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 The critical factors to consider when implementing a maintenance plan for 

energy transmission lines are, accuracy, speed, and time, because of the 

increased global demand for electricity power caused by rapid development, 

and overuse of electric power transmission lines (both underground cables and 

overhead transmission lines), which in turn reduces the efficiency of the lines. 

Consequently, the efficiency of the lines may be reduced as a result of overuse 

or other activities like excavation that may have tampered with the cables. 

Thus, it becomes important to investigate the faults to which the lines are 

exposed. To this end, this article focuses on the detection of fault in 

transmission lines through the use of k-nearest neighbor algorithm. Using this 

algorithm, the characteristics were obtained (voltage, current), and these 

characteristics enable the identification of faults in the transmission lines, and 

in the specific location (the entire system, phase B, and phase A). The benefits 

that can be derived from the use of this algorithm include time, accuracy, 

speed, which are the requirements for the maintenance of transmission lines. 

Euclidean distance used in the application of the k-nearest neighbor technique 

for weights, and K = 3 for number of neighbors. The dataset was split into two 

parts, 70% training set and 30% testing set. 
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1. INTRODUCTION  

Presently, the cost of developing electric power transmission lines is higher than ever before, because 

of the higher demand for electricity. This high cost covers for power generation, transmission, and distribution 

as contained in Figure 1 [1]. The performance of these transmission lines is affected by heavy and continuous 

use, as well as other external factors [2]. Undetected faults can be a major obstacle in the functioning of any 

power system, as they can stop the operation of the entire electrical system [3]–[5]. There are different kinds 

of faults that can be found in transmission lines, and these different faults can be categorized as either 

asymmetric or symmetrical. An example of such faults that can arise in transmission lines include phase fault 

such as phase-to-ground fault, phase-to-phase fault, phase-to-earth fault, and three-phase fault. Nevertheless, 

there presence does not affect the functionality of the power system. More so, other faults like overlapping 

faults, circuit fault, and other faults are faults that are also regarded as unimportant faults compared to the 

aforementioned faults. Traditionally, these lines are maintained through the use of megger device which 

facilitates the detection of faults. Alternatively, the faults are also detected through physical inspection of lines 

[6]–[12]. These two methods are time-consuming, and as such, countries around the world are exploring new 

ways through which the faults can be detected and addressed within a short period of time. In this work the 

ability of the k-nearest neighbor (KNN) algorithm to detect the faults is explored, and the specific kind of fault 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2088-8694 

Int J Pow Elec & Dri Syst, Vol. 14, No. 2, June 2023: 1033-1043 

1034 

is identified through the use of MATLAB software, whether phase-ground fault or phase-to-phase fault. The 

elements that should be considered when a fault is detected in any type of power system include voltage, 

current, resistance, power factor, and frequency. Several techniques of fault detection show the presence of a 

fault by comparing the post-fault values with the pre-fault values of the systems. 

 

 

 
 

Figure 1. Power system structure [1] 

 

 

2. A LITERATURE SURVEYS 

A wide range of approaches and techniques have been used in the detection of faults in electric power 

transmission lines. In the work done by Muir and Lopatto a new method was introduced; the method helps in 

detecting fault in digital relays-based power system through the use of Petri nets [1]. The authors made use of 

Petri nets for modelling and detection of location, and with the proposed technique, the power system is 

monitored in a hierarchical manner. Their experimental results revealed that the use of Petri nets reduced the 

time required to process information, and the precision of fault detection increased. As early as in 1994, the 

use of microprocessors was employed by Barros and Drake to detect faults in real time [13] based on the 

estimation of the three phase voltage phasors by mean of a set of Kalman filters, and on the calculation of the 

fault probability. Subsequently, in 2004, wavelet transform was proposed by [3] for the detection of fault in a 

transformer by measuring neural currents. The analysis of the wavelet transform was carried out based on the 

Morlet wavelet (mother wavelet). It was concluded that significant improvement was achieved in terms of the 

fault detection sensitivity by the use of wavelet analysis approaches for the assessment of impulse tests on 

transformer. Similar efforts geared towards fault detection were made by Bracho and Martinez [14], who used 

dynamic power supply current test in 1997. Subsequently, in 1998, Chowdhury and Aravena [15] introduced 

a new technique through which faults can be detected by the use of a modular methodology. The method which 

is relatively flexible also allows classification in power system. Upon detection of the fault, the fault indicator 

is processed by a Kohonen network for the classification of faults. Abed and AlRikabi [8] who presented a 

conference paper in 2021 focused on the detection of faults in underground cables as transmission lines, used 

IoT applications to monitor and detect underground cable faults. In the work done by Majd et al. [16], the 

protection and control of power systems were investigated. In their work, a technique for the detection of 

transmission line faults was presented. In their proposed approach, the use of KNN based fault detection and 

classification approaches was employed. Similar efforts made by Samet et al. [17] led to the production of a 

technique for the detection and classification fault for transmission lines through; the authors used an improved 

alienation coefficients method. In the research carried out by  Gafoor and Rao, a wavelet-based fault detection 

technique was proposed. The proposed technique is able to detect, classify faults as well as the location of the 

fault in the transmission lines [18], [19]. 

