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 Electric vehicles are developing rapidly and require technological support. 

Electric vehicles require good power storage. One of the reasonable 

parameters of a battery pack is its high discharge capability. A high 

discharge rate requires suitable cell and heat management capabilities in the 

battery pack. When discharging, it produces heat energy and needs to be 

released. The battery thermal management system (BTMS) is a method used 

to maintain battery heat. BTMS using liquid has a better performance 

compared to phase-change memory (PCM) and air cooling. The use of liquid 

coolers still has limitations. Namely, the weight of the cooling system is 

quite large because of a large amount of liquid which increases the weight of 

the battery. This study offers the potential to use mini channels mounted on 

cooling plates for application as BTMS. This research used the finite 

element method (FEM) process by simulating the process of fluid flow that 

occurs when the battery is used at various C rates. The results of this study 

indicate that the type of BTMS can keep the battery hot at working 

temperatures below 40 ºC. 
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1. INTRODUCTION 

The limitations of fossil-based energy in terms of sustainability and environmental impact 

encourage innovations regarding energy sources that are more environmentally friendly and sustainable. 

Using new and renewable energy sources (RES) is the main focus in dealing with energy problems in the 

coming years. RES from wind power, sunlight, and geothermal energy has the potential to be developed, and 

the mix increased [1], [2]. These renewable energies are converted into electrical energy, resulting in 

increased electrification in various sectors, including transportation. The use of electric vehicles has a variety 

of positive impacts on the environment, including reducing air and noise pollution in urban areas with high 

populations. Electric vehicles (EVs) can directly penetrate the existing vehicle market. In other words, 

implementing EV technology with new and renewable energy sources is one of the focuses in dealing with 

the limitations of fossil energy. Battery packs are secondary battery cells arranged in series or parallel with 

the desired specification reference. The battery type greatly influences the battery pack's dimensions or size. 

Until now, secondary batteries with high energy density and long service life are lithium ion batteries (LIBs) 

[3]–[7]. LIBs used for battery packs or ESS also contain various main components: cathode, anode, 

separator, and electrolyte. The cathode material is essential in determining a battery's capacity and energy 

density. Li-ion diffusion in the solid phase and electrolyte depletion will always limit cell discharge. 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Pow Elec & Dri Syst  ISSN: 2088-8694  

 

Analysis of lithium-ion indirect liquid cooling battery thermal management … (Muhammad Nizam) 

1415 

Significantly, heat is generated within the cell and dissipates to the environment in all directions. If heat is 

dissipated only through the graphite at the top of the two electrodes, a temperature gradient will occur along 

the cell's height, leading to a non-uniform electrode reaction rate [8]. The use of batteries in vehicles, in 

general, has various challenges, such as the need for batteries that are capable of providing high discharge 

due to their use in various conditions, such as the need for fast charging and as a provider of energy for 

supporting devices for electric vehicles such as eddy current brakes and regenerative brakes which require 

batteries to be able to accept the high load [9]–[11]. 

One of the problems in a battery that may occur is thermal runaway (TR) caused by an internal short 

circuit in one cell. If TR spreads to adjacent cells in a battery pack via thermal propagation (TP), it causes 

havoc and can endanger human life [12]–[14]. TR conditions can be caused by overcharging, internal 

shorting of cells, and vehicle collisions. However, the cause often occurs when the cell temperature is above 

a specific limit, allowing a series of exothermic reactions to occur, which will then increase the temperature. 

If it happens continuously will be the cause of TR. A researcher comprehensively analyzed the characteristics 

of the TR type 21700 cylindrical lithium-ion battery (LIB) with a specific energy of 266 Wh/kg. Batteries at 

30% and 100% state of charge (SOC) are triggered to TR by uniform heating using a flexible heater in a 

laboratory environment. The correlation between the heat release rate (HRR) and the average flame height of 

the turbulent spark diffusion was used to estimate the HRR of the LIB. Additional characteristics of cell 

failure (for cells with 100% and 30% SOC) were also recorded for comparison, including the number of 

objects removed from the cell, sparks, and subsequent jet fires. An approach was developed to estimate the 

HRR of a TR-triggered fire, and the results were compared with previous HRR measurements for a 18650 

cylindrical cell type with a similar cathode composition [15], [16]. 

