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 In order to improve the control accuracy of the robot manipulator, the sliding 

mode control combined with the adaptive neural network (ANNSMC) is 

proposed. Sliding mode control (SMC) is a nonlinear control recognized for 

its efficiency, easy tuning and implementation, accuracy and robustness. 

However, higher amplitude of chattering is produced due to the higher 

switching gain to handle the large uncertainties. For the purpose of reducing 

this gain, the uncertain parts of the system are estimated using neural 

network (NN) with on-line training using back propagation (BP) technique. 

The results of the online interconnection weights between the input and the 

hidden layers and between the hidden and the output layers are injected 

offline in order to improve the network performance in term of the 

convergence speed. In order to reduce the response time caused by the 

online training, the obtained output and input weights are updated using the 

adaptive laws derived from the Lyapunov stability approach the proposed 

control ANNSMC has improved the convergence speed with 41.13% for the 

first link and 40.15% for the second link comparing to NNSMC. The 

simulation result illustrates the performance of the proposed approach by 

using MATLAB and the control action suggested did not manifest any 

chattering behavior. 
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1. INTRODUCTION 

The motion control design for two links robot is an intense area of research that has fascinate 

considerable focus, it’s a big challenge because of the nonlinearities of the system and the uncertainties of 

their parameters. Furthermore, the right dynamic models are nearly hard to obtain because the system is 

described by a nominal model with major uncertainties, to name a few: external disturbance, internal friction, 

and payload parameter. Several strategies have been proposed to cope with parameter uncertainties including 

neural network (NN) based controls [1]-[22], neural adaptive proportional-integral-derivative (PID) control 

[11], the sliding mode control (SMC) [23]–[31], SMC and PID controller tuned by whale optimizer algorithm 

(WOA) [29], nonlinear model predictive control tuned by NN [32]–[34] , the adaptive fuzzy control [35]–

[37], the particle swarm optimization (PSO) combined with NN and SMC [38], the combined PID and SMC 

[30] were, the self-tuning fuzzy PID-nonsingular fast terminal sliding mode control for robust fault tolerant 

https://creativecommons.org/licenses/by-sa/4.0/
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control of robot manipulators is studied. Sliding mode control (SMC) is an important robust control, it 

provides a systematic approach to the problem of uncertainties, bounded external disturbance and 

nonlinearities [5], [30], [32]–[37]. 

Unfortunately, there is an undesirable chattering in the control effort and it involves extremely high 

control activity. It is worth mentioning that eliminating this chattering problem several solution are proposed 

to perform properly as the boundary layer solution [23]–[25]. However, this method in only efficient for small 

uncertainties. In case of large uncertainties, the unknown parts of the two-links robot are estimated by using a 

neural network architecture, this approach leads to fewer uncertainties and a lower switching gain as result.  

The back propagation technique [4], [38], [39] is used to train the weights of the neural network on-

line. The most important task is to ensure the system’s asymptotical stability and the tracking error’s 

convergence to zero. In this study, the online input and output weights are injected and offline changed using 

the adaptive rules obtained from the Lyapunov stability theorem [40], therefore the asymptotical stability of 

the system is ensured, and also the speed of convergence is widely improved and illustrated in simulation 

results. In addition, we used integral squared error ISE [41] to validate numerically the theoretical statements, 

and that gives outstanding results. 

This paper is organized as follows. The dynamic model of two links robot systems is introduced in 

section 2. Section 3 covers the neural network design technique; outlines sliding mode control and illustrates 

the adaptive laws for modifying the input and output weights obtained from the Lyapunov synthesis approach 

and the stability proof is presented. Section 4 displays the simulation results obtained by using a two-link 

robot manipulator. Finally, the conclusion is addressed in section 5. 
 

 

2. SYSTEM MODEL OF THE TWO LINKS ROBOT 

Consider the dynamic model of the two links robot written as (1) [7]. 
 

