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 The structure of the model may either be inferred via an experimental study 

or just by looking at the input and output data. A novel nonlinear 

autoregressive with exogenous inputs (NARMAX) method for identifying 

PEA piezoelectric positioning mechanisms is put forward in this study. The 

developed model enables accurate prediction of the hysteresis of the PEAs. 

The accuracy of the model built from the input and output data will be 

assessed by comparison with a LuGre model. The results of the identification 

show that the recommended approach is successful and that it has a high 

degree of identification precision within an absolute error range of one 

micron. The findings demonstrated the potential of the suggested method for 

classifying nonlinear PEAs. 
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1. INTRODUCTION 

Piezoelectric actuators (PEA) powered micro/nano manipulators are useful elements in ultra-high 

precision positioning applications where nanoscale resolution in displacement, high stiffness, and quick 

reaction are required. However, the fundamental disadvantage of these actuators is the nonlinearity of the 

hysteresis between the excitement signal and the structure's reaction; additional reasons of loss of positioning 

accuracy are drift owing to creep effects and temperature effects [1]–[3]. The phenomena of friction constitute 

the operating principal of PEA, these models of friction must integrate as well as possible these phenomena 

(stiction, rising, viscous friction, elastic friction, effects of Strobeck, fractional memory, non-derivative)  

[4]–[6]. The number and nature of the parameters that compose them and that must therefore be identified, the 

precision of description of the real phenomena of friction, the qualities in simulation are as much criteria of 

differentiating and which must be taken into account during the selection [7], [8]. 

Thus, the identification of certain parameters proves to be very complex, either the method used is 

difficult to Implement or is very sensitive to measurement errors form example, the test procedure does not 

make it possible to demonstrate the phenomenon to be modeled [9]–[11]. The speed of PEA varied according 

to the applied load and the friction of the device. The control is recommended for applications requiring exact 

position and precise speed [12], [13]. However, due to the complex structure and the factors mentioned, it is 

impossible to establish an accurate physical model. The experimental modeling giving rise to a model of 

representation is very interesting in the measure or it makes it possible to obtain a representation of the system 

from the input/output data [14]. 

https://creativecommons.org/licenses/by-sa/4.0/
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In this case, the problem of modeling becomes essentially an identification problem and the objective 

is to find the structure and the values of the parameters of a model capable of describing as precisely as possible 

the external behavior of the system without any consideration of the phenomenon internal [15]. In recent years, 

much effort has been devoted to modeling the mechanism positioning piezo actuator (PEA) using bilinear 

models [16], [17]. Many of these models have been evaluated by actual plant tests and are well established. 

However, the identification approach used by the maximum likelihood method and the prediction error require 

appropriately specified initial values of unknown parameters and system states [18], [19]. An appropriate 

choice leads to problems of convergence and singularity, which are very difficult to solve in real applications. 

There are several types of literature such as the Volterra model, the Weiner-Hammerstein cascade models [20], 

[21]. In the publications [22], [23], describes the input/output parametric models for nonlinear systems have 

developed a NARMAX model, which has been compared to that of Volterra and affine in the state. Among the 

existing nonlinear system identification approach the NARMAX model is widely applied in the modeling of 

many engineering chemical, [24], [25] biological, medical [26], [27], geographic [28], [29], and economic 

systems [30], [31]. 

The NARMAX models are well suited to model design for nonlinear process control, where a 

relatively simple structure system is often required, in order to be able to perform many calculations, and adjust 

model parameters, if necessary, by the experimental data sets new. This article describes the dynamic behavior 

so the interrelations between the controlled variables translates into the difficulty of defining correct values of 

the parameters. To reduce (avoid) complexity, one solution is to limit the number of terms, it is often necessary 

to identify the input-output model. 

 

 

2. HYSTERESIS MODELING 

The LuGre model is the most widely used to model systems with hysteresis. In this model, the 

structure is obtained from physical laws. the LuGre model is a model based on the microscopic approach of 

the modeling of the contact surfaces by the blades. The dynamic model of the entire micro-positioning system 

with hysteresis includes velocity-dependent friction phenomena such as variable breaking force and friction 

lag can be established as (1) [32]. 

 

𝑀�̈� + 𝑘𝑥 + 𝑐. �̇� + 𝐹(𝑥, �̇�) = 𝐹𝑒(𝑥, �̇�) (1) 

 

Where 𝑀 denotes the equivalent mass of the controlled piezo-positioning mechanism; 𝑥 is the displacement of 

the mechanism; x denotes the second-order derivative of the state with respect where 𝑘. 𝑎𝑛𝑑 𝑐 coefficient of 

stiffness and viscous damping respectively. The hysteresis force given by the (2) essentially causing the 

hysteresis effect in the motion dynamics of the PEA positioning mechanism is given by (2). 

 

𝐹(𝑥, �̇�) = 𝜎0𝑍 + 𝜎1
𝑑𝑍

𝑑𝑡
+ 𝜎2. �̇� (2) 

 

Where 𝜎𝛰 the bristle stifness parameter, 𝜎2 is the viscous friction coefficient, 𝜎1 is the bristle damping and 
𝑑𝑍

𝑑𝑡
 

the average bristle deflexion is given by (3). 

 
𝑑𝑍

𝑑𝑡
= 𝑥 −

𝜎0

𝑔(𝑥)̇
𝑍|�̇�| (3) 

 

The stibeck function, 𝑔(𝜈) is a decreasing function for inceasing velocity bounded by upper limit 

equal to statc function force and a lower limit equals to the coulomb friction force, and 𝑥
.
. The stribeck velocity: 

 

𝑔(�̇�) = 𝐹𝑐 + (𝐹𝑠 − 𝐹𝑐)𝑒−(𝑥
�̇�⁄ )

2

 (4) 

 

𝐹𝑒(𝑥, 𝑥
.
): represents the external force excitation. 