Li-ion batteries have a higher energy density and longer service life than chemical batteries. Li-ion 

battery performance is still greatly affected by temperature. The optimal temperature is between 15-35 °C, 

and the maximum temperature difference between modules is below 5 °C. Incorrect temperatures can 

decrease performance and thermal runaway. A battery thermal management system (BTMS) is needed to 

avoid thermal runaway when the battery is used. BTMS primarily aims to keep the battery temperature at its 

optimal temperature, and the battery temperature distribution is even. BTMS, according to the control 

strategy, can be divided into active and passive cooling systems. 

Meanwhile, according to the heat transfer medium, liquid cooling, water cooling, and phase change 

material (PCM) cooling, The battery thermal management system can be divided into three methods: (a) air-

cooled system, (b) liquid-cooled system, and (c) phase change material (PCM) based cooling system. Each 

method has different characteristics. The cooling effect of the air conditioning system is poor and cannot 

meet the cooling requirements of the battery if the battery is used in extreme environments or works under 

high-duty cycles [17]. PCM-based cooling systems effectively reduce temperature and keep temperature 

differences low, but encapsulation and volume changes during phase changes limit their applicability. Thus, a 

liquid cooling system can be more suitable for battery thermal management systems [18]–[21]. So far, 

previous research has focused chiefly on cooling by applying PCM and liquid cooling on the surface area of a 

cylindrical battery body. A heat potential is focused on the polar area of the battery used. This is the potential 

to develop a cooler directly in the hot area used. The novelty of this study is to reveal heat transfer in a Li-ion 

cylindrical battery thermal management system using the indirect liquid cooling method with water as the 

primary fluid using a cooling plate with a mini channel water flow in the copper tube at the end of the pole 

used. Most of the research used water or liquid cooling methods using water and some with the PCM method. 

 

 

2. METHOD 

The research process uses a type of cylindrical Li-ion battery. The battery used in this study is a 

cylindrical type battery with details as in Table 1 with the battery composition cathode, anode, separator, and 

current collector tabs considered as isotropic so that they can be considered to have the same thermal 

conductivity and heat value values [22]. 

 

 

Table 1. Properties of the battery cell 
Parameter Value 

Nominal voltage (V) 3.2 
Nominal capacity (Ah) 2.6 

Material cathode LiFePO4 

Dimensions (mm) 26 diameter × 65 height 

Cut-off voltage (V) 2.55 

Specific heat capacity (J/kg K) 894 
Thermal conductivity (W/m K) Radial: 1.035 

 Axial/tangential: 14.15 
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The electrochemical reactions in the anode and the cathode during the charging and discharging 

processes are shown in (1) and (2) [23]. Definitions of physical phenomena such as the conservation of mass, 

momentum, and energy equations for heat transfer in  this study are as follows [23]: 

− Conservation of mass (the continuity equation): 

 

𝛻. 𝑉 = 0 (1) 

 

− Conservation of momentum: 

 
𝜕(𝜌𝑉)

𝜕𝑡
+  𝑉. 𝛻(𝜌𝑉) =  −𝛻𝑝 +  𝜇. 𝛻2𝑉 (2) 

 

− Conservation of energy: 

 
𝜕(𝜌𝐶𝑝𝑇)

𝜕𝑡
+  𝑉. 𝛻(𝜌𝐶𝑝𝑇) =  𝛻(𝐾𝛻𝑇) =  �̇� (3) 

 

where is the velocity vector, the density of the fluid, the pressure, the dynamic viscosity of the fluid, the 

volumetric heat generation of the battery, the specific heat, and K is the thermal conductivity. 

The battery module's flow field and temperature patterns are affected by the thermal behavior of the 

battery. It happens when charging and discharging poses take place. Some researchers have conducted an 

analysis of heat generation levels in batteries. Huang et al. [24] and Kung et al. [25] studied thermal 

interaction and heat dissipation of cylindrical Li-ion battery cells. The analysis was carried out by adopting 

equations for heat generation in battery cells developed by Bernardi et al. [26]. Bernardi's equation was used 

in this study to calculate the generation of heat on the battery, as shown in (4). 