 

 

3. THE PROPOSED METHOD 

The dataset used in this work was used in modeling a power system in MATLAB was simulated for 

fault analysis. As seen in Figure 2, the power system is made up of four power generators of 11×10^3 V, with 

each pair sitting at the end of the transmission line. Transformers are present in between for the simulation and 

investigation of different faults ta the midpoint of the transmission line. 

The authors of the database carried out the simulation of the circuit under both normal conditions and 

abnormal conditions (with faults). Afterwards, they collected and saved the measured line voltages and line 

currents at the power system’s output side. Here, about 12000 data points were collected, and then the data was 
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labeled. The dataset can be accessed through Kaggle [20]–[22]. The dataset is made up of input features 

including voltages (Va, Vb, Vc) and currents (Ia, Ib, Ic) of the three phases, the description of statistics of the 

input features as seen in Table 1, as well as their histogram distribution as presented in Figure 3 (see Appendix).  

 

 

 

 

Figure 2. Power system diagram [20], [21] 

 

 

Table 1. Statistics description of input features 
Statistics Ia Ib Ic Va Vb Vc 

Mean 25.476 -26.633 -0.607 0.002 -0.002 -0.001 

Median 8.195 -0.118 -8.573 -0.002 -0.001 0.005 

Mode -9.677 -93.940 85.800 0.000 -0.115 0.136 
Minimum -883.542 -900.527 -900.527 -0.621 -0.608 -0.613 

Maximum 885.739 889.869 901.274 0.606 0.628 0.600 

Count 14395 14395 14395 14395 14395 14395 

 

 

Also contained in the database are the values for the outputs (G, A, B, C), which possess just two 

values; the value of 0 denotes no fault, while the value of 1 denotes the presence of faults. In this work, 

additional output parameter (S) has been added to the entire system. Figure 4 (see Appendix) shows the 

distribution of the output features. A summary of the dataset is presented using the correlation matrix in Table 2, 

which presents the correlation between all features, whereby, the value-100% represents a perfectly negative 

linear relationship between all feature, while the value 0% means there is no linear relationship between two 

features, and the value 100% denotes a perfectly positive linear relationship between two features.  

 

 

Table 2. Correlation matrix of features  
Ia Ib Ic Va Vb Vc FG FC FB FA FS 

Ia 100% 
          

Ib -31.31% 100% 
         

Ic -30.72% -33.58% 100% 
        

Va 10.93% -1.39% 12.32% 100% 
       

Vb -14.41% 2.84% 10.37% -53.31% 100% 
      

Vc 1.93% -1.22% 3.48% 58.01% -37.99% 100% 
     

FG -1.16% 2.56% -1.87% 2.11% -1.60% -0.78% 100% 
    

FC -0.06% -3.07% 2.53% 1.26% -3.87% 2.34% 9.20% 100% 
   

FB -0.06% -8.19% 7.71% 1.26% -4.23% 2.69% 9.20% 8.88% 100% 
  

FA 6.05% -7.54% 0.88% 0.99% -3.23% 2.03% 9.20% 8.88% 8.88% 100% 
 

FS 3.38% -6.19% 2.97% 2.99% -4.86% 1.42% 49.05% 47.11% 47.11% 47.11% 100% 
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4. METHOD  

4.1.  K-nearest neighbor  

A  KNN algorithm can be described as simple and efficient supervised machine learning method 

employed in regression and classification operations [23]–[25]. Given that, the algorithm carries out 

classification directly and based on the training examples, it is categorized as case-based classification or 

example-based classification it classified as example-based classification, or case-based classification [26]. 

This algorithm performs the classification operation based on similarity criteria, giving consideration to the 

distance measure. Here, "K" denotes the integer value that ranges from 3 to +10. Compared to even values, the 

odd values are mostly preferred when seeking to get a good prediction. A given class is selected based on 

majority votes given by neighboring points that correspond to the nearest class. The neighbors are assigned 

weights so that the nearer neighbor adds more weight to the average that that of the farther one. Weights are 

assigned to the assigned to the neighbors based on their Euclidean distance [27]. A flowchart for KNN 

algorithm modeling is shown in Figure 5. 