 

 

3. NARMAX MODEL FOR HYSTERESIS 

The parametric identification problem consists in determining the numerical values of the parameters 

of a model of the system under consideration. The choice of the input/output variables of a systemis a 

preliminary phase that makes it possible to reveal the cause and effect relationships between these variables. 

The identification is an experimental approach, it is used to look for a mathemetical model. This model aims 
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to correctly predict the dynamic behavior of the real system. The identification of a system is then an iterative 

procedure that includes several stages, Figure 1, or the choice must be questionned during a failure of the 

validation of the identified model. In this work, we have been particularty interested in input-output models. 

Indeed, Leontaritis and Billings have shown that possible to represent a large class of non linear noisy systems 

in time by the NARMAX model [33]. 

 

 

 
 

Figure 1. Flowchart of the nonlinear identification algorithm 

 

 

Its most general expression is (5). 

 

𝑥(𝑘) = 𝑎0 + ∑ 𝑎1
𝑁1
𝑖=1 𝑥(𝑘 − 𝑖) + ∑ 𝑏1

𝑁2
𝑖=1 𝑢(𝑘 − 𝑖) + ∑ 𝑐1

𝑁 3
𝑖=1 𝑒(𝑘 − 𝑖) + 𝑒(𝑘) (5) 

 

Where 𝑥(𝑘) 𝑎𝑛𝑑 𝑢(𝑘) are respectively the output and input signals; 𝑒(𝑘) accounts for uncertainties and 

possible noise; 𝑎𝑖 𝑥(𝑘 − 𝑖) is the variable auto –regressive (AR); 𝑏𝑖 𝑢(𝑘 − 𝑖)𝑏𝑖 𝑢(𝑘 − 𝑖) is the variable iiem x 

(exogenous); 𝑐𝑖 𝑒(𝑘 − 𝑖) represents the variable moving average (MA) supposed white noise model variable, 

i  is the dimension of the vector, 𝑁1, 𝑁2, 𝑁3 represent the dimension of the AR (system output) variable of the 
ith input, respectively, the size of the input vector and the parameters of the model to be estimated. The resilience 

force used to identify the mechanism positioning piezo actuator PEA is described by the following [34]: 

 

𝐹𝑟(𝑥, �̇�) = 𝑀�̈� + 𝑘𝑥 + 𝑐. �̇� + 𝐹(𝑥, �̇�) = 𝛼1𝑥(𝑘 + 𝑥0) + 𝛼3𝑥(𝑘 + 𝑥0)3 + 𝛼5𝑥(𝑘 + 𝑥0)5  + 

𝜆1�̇�(𝑘) + 𝜆3𝑥3̇(𝑘) + 𝜆9�̇�9(𝑘) + 𝑧(𝑡) (6) 

 

The expression of the hysteretic variableder of z is expressed by (7). 

 

�̇�(𝑡) =
𝛼𝑠

2
[1 + 𝑠𝑔𝑛(𝑧𝑠 − |𝑧(𝑡)|)]�̇�(𝑡) (7) 

 

Where 𝛼𝑠 =
𝑧𝑠

𝑥𝑠
. 𝛼𝑠 is the mechanical stiffness , 𝑧𝑠 is not measurable, it expresses the restoring force memorized 

during sliding between threads, when sliding between wires happens, is the memorized restoring force, and the 

elastic deformation limit is denoted by 𝑥𝑠, and the sgn function is defined as (8). 

 

𝑠𝑔𝑛(. ) = {
1          𝑖𝑓         𝑥 > 0

−1       𝑖𝑓        𝑥 ≤ 0    
}  (8) 

 

In the static displacement produced by the preload 𝑥0, 𝐹𝑟(𝑥, 𝑥
.
) is the resilience force. In the NARMAX 

approach, the data of (𝑥(𝑘), 𝑥
.
(𝑘), 𝐹𝑒𝑥) and are used, such that the output 𝑦(𝑘) is the hysteresis resilience force 

and their derivative and the excitation force resilience signal. The model (6) has a clear physical meaning, or 

the first three elements are the spring forces and the last element is the damping force: there are six 

indeterminate parameters to identify. The system is constructed only from input and output data and it is not 

difficult to identify all the parameters with great precision. 
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4. DISCUSION RESULTS 

We identify the hysteresis property of the piezoelectric actuator using the algorithms of (6) and the 

parameters of the suggested technique. To illustrate the performance of the identification technique, the 

feasibility and efficacy of this research on a piezoelectric stage are offered.These findings, however, are 

obtained by using a sinusoidal input signal. Based on the relationship between the excitation of the input force 

and the displacement of the output displacement. Figure 2 compares the response of the force restoring and 

displacement in the NARMAX method to that of the LuGre model. Figure 3 shows a comparison of the 

displacement caused by the recognized model and the displacement caused by the LuGre model in pursuit. 

According to the results, the proposed identification method has the ability to minimize absolute error to the 

order of 458.6 nanometers. 

 

 

 
 

Figure 2. Hysteresis cycle obtained by NARMAX and LuGre model 

 

 

 
 

Figure 3. Response displacement with NARMAX and Lugre model 

 

 

5. CONCLUSION 

The application of a NARMAX technique for identifying the mechanism positioning piezo actuator 

stage PEA will be examined in this research.The process of identifying a model's parameters may be phrased 

as an optimization problem with the goal of minimizing the prediction error between the observed PEA outputs 
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and the model outputs.The analysis and control of these actuators are made easier by the behavior of the 

findings, which demonstrated the behavior of restoring force-displacement hysteresis in the PEA. 
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