𝑀(𝑞)�̈� + 𝑉𝑚(𝑞, �̇�)�̇� + 𝐹�̇� + 𝑓𝑐(�̇�) + 𝐺(𝑞) + 𝜏𝑑 = 𝜏 (1) 
 

With 𝑞, �̇�, �̈� ∈ ℜ
2
represent respectively the joints position, velocity and acceleration. 𝑀(𝑞) ∈ ℜ

2×2
 is a 

symmetric, positive definite inertia matrix, 𝑉𝑚(𝑞, �̇�) ∈ ℜ
2×2

 is the centripetal and coriolis matrix, 𝐹 ∈ ℜ
2
 

denotes the viscous friction coefficients, 𝑓𝑐(�̇�) ∈ ℜ
2
 is the coefficients of coulomb friction, 2)( qG  is the 

vector of gravitation, 𝜏𝑑 ∈ ℜ
2
 represents unmodeled dynamics and bounded unknown disturbances, 𝜏 ∈ ℜ

2
 

is the input torque vector applied to the servo motor. 
 

𝑉𝑚(𝑞, �̇�) = [
𝑉𝑚11 𝑉𝑚12
𝑉𝑚21 𝑉𝑚22

]; 𝑀(𝑞) = [
𝑀11

𝑀21

𝑀12

𝑀22
]   

 

𝑀11 =
𝑚2𝑙 

2

3
+

4𝑚2𝑙 
2

3
+𝑚2𝑙

2 𝑐𝑜𝑠( 𝑞2) ; 𝑀12 = 𝑀21 =
𝑚2𝑙 

2

3
+

𝑚2𝑙 
2

2
𝑐𝑜𝑠( 𝑞2); 𝑀22 =

𝑚2𝑙 
2

3
  

 

With 𝑞 = [𝑞1 𝑞2]𝑇 the positions; 𝑙 = 𝑙1 = 𝑙2: the lengths; 𝑚1, 𝑚2: the masses. 
 

𝑉𝑚11 = −
𝑚2𝑙

2

2
�̇�2 𝑠𝑖𝑛( 𝑞2), 𝑉𝑚12 = −

𝑚2𝑙
2

2
(�̇�2 + �̇�1) 𝑠𝑖𝑛( 𝑞2)  

 

𝑉𝑚21 =
𝑚2𝑙

2

2
�̇�1 𝑠𝑖𝑛( 𝑞2) ,𝑉𝑚22 = 0 ;G (𝑞)  = [

𝑚2𝑔𝑙 𝑐𝑜𝑠( 𝑞1) +
𝑚1𝑔𝑙

2
𝑐𝑜𝑠( 𝑞1) +

𝑚2𝑔𝑙

2
𝑐𝑜𝑠( 𝑞1 + 𝑞2)

𝑚2𝑔𝑙

2
𝑐𝑜𝑠( 𝑞1 + 𝑞2)

] 

 

With g is the gravitation term. 
 

𝐻 = Fq̇ + 𝑓𝑐 (�̇�) = [
𝑓𝑑1�̇�1 + 𝑘1 𝑠𝑔𝑛( �̇�1)
𝑓𝑑2�̇�2 + 𝑘2 𝑠𝑔𝑛( �̇�2)

]  

 

System model described by its state space is as (2). 
 

{
 
 

 
 
�̇�1 = 𝑥2
�̇�2 = 𝑓1(𝑥) + 𝑔11(𝑥1, 𝑥3)𝑢1 + 𝑔12(𝑥1, 𝑥3)𝑢2 + 휁1(𝑥, 𝑡)

�̇�3 = 𝑥4  

�̇�4 = 𝑓2(𝑥) + 𝑔21(𝑥1, 𝑥3)𝑢1 + 𝑔22(𝑥1, 𝑥3)𝑢2 + 휁2(𝑥, 𝑡)

 (2)  
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Where: 휁1(𝑥, 𝑡) and 휁2(𝑥, 𝑡) the unknown parts, 𝜏 = 𝑈 = [𝑢1 𝑢2]𝑇 = [𝜏1 𝜏2]𝑇𝑞 = [𝑥1 𝑥3]𝑇, �̇� =

