

 (2) 

 

In the (1) and (2), 𝑅𝑠 , 𝑅𝑟 and 𝐿𝑠𝑡, 𝐿𝑟𝑡 are represented the resistance and self-inductance of stator and rotor 

winding accordingly. Mutual inductance is illustrated as 𝐿𝑚. Also, 𝑖𝑠𝑑, 𝑖𝑠𝑞 , 𝑖𝑟𝑑, and 𝑖𝑟𝑞 are represented the 

currents of stator and rotor sequentially. Consequently, 𝜔𝑟 represents the angular speed of the rotor and the 

angular frequency of the grid is presented as 𝜔𝑠. 
 

 

4. PROPOSED RSC CONTROLLER 

As displayed in Figure 3, the RSC is regulated by the RSC controller. Four PI controllers are used in 

the control system to adjust several errors. The outer loop is responsible of acquiring MPPT power from the 

DFIG as well as reactive power regulation. The inner loop is employed to control the d and q-axis currents. 

To adjust active power, losses in the turbine, rotor, and stator are taken into consideration which is displayed 

in the following equation to maximize reactive power supply.  
 

𝑃𝑠 = (𝑖2
𝑠𝑑
+ 𝑖2𝑠𝑞)𝑅𝑠 (3) 

 

𝑃𝑟 = (𝑖
2
𝑟𝑑
+ 𝑖2𝑟𝑞)𝑅𝑟 (4) 

 

𝑃𝑡𝑙 = 0.01𝜔𝑟 (5) 
 

The stator, rotor, and turbine losses are denoted by Ps, Pr and Ptl, accordingly. The active power 

extracted can be more realistically estimated by accounting for all these losses. The voltage dip at the 

common coupling point is employed to regulate the reactive power. The reference reactive power was 

calculated as regards [24], [25]. 
 

𝑄𝑟𝑒𝑓 = 𝑆 {(
𝑉

𝑉0
)
2

− (
𝑉

𝑉0
)
12

} (6) 

 

Where, the rated apparent power is represented by S, the terminal voltage and pre-fault voltage (1.0 pu) of 

DFIG are represented by 𝑉 and 𝑉0 Besides, depending upon (6), the voltage vs reactive power features curve 

is displayed in Figure 4.  
 

 

 
 

Figure 4. Voltage vs reactive power features curve 
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5. GSC CONTROLLER 

Figure 3 additionally depicts the GSC controller, which has four PI controllers to adjust for several 

other error signals. Furthermore, the GSC reactive power (Q) and DC-link voltage (Vdc) are regulated 

sequentially by the d-axis (Igd) and q-axis (Igq) current components. In addition, the reference reactive power 

is zero, and the reference DC-link voltage is 1.2 kV (1.0 pu). 

 

 

6. SIMULATION ANALYSIS AND DISCUSSION 

The dynamic behavior of the proposed RSC controller of DFIG is illustrated and evaluated in this 

section. The power system represented in Figure 1 is employed to evaluate the performance. The overall 

simulation is executed for 100.0 s. 

However, the actual wind speed for both WFs as shown in Figure 5 is recorded intending to monitor 

the dynamic effects of the proposed power system. Figures 6 and 7 represent the active power and reactive 

power response at the common coupling point (PCC). Figure 8 shows the voltage response at the PCC, and it 

is clearly evident that the terminal voltage is remains constant. 
 

 

  
  

Figure 5. Wind speed for SCIG and DFIG Figure 6. Active power at common coupling point 

(PCC) 
 

 

  
  

Figure 7. Reactive power at common coupling point 

(PCC) 

Figure 8. Voltage at common coupling point  

(PCC) 
 

 

Hence, the system remains in stable condition. Moreover, the active power output for both WFs is 

displayed in Figures 9 and 10. Besides, Figures 11 and 12 depict the reactive power output for both WFs 

(SCIG & DFIG). Finally, Figure 13 displays the DC-link voltage of DFIG, which stays nearly steady during 

the whole simulation run time. 
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Figure 9. Active power output of SCIG Figure 10. Active power output of DFIG 
 

 

  
  

Figure 11. Reactive power output of SCIG Figure 12. Reactive power output of DFIG 
 
 

 
 

Figure 13. DC-link voltage output of DFIG 
 
 

7. CONCLUSION 

This study proposes a novel DFIG control system to increase the system stability of SCIG based 

WFs with partial integration of the DFIG WF. The total installation cost of WFs might be decreased with this 

hybrid WF concept. Furthermore, the simulation analysis reveals that the suggested RSC controller is capable 

of confirming constant terminal voltage during dynamic analysis. Hence, the proposed control scheme is 

ensuring system stability. 
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