 

𝑄 =
1

𝑉
[𝐼2𝑅𝑖 + 𝐼𝑇 

𝑑𝑈0

𝑑𝑇
] (4) 

 

Where Q is the battery heat generation rate per unit time and volume, and V is the volume of the battery. I is the 

current through the battery, 
𝑑𝑈0

𝑑𝑇
 is the internal resistance of the battery cell, is positive in charging and negative 

in discharging, T is the battery temperature, and is the entropic heat coefficient. The entropic heat coefficient 

can be set as 0.01116 V. The results of the heat generation rate calculation using (3) are indicated in Table 2. 
 

 

Table 2. Heat generation at different discharge rates 
Discharge rate (C) Current of the cell (A) Internal resistance (Ω) Heat generation rate (W/m³) 

0.5 1.75 0.04 1557.315599 

1 3.5 0.04 5318.379686 

2 7 0.04 19451.75333 
3 14 0.04 42400.12092 

 

 

The study conducted thermal analysis on twenty-five LIBs with discharge rates of 0.5C, 1C, 2C, and 

3C with liquid coolants in water. In numerical investigative studies using the finite volume approach. As for 

the simulation study in the form of a three-dimensional battery module using computational fluid dynamics 

(CFD). Simulation settings include a pressure-based, laminar/K-epsilon turbulent, incompressible, transient 

solver. A simple algorithm is used to solve the numerical model and uses a steady operation with 2000 

iterations and an element value of 810096 with meshing, as shown in Figure 1, with the inlet set at 25 °C. 

Figure 1 shows the battery design used in the modeling carried out. The batteries used small segments for 

analysis. Figure 2 shows the position of the inlet and outlet of the cooling fluid flow. The data collection 

position is done by sampling in the middle area of the battery module to get an idea of the hottest position. 

The process carried out in this study was to model the battery pack area provided by BTMS in the form of 

mini-channel cooling plates made of aluminum. This research is a preliminary process to become the basis 

for developing mini-channel cooling plates. 

The cooler model is an aluminum plate placed in the polar area of the battery used. Inside the plates 

used, there is a fluid flow pattern made using copper pipes with design details that can be seen in Figure 3. 

The research process uses scenarios to determine the cooling performance provided by mini-channel cooling 

plates, as shown in Figure 3. In Figure 3, the process heat flux is applied to the surface of the battery module, 

representing heat generation from the internal battery. The heat flux obtained is the heat flux when the battery 

is loaded. The battery uses the SOC range from 90% to 20% for each test. 
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Figure 1. Battery mesh used Figure 2. The battery configuration analyzed in the research used 
 

 

 
 

Figure 3. Cooling plates configuration 
 
 

3. RESULTS AND DISCUSSION 

Research conducted by numerical simulation on BTMS with liquid-cooled indirect has used fluid in 

the water. By using a simplified battery module using a 7×7 pattern, this module will describe the 

phenomenon of battery heat from the inner area to the outer area [13]. The resulting heat generation 

characteristics are instantaneous heat on the surface of the battery module used. The battery is an LFP-type 

battery with a stable heat generation character. The heat generated tends to be on the positive and negative 

poles used in the circuit. A battery with a higher discharge value will also have a higher heat value. 

− Heat increases due to C-rate  

The higher the C rate used, the higher the heat generated. It is caused by differences in internal 

resistance (IR) values due to heat generation. The higher the IR value will affect the heat generated. In the 

case carried out in this study, the higher the C rate, the higher the heat generated. It increases the potential for 

TR presence. The effect of the difference in the C-rate used is shown in Figure 4.  