[𝑥2 𝑥
4]
𝑇,�̈� = [�̇�2 �̇�

4]
𝑇
, 𝑥 = [𝑥1𝑥2𝑥3𝑥4]

𝑇 and 𝑀−1 = 𝑔(𝑥1, 𝑥3) = (
𝑔11(𝑥1, 𝑥3) 𝑔12(𝑥1, 𝑥3)

𝑔21(𝑥1, 𝑥3) 𝑔22(𝑥1, 𝑥3)
) with 

𝑔11(𝑥1, 𝑥3) > 0𝑎𝑛𝑑𝑔22(𝑥1, 𝑥3) > 0 and 𝑓(𝑥) = [𝑓1(𝑥) 𝑓2(𝑥)]𝑇 = −𝑀−1{−𝑉𝑚[𝑥2 𝑥4]𝑇 − H-G}. 

 

 

3. ADAPTIVE NEURAL NETWORK SLIDING MODE CONTROL DESIGN 

3.1.  Controller design 

This study examines the trajectory tracking problem of the robot manipulator mentioned previously. 

The challenge of trajectory tracking control is to construct a robot controller based on any of 𝑥(0)휀𝑅𝑛, 

𝑥(𝑡) − 𝑥𝑑(𝑡) → 0as 𝑡 → ∞. Where 𝑥(𝑡) and 𝑥𝑑(𝑡) are respectively the trajectory and the desired trajectory of 

a robot. In the following, some variables are defined as (3). 

 

𝜉(𝑥, 𝑡) ⥂⥂= [𝜉1(𝑥, 𝑡) ⥂⥂⥂ 𝜉2(𝑥, 𝑡)] (3) 

 

The system's output tracking error can be described as (4). 

 

𝑒 = 𝑞 − 𝑞𝑑 = [𝑥1 − 𝑥1𝑑 𝑥3 − 𝑥3𝑑]𝑇  

 

�̇� = �̇� − �̇�𝑑 = [�̇�1 − �̇�1𝑑 �̇�3 − �̇�3𝑑]
𝑇  

�̈� = �̈� − �̈�𝑑 = [�̈�1 − �̈�1𝑑 �̈�3 − �̈�3𝑑]
𝑇 (4) 

 

With 𝑥1𝑑 and 𝑥4𝑑 are the desired output. 𝑟 = 2 is the relative degree of the system (2), and the sliding surface 

is characterized as (5). 

 

𝑆 = �̇� + 𝛽𝑒 (5) 

 

β is designed diagonal matrix as 𝛽 = (
𝛽11 0
0 𝛽22

). The selection of   must satisfy the following Hurwitz 

polynomial as (6). 

 

𝑠(2) + 𝛽11𝑠
(1) = 0  

𝑠(2) + 𝛽22𝑠
(1) = 0 (6) 

 

With 𝑠 (𝑖) =
𝑑𝑖(𝑠)

𝑑𝑡𝑖
. The sliding variable derivative is (7). 

 

�̇� = 𝑓𝑛 + 𝜉(𝑥, 𝑡) + 𝑔𝑛𝑢 − (
�̇�2𝑑
�̇�4𝑑

) + 𝛽�̇� (7) 

 

The following is the robust adaptive controller that was used (8). 

 

𝑢 = 𝑢𝑛 + 𝑢𝑠 (8) 

 

with 𝑢𝑠 = −𝑘𝑠𝑖𝑔𝑛(𝑆). The control law that respect (8) is (9), 

 

𝑢 = 𝑔𝑛
−1(𝑥) (−𝑓𝑛(𝑥) + (

�̇�2𝑑
�̇�4𝑑

) − 𝛽�̇�) − 𝑘𝑠𝑖𝑔𝑛(𝑆) (9) 

 

where 𝑠𝑖𝑔𝑛( )is the sign function given by: 

 

𝑠𝑖𝑔𝑛(𝑆) = {
1if𝑆 > 0
0if𝑆 = 0
−1if𝑆 < 0.