 

 

 
 

Figure 5. A simple flowchart for the k-nearest neighbor modeling [28] 

 

 

The detection of faults in transmission lines is carried in five stages. In the first stage, the faults in 

phase will be detected, followed by the second stage which involves the detection of faults in phase B. in the 

third stage, the fault in phase C is detected, and followed by the detection of fault in the ground, and lastly, the 

overall faults in the entire system are detected. The operations are performed according to the values of currents 

and voltages. The application of these values is done in the following manner: phase A only features, phase B 

only features, phase C only features, phase A and phase B features, phase A and phase C features, phase B and 

phase C features, voltages only features, currents only features, and all features. The application of the KNN 

technique involved the use of Euclidean distance for weights, while K = 3 for number of neighbors. The dataset 

was divided into two for training and testing, with 70% of the dataset designated for training the algorithm, 

and 30% for testing it. Table 3 shows the kind of features that were used in this paper. 
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Table 3. Describtion of features 
Types of features Features Number of features 

Phase A only Ia, Va 2 
Phase B only Ib, Vb 3 

Phase C only Ic, Vc 3 

Phase A and phase B Ia, Va, Ib, Vb 6 
Phase A and phase C Ia, Va, Ic, Vc 6 

Phase B and phase C Ib, Vb, Ic, Vc 6 

Voltages only Va, Vb, Vc 3 
Currents only Ia, Ib, Ic 3 

All features Va, Vb, Vc, Ia, Ib, Ic 9 

 

 

5. RESULTS AND DISCUSSION 

Majority of the parameters used in measuring the performance of the algorithm are based on the 

confusion matrix, are classified as ‘True’ prediction/reality matches (TP and TN) and ‘False’ non-matches or 

errors (FP and FN) [29]. 

− True positive, means that the actual and predicted outcomes both fall under “faults” class.  

− False positive, means that the predicted is in faults class whereas the actual is classified as “no fault” class.  

− False negative, means the predicted fault is classified as “no fault”, while the actual is classified under 

“fault class”.  

− True negative, means that both the predicted and actual faults are classified as “no fault”. the values of true 

positives, false positives, true negatives and false negatives is shown in the Tables 4 and 5. 

 

 

Table 4. Confusion matrix of fault detection phases A, B, and C 

Features 
Fault detection in phase A Fault detection in phase B Fault detection in phase C 

TN TP FP FN TN TP FP FN TN TP FP FN 

Phase A only 2,197 2,053 36 33 1,198 958 1,086 1,077 1,188 945 1,121 1,065 
Phase B only 1,539 1,342 694 744 2,183 1,983 101 52 1,681 1,408 628 602 

Phase C only 1,349 1,182 884 904 1,332 1,194 952 841 2,165 1,955 144 55 

Phase A and phase B 2,225 2,067 8 19 2,221 2,005 63 30 2,140 1,807 169 203 
Phase A and phase C 2,223 2,066 10 20 2,150 1,831 134 204 2,240 1,983 69 27 

Phase B and phase C 2,131 1,886 102 200 2,240 2,018 44 17 2,216 1,982 93 28 

Voltages only 2,158 2,029 75 57 2,180 1,985 104 50 2,222 1,924 87 86 
Currents only 2,233 2,078 0 8 2,242 2,027 42 8 2,260 2,007 49 3 

All features 2,233 2,078 0 8 2,242 2,027 42 8 2,260 2,007 49 3 

 

 

Table 5. It shows the faults detection of phases in the ground and system 

Features 
Fault detection in ground Fault detection in system 

TN TP FP FN TN TP FP FN 

Phase A only 2,089 1,416 291 523 3,440 475 152 252 

Phase B only 1,928 1,444 452 495 3,442 536 150 191 
Phase C only 2,131 1,415 249 524 3,442 558 150 169 

Phase A and phase B 2,114 1,699 266 240 3,572 717 20 10 

Phase A and phase C 2,078 1,687 302 252 3,576 716 16 11 
Phase B and phase C 2,130 1,699 250 240 3,562 710 30 17 

Voltages only 2,145 1,708 235 231 3,563 710 29 17 

Currents only 2,235 1,789 145 150 3,582 727 10 0 
All features 2,235 1,789 145 150 3,582 727 10 0 

 

 

The proposed models were evaluated based on parameters in the confusion matrix including accuracy, 

sensitivity, specificity, and precision. Accuracy refers to the ratio of total number of correct faults and no faults 

predictions to sample size [29]. Sensitivity (recall) is the measure of faults points that correctly detected [30]. 