The discharge rate affects the heat generation rate; the higher the discharge rate, the more the heat 

generation rate increases. It affects the battery's temperature and then impacts the working efficiency of the 

Li-ion battery. This study has investigated the influence of different discharge rates. Five variations of 

discharge rates ranging from 0.5C to 3C were applied to batteries. At 1, 2, and 3C, show an increase in the 

average temperature in the battery along with changes in flow time with the highest heat temperature in the 

middle module area. It is caused by the cooling plates used will receive heat from the top and bottom of the 

battery module. The proposed design still produces good generation characteristics, indicated by the 

temperature used, which has an average value that remains in the normal working temperature area between 

30 ºC when using a fluid flow of 1 m/s. The difference in the value of the inlet speed also affects the heat 

generated in the battery pack. When the velocity of the water flow is higher, the potential for absorption is 

also better, but further research regarding how long the cooling system is optimal needs to be taken into 

account. Table 3 shows that heat tends to be higher in the middle module area. This can be seen in the 

various discharge rates used. Compared to air coolers, this type of cooler can provide better heat distribution 

because the heat absorption capacity is more even when compared to air coolers. 
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Figure 4. Heat at various C-rate 

 

 

Table 3. Temperature differences in various battery pack segments 

Position 
Inlet speed (m/s)  

Position 
Inlet speed (m/s) 

1 2 3 4  1 2 3 4 

Upper module 0.5C 28.1 28.1 28 28  Upper module 2C 28.8 28.7 28.7 28.6 
Middle module 0.5C 28.2 28.2 28.1 28.1  Middle module 2C 29 29 29 28.9 

Bottom module 0.5C 28 28.1 28 27.9  Bottom module 2C 28.8 28.7 28.7 28.5 

Cooling plates 0.5C 27.7 27.7 27.6 27.6  Cooling plates 2C 28.6 28.4 28.3 28.3 
Upper module 1C 28.3 28.2 28.2 28.1  Upper module 3C 29.7 29.6 29.4 29.4 

Middle module 1C 28.4 28.3 28.3 28.2  Middle module 3C 30.1 30 29.9 29.9 

Bottom module 1C 28.3 28.3 28.1 28  Bottom module 3C 29.8 29.5 29.4 29.4 
Cooling plates 1C 28 28 27.9 27.8  Cooling plates 3C 29.4 29.3 29.1 29.1 

 

 

The heat generated has fairly even characteristics. The temperature difference on the surface of the 

battery is below 0.5 °C, so the heat distribution generated due to heat absorption on the cooling plates is quite 

good. The potential use of cooling plates still requires further development. Different inlet streams do not 

affect the heat absorbed by the cooling plates, which is caused by the absorption capacity of the same cooling 

plates when they have different inlet speeds. Look at Figure 5. The heat distribution on the battery module 

tends to be evenly distributed in all areas of the module used. Figure 5(a) shows the isometric location of the 

battery when in use. The battery has a different tendency to heat on the side parallel to the direction of fluid 

flow and in areas not parallel to the direction of fluid flow. Areas parallel to the direction of fluid flow have 

an excellent cooling rate compared to the outer areas because they have more potential for heat absorption. 

Figure 5(b) shows the part that experiences the highest heat, which is the middle area of the battery. 

 

 

  
(a) 

 

(b) 

 

Figure 5. The distribution of the generated heat: (a) isometric view and (b) side view 
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4. CONCLUSION  

The addition of liquid cool to the battery pack has considerable potential to maintain the 

performance of the battery pack. Batteries with type 26650 have enough space to be applied together with 

liquid cooling. Tests using water-cooled at various C-rates are applied to the battery's heat generation rate. 

This analysis concludes that the heat generation that occurs can be sufficiently reduced by using indirect 

liquid cooling. The battery used has three modules assembled into the same pack. Heat tends to collect in the 

center of the battery pack. It is caused by the cooling plates absorbing heat in the top and bottom areas with a 

heat difference below 0.5 ºC. Variations in the discharge rate of 0.5C, 1C, 2C, and 3C affect the battery's heat 

generation rate. The higher the rate of heat generation in the battery, the average temperature of the battery 

increases. The supply of fluid entering the cooling plates does not significantly affect cooling performance, 

with the average heat still at normal temperature, around 30 ºC. 
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