  

 

In order to compensate the uncertainties, the positive switching gain k  is designed as 𝐵 < 𝑘. With 𝐵 the 

upper bound of uncertainties given by ‖𝜉(𝑥, 𝑡)‖ < 𝐵. The boundary layer method may be utilized to remove 

the chattering effect induced by the discontinuous control law. The control is now as (10), 
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𝑢 = 𝑔𝑛
−1(𝑥) (−𝑓𝑛(𝑥) + (

�̇�2𝑑
�̇�4𝑑

) − 𝛽�̇�) − 𝑘𝑠𝑎𝑡(𝑆) (10) 

 

with the saturation function is described by (11), 

 

𝑠𝑎𝑡(𝑆) = {
𝑆/𝛿if‖𝑆‖ < 𝛿
𝑠𝑔𝑛( 𝑆)otherwise

 (11) 

 

with 𝛿 is the boundary layer thickness.  

This approach is suitable for systems with minor uncertainty. We suggest using NN to estimate the 

uncertain terms of the system presented in (1) for large uncertain systems, in order to keep system 

uncertainties manageable. Let denote the prediction of unknown nonlinear functions parts as: 𝜉(𝑥, 𝑡) =

[𝜉1(𝑥, 𝑡) 𝜉2(𝑥, 𝑡)]
𝑇
, with as (12): 

 

휀(𝑥, 𝑡) = 𝜉(𝑥, 𝑡) − 𝜉(𝑥, 𝑡) (12) 

 

and: ‖𝜉(𝑥, 𝑡)‖ < 휀∗ where 휀∗ is the network prediction errors' upper bound. 

- Theorem 1: Consider the robot manipulator stated in (1) in the context of significant uncertainty. If the 

system control is programmed as (13): 

 

𝑢 = 𝑔𝑛
−1(𝑥) (−(𝑓𝑛(𝑥) + 𝜉(𝑥, 𝑡)) + (

�̇�2𝑑
�̇�4𝑑

) − 𝛽�̇� − 𝑘𝑠𝑎𝑡(𝑆)) (13) 

 

with 휀∗ < 𝑘 and 𝜉(𝑥, 𝑡) is predicted by the proposed off-line NN structure, then the trajectory tracking 

errors converge to zero in limited time. 

- Proof. Consider the potential Lyapunov function: 𝑉 =
1

2
𝑆𝑇𝑆 then �̇� = 𝑆𝑇�̇� replacing the expression of �̇� 

given in (7) we have:  

 

�̇� = 𝑆𝑇(𝑓𝑛 + 𝜉(𝑥, 𝑡) + 𝑔𝑛𝑢 + (
�̇�2𝑑
�̇�4𝑑

) + 𝛾�̈� + 𝛽�̇�)  

 

by substituting the expression of  provided in the theorem we get: 

 

�̇� = 𝑆𝑇(𝜉(𝑥, 𝑡) − 𝜉(𝑥, 𝑡) − 𝑘𝑠𝑎𝑡(𝑆)) = 𝑆𝑇휀(𝑥, 𝑡) − 𝑘𝑆𝑇𝑠𝑎𝑡(𝑆) ≤ ‖𝑆𝑇‖‖휀(𝑥, 𝑡)‖ − 𝑘𝑆𝑇𝑠𝑎𝑡(𝑆)

≤ ‖𝑆𝑇‖휀∗ − 𝑘𝑆𝑇𝑠𝑎𝑡(𝑆) 
 

by selectingε* < k, with k s a minor gain that is just responsible for compensating network faults forecast, 

we have: if ‖𝑆‖ ≥ 𝛿 then we take 𝑠𝑎𝑡(𝑆) = 𝑠𝑖𝑔𝑛(𝑆) for any𝛿 > 0 and the function �̇� = (휀∗ − 𝑘)‖𝑆‖ <

0. However, we take 𝑠𝑎𝑡(𝑆) =
𝑆

𝛿
as continuous function in a boundary layer (a small 𝛿 -vicinity of the 

origin), as a result the system trajectories are restricted to a sliding mode manifold boundary layer. 𝑆 = 0. 

Basing on (10), (8) and (4) we can write as (14). 

 

�̈� = 𝐴�̇� + 𝐵휁̃(𝑥, 𝑡) − 𝐵𝑔𝑛(𝑥)𝑢𝑠 (14) 

 

The neural controller aim is to drive the system output to match the defined intended reference trajectory 

as closely as feasible. The suggested neural network's design technique will be described in the following 

paragraph. 

 

3.2.  Neural network representation 

We investigate a NN with two layers of tunable weights in this study [8]. The architecture used is 

illustrated in Figure 1 with one hidden layer, where x  is the state input variables: the joints position, and the 

output variables are the unknown parts given by (2): 𝑦1 = 𝜉1(𝑥, 𝑡) 𝑎𝑛𝑑 𝑦2 = 𝜉2(𝑥, 𝑡). 

𝑦𝑘 = 𝑊𝑘
𝑇𝜎(𝑊𝑗

𝑇𝑥) 𝑘 = 1,2 Where 𝜎()is the activation function for hidden-layer considered as a 

sigmoid 𝜎(𝑠) =
1

1+𝑒−𝑠
 function given by 𝑊𝑘 = [𝑊𝑘1𝑊𝑘2𝑊𝑘𝑁]

𝑇  and 𝑊𝑗 = [𝑊𝑗1𝑊𝑗2𝑊𝑗𝑁]
𝑇
 are the connectivity 

u
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weights between the hidden and output layers, as well as between the input and hidden layers. The actual 

output 𝑦𝑑𝑘(𝑥) which is the difference between the actual and nominal functions is (15). 
 

𝑦𝑑𝑘(𝑥) = 𝑦𝑘(𝑥) + 휀(𝑥) (15) 
 

Where the approximation error of NN is 휀(𝑥). The weights of the network are modified during the offline 

implementation. The technique used is based on the BP algorithm, it’s a gradient-descent method and widely 

used. The back propagation technique is used to determine the necessary modifications after randomly 

selecting the network weights. The algorithm may be broken down into five steps: 

i) Forward propagation of operating signal 

ii) Calculate loss function 

iii) Back propagation of error signal 

iv) Calculate gradients 

v) Weight updates 

When the value of the error function becomes sufficiently minimal, the algorithm is terminated. It worth 

mentioning that BP algorithm converges slowly. In order to improve the speed of convergence, the adaptive 

principles obtained from the Lyapunov stability theorem is used to update online the obtained inputs and 

outputs weights. The detailed steps of the proposed algorithm are illustrated in [40]. 
 
 

 
 

Figure 1. A multilayer neural network's design for predicting unknown components 
 

 

3.3.  Implementation of adaptation laws 

The network weights are adjusted using the hybrid BP algorithm which takes important time to have 

a result, to deal with this time response weights are adjusted offline. In this case the output of ANN with 5 

hidden nodes can be presented by (16). 

 

휁̃(𝑥, 𝑡) = 𝑊𝑘 ∗ 𝜎𝑘(𝑥,𝑊𝑗) (16)
 

 

The parameters 𝑊𝑘 and 𝑊𝑗 need to be adjusted further for the purpose to minimize approximation errors. The 

adaptive rules for them were developed as (17) [23], 
 

{
�̇�𝑘 = −휂1𝜎𝑘

𝑇𝐵𝑇𝑃�̇�

�̇�𝑗 = −휂2𝑥 
𝑇𝐵𝑇𝑃�̇�

 (17)
 

 

where 휂1 and 휂2 are constants that are always positive. 𝑃 is the positive and symmetric definite matrix that 

corresponds to: 
 

𝐽 = −(𝐴𝑇𝑃 + 𝑃𝐴) (18) 
 

where the designer selected J  as a asymmetric definite matrix. 
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- Theorem 2: Suppose the nonlinear system described by (1). If the adaptive neural control rule mentioned 

in (13) is used with the parameter adaptation laws (17), as a result, the tracking errors converge to zero 

as 𝑡 → ∞ and all signals in the closed-loop system are limited. 

- Proof: Take into consideration the possible Lyapunov function, which is: 
 

�̇� =
1

2
�̇�𝑇𝑃�̇� +

1

2𝜂1
𝑊𝑘

𝑇𝑊𝑘  

 

The Lyapunov function's derivative is stated as: 
 

�̇� =
1

2
(�̈�𝑇𝑃�̇� + �̇�𝑇𝑃�̈�) +

1

𝜂1
�̇�𝑘

𝑇𝑊𝑘  

 

using in (14) we have: 
 

�̇� =
1

2
((𝐴�̇� + 𝐵휁̃(𝑥, 𝑡) − 𝐵𝑔𝑛(𝑥)𝑢𝑠)

𝑇𝑃�̇� + �̇�𝑇𝑃(𝐴�̇� + 𝐵휁̃(𝑥, 𝑡) − 𝐵𝑔𝑛(𝑥)𝑢𝑠)) +
1

𝜂1
�̇�𝑘

𝑇𝑊𝑘  

 

applying (16) and (17) we get: 

 

�̇� =
1

2
((𝐴�̇� + 𝐵휁̃(𝑥, 𝑡) − 𝐵𝑔𝑛(𝑥)𝑢𝑠)

𝑇𝑃�̇� + �̇�𝑇𝑃(𝐴�̇� + 𝐵휁̃(𝑥, 𝑡) − 𝐵𝑔𝑛(𝑥)𝑢𝑠)) +
1

𝜂1
(−휂1𝜎𝑘

𝑇𝐵𝑇𝑃�̇�)𝑇𝑊𝑘  

 

�̇� =
1

2
�̇�𝑇(𝐴𝑇𝑃 + 𝑃𝐴)�̇� +

1

2
(휁̃𝑇(𝑥, 𝑡)𝐵𝑇𝑃�̇� + �̇�𝑇𝑃𝐵휁̃(𝑥, 𝑡)) −

1

2
(𝑢𝑠

𝑇𝐵𝑇𝑔𝑛
𝑇(𝑥)𝑃�̇� + �̇�𝑇𝑃𝐵𝑔𝑛(𝑥)𝑢𝑠) −

�̇�𝑇𝑃𝐵 𝜎𝑘𝑊𝑘  
 

𝑃 is symmetric, we get: 
 

�̇� =
1

2
�̇�𝑇(𝐴𝑇𝑃 + 𝑃𝐴)�̇� −

1

2
𝑢𝑠
𝑇𝐵𝑇𝑔𝑛

𝑇(𝑥)𝑃�̇�  

 

�̇� ≤
1

2
�̇�𝑇𝐽�̇� −

1

2
‖𝑢𝑠

𝑇‖𝐵𝑇𝑔𝑛
𝑇(𝑥)𝑃‖�̇�‖ ≤ 0  

 

Hence �̇�is negative semi definite, the signals �̇�and 𝑊𝑘 are all bounded. The parameters 𝑊𝑘 and 𝑊𝑗 

described in (17) are adjusted using the projection algorithm as (19): 
 

�̇�𝑘 =

{
 
 

 
 
−휂1𝜎 

𝑇𝐵𝑇𝑃𝑒 𝑖𝑓 ‖𝑊𝑘‖< 𝑀𝐵𝑜𝑟

 𝑖𝑓 {
‖𝑊𝑘‖= 𝑀𝐵  𝑎𝑛𝑑

𝑒𝑇𝑃𝐵𝜎 
𝑇𝑊𝑘 ≥ 0

−휂1𝜎 
𝑇𝐵𝑇𝑃𝑒 −

𝑒𝑇𝑃𝐵𝜎 
𝑇𝑊𝑘

‖𝑊𝑘‖2
𝑊𝑘  𝑖𝑓 {

‖𝑊𝑘‖= 𝑀𝐵 𝑎𝑛𝑑 

𝑒𝑇𝑃𝐵𝜎 
𝑇𝑊𝑘 < 0

  

�̇�𝑗 =

{
 
 
 

 
 
 
−휂2𝑥

𝑇𝐵𝑇𝑃𝑒𝑖𝑓 ‖𝑊𝑗‖< 𝑀𝐵2𝑜𝑟

 𝑖𝑓 {
‖𝑊𝑗‖= 𝑀𝐵2  𝑎𝑛𝑑

𝑒𝑇𝑃𝐵𝑥 
𝑇𝑊𝑗 ≥ 0

−휂2𝑥 
𝑇𝐵𝑇𝑃𝑒 −

𝑒𝑇𝑃𝐵𝑥 
𝑇𝑊𝑗

‖𝑊𝑗‖
2 𝑊𝑗  𝑖𝑓 {

‖𝑊𝑗‖= 𝑀𝐵2 𝑎𝑛𝑑 

𝑒𝑇𝑃𝐵𝑥 
𝑇𝑊𝑗 < 0

 

(19) 

 

The utilization of projection algorithm has a good performance on the tracking trajectory and also in the 

control law illustrated in the next section. 

 

3.4.  Integral squared error (ISE) 

In advance of talking about how to configure a controller, we must first define what makes a 

satisfactory response. It is a great challenge to take up. In reality, there are several metrics that may be used 

to compare the quality of regulated replies. The control measure described in this section is integral squared 

error (ISE) which is used to illustrate the success of the designed control ANNSMC. According to [41], the 

mathematical expression for ISE is (20), 
 

ISE=∫ e2dt (20) 
 

where t is the simulation time, and e is the system's output tracking error. 
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4. SIMULATION RESULT 

In this part, we put the suggested control strategy to the test on a two-link robot represented by the 

model (1). The aim of the control is to keep the system tracking the desired angle trajectory:𝑥1𝑑 =
𝜋

2
−

𝜋

3
𝑐𝑜𝑠( 0.5𝑡) and 𝑥3𝑑 = (𝜋/3) 𝑠𝑖𝑛( 0.5𝑡). The criteria are thought to be :m1 = m2 = 1; l1 = l2 = 1 the initial 

conditions are: 𝑞(0) = [𝑥1(0) 𝑥3(0)]
𝑇 = 0 ,�̇�(0) = [𝑥2(0) 𝑥

4(0)]
𝑇
= 0. The uncertainties under 

consideration are vector random noise with a value of unity |𝜏𝑑| ≤ 1. The following are the parameters 

connected with the controller design: 𝐽 = (
100 0
0 100

)𝑀𝐵 = 1.35, 𝑀𝐵2 = 2,휂1 = 6, 휂2 = 1.5, A=[1 0;0 1], 

B=[1 0;0 1], P=[-50 0;0 -50], the number of hidden nodes is 5, the gain is 𝑘1 = 𝑘2 = 1.5. 
The simulation results show position tracking for links 1 and 2, which are depicted respectively in 

Figure 2 and Figure 3, where the reference signal is represented by the dashed line (red), the results using 

adaptive law for weigh (ANNSMC) is represented by solid line (green), the results without adaptive law for 

weigh (NNSMC) is represented by dashed line (blue) and the results using conventional SM is represented by 

dot line (black). According to Figure 2, the gap between the ANNSMC outcomes position of link 1 and the 

reference value is high at first, but the system remains stable, and the system outputs faster converge to the 

intended trajectory than NNSMC, however the SMC result position don’t converge as the ANNSMC result 

position. Similarly, the ANNSMC position of link 2 closely matches the reference signals and quickly than 

NNSMC. The corresponding control torque signals given in Figure 4 and Figure 5 are smooth even in the 

presence of significant uncertainty, there is no oscillatory behavior. 
 
 

 
 

Figure 2. Angle response 𝑥1𝐴𝑁𝑁𝑆𝑀𝐶  using adaptive law, 𝑥1𝑁𝑁𝑆𝑀𝐶  angle response without adaptive law
 

𝑥1𝑆𝑀𝐶  angle response with conventional SMC and desired trajectory 𝑥1𝑑 
 
 

 

 

Figure 3. Angle response 𝑥3𝐴𝑁𝑁𝑆𝑀𝐶using adaptive law, 𝑥3𝑁𝑁𝑆𝑀𝐶  angle response without adaptive law 𝑥3𝑆𝑀 

angle response using conventional SMC and desired trajectory 𝑥3𝑑 
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Figure 4. Control 𝑢1 (input torque of join actuator 1) 
 
 

 
 

Figure 5. Control 𝑢2 (input torque of join actuator 2) 
 

 

In addition, the suggested adaptive neural control method's performance evaluation in term of the 

speed of convergence is investigated in Figure 6 and Figure 7, that represent the position tracking for link 1 

and link 2 where the reference signals is represented by dash red line and the results without adaptive law for 

weight is represented by solid line in blue, by comparing the time response made by the results using this 

approach, Figure 2 and Figure 3, and the results without it, Figure 6 and Figure 7, it’s obvious that the time 

response is widely improved. Furthermore, the error response is also reduced by using the proposed control 

and illustrated in Figure 8 and Figure 9. 
 

 

 
 

Figure 6. Angle response 𝑥1𝑁𝑁𝑆𝑀𝐶  without adaptive law, desired trajectory 𝑥1𝑑 
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Figure 7. Angle response 𝑥3𝑁𝑁𝑆𝑀𝐶  without adaptive law, desired trajectory 𝑥3𝑑 
 

 

 
 

Figure 8. Error response 𝑒1𝑁𝑁𝑆𝑀𝐶  , 𝑒1𝐴𝑁𝑁𝑆𝑀𝐶  and 𝑒1𝑆𝑀𝐶  of angle 𝑞1, respectively without and with adaptive 

law and SMC 
 
 

 
 

Figure 9. Error response 𝑒2𝑁𝑁𝑆𝑀𝐶 , 𝑒2𝐴𝑁𝑁𝑆𝑀𝐶  and 𝑒2𝑆𝑀𝐶  of angle 𝑞2, respectively without and with adaptive 

law and SMC 

 
 

The performance comparison of the ANNSMC control in Table 1 shows that it outperforms the 

neural network sliding mode control (without the adaptive law derived based on Lyapunov theory). The 

control system designed to minimize ISE tend to rapidly reduce huge mistakes, this leads to fast responses 

This is seen in Figures 2, 3, 6, and 7. 
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Table 1. Comparative ISE for ANNSMC and SMC control 
 NNSMC ANNSMC SMC  

𝑒1 𝑒2 𝑒1𝑎 𝑒2𝑎 𝑒1𝑠 𝑒2𝑠 
ISE 6.1398 80.2373 2.8940 47.241 9.6930 108.6011 

 
 

5. CONCLUSION 

The robust reference tracking problem for two-link robot manipulators was solved in this study. The 

developed method is a hybrid of the sliding mode control SMC technology and the adaptive neural network. 

ANN used online to extract weights adjusted firstly with BP algorithm. However, these weights are injected 

to be adjusted secondly by the adaptation rule obtained from the Lyapunov stability theorem. The ability of 

ANN to approximate fatly the uncertainties and external interference were assessed through comparison with 

an traditional SMC methods. Simulations conducted on computers of a two-link robot manipulator confirm 

outstanding results and show that the proposed algorithm can quickly approach the desired trajectory and 

effectively suppresses the chattering. Furthermore, the measure of ISE is used in addition to verify the 

theoretical statements achieved. 
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