Specificity is the measure of no-fault points that are detected correctly [30]. Precision or confidence is the 

measure of predicted faults that are actual faults [31]. These metrics were calculated for the results of the 

methods that were used in this work. The results are presented in Tables 6 and 7. 

For the detection of faults phase, A, only currents were used as input features, and optimal results 

were obtained, which will be the same even if all features are used as inputs. Very good results were obtained 

when the features of phase A were used (phase A only, phase A and phase B, phase A and phase C). Also, the 

result obtained from the use of only voltages is better than the results of the features used in phase B and  

phase C. For the detection of faults phase B, only currents were used as input features, and optimal results were 

obtained, which will be the same even if all features are used as inputs. Very good results were obtained when 
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the features of phase B were used (phase B only, phase A and phase C, phase B and phase C). Also, the result 

obtained from the use of only voltages is better than the results of the features used in phase B and phase C. 

 

 

Table 6. Performance metrics of the accuracy, precision, and sensitivity of the phases 

Features 
Fault detection in phase A Fault detection in phase B Fault detection in phase C 

Acc Pr Se Sp Acc Pr Se Sp Acc Pr Se Sp 

Phase A only 0.984 0.983 0.984 0.984 0.499 0.469 0.471 0.525 0.494 0.457 0.470 0.515 
Phase B only 0.667 0.659 0.643 0.689 0.965 0.952 0.974 0.956 0.715 0.692 0.700 0.728 

Phase C only 0.586 0.572 0.567 0.604 0.585 0.556 0.587 0.583 0.954 0.931 0.973 0.938 

Phase A and phase B 0.994 0.996 0.991 0.996 0.978 0.970 0.985 0.972 0.914 0.914 0.899 0.927 
Phase A and phase C 0.993 0.995 0.990 0.996 0.922 0.932 0.900 0.941 0.978 0.966 0.987 0.970 

Phase B and phase C 0.930 0.949 0.904 0.954 0.986 0.979 0.992 0.981 0.972 0.955 0.986 0.960 

Voltages only 0.969 0.964 0.973 0.966 0.964 0.950 0.975 0.954 0.960 0.957 0.957 0.962 
Currents only 0.998 1.000 0.996 1.000 0.988 0.980 0.996 0.982 0.988 0.976 0.999 0.979 

All features 0.998 1.000 0.996 1.000 0.988 0.980 0.996 0.982 0.988 0.976 0.999 0.979 

 

 

Table 7. It shows that the Performance metrics of accuracy, precision, and sensitivity of the phases with 

ground and the system 

Features 
Fault detection in ground Fault detection in system 

Acc Pr Se Sp Acc Pr Se Sp 

Phase A only 0.812 0.830 0.730 0.878 0.906 0.758 0.653 0.958 
Phase B only 0.781 0.762 0.745 0.810 0.921 0.781 0.737 0.958 

Phase C only 0.821 0.850 0.730 0.895 0.926 0.788 0.768 0.958 

Phase A and phase B 0.883 0.865 0.876 0.888 0.993 0.973 0.986 0.994 
Phase A and phase C 0.872 0.848 0.870 0.873 0.994 0.978 0.985 0.996 

Phase B and phase C 0.887 0.872 0.876 0.895 0.989 0.959 0.977 0.992 

Voltages only 0.892 0.879 0.881 0.901 0.989 0.961 0.977 0.992 
Currents only 0.932 0.925 0.923 0.939 0.998 0.986 1.000 0.997 

All features 0.932 0.925 0.923 0.939 0.998 0.986 1.000 0.997 

 

 

For the detection of faults phase C, only currents were used as input features, and optimal results were 

obtained, which will be the same even if all features are used as inputs. Very good results were obtained when 

the features of phase C were used (phase C only, phase A and phase C, Phase B and phase C). Also, the result 

obtained from the use of only voltages is better than the results of the features used in phase A and phase B. 

For ground fault detection, the best results were obtained by using only currents as inputs, which will be the 

same if all features are used as inputs. Higher results were obtained for voltages only features as compared to 

the results of features used in phase A and phase B and phase C. The use of the features in the two phases at 

the same time yielded optimal results in comparison to when a single phase is used. For the detection of faults 

in the entire system, optimal results were obtained using only current as input features, which will be the same 

if all the features were used as inputs. Optimal results were obtained by using the features of two phases at the 

same time as inputs. The results were better than using only single phase and voltages only. Generally, it was 

found that better results were achieved in the detection of ground faults and those in the entire system. More 

so, the least performance was recorded in the detection of ground faults. High values of sensitivity and 

specificity were achieved in the case ground faults detection. This reveals that the algorithm is able to 

accurately differentiate faults points from no fault points, indicating that the algorithm can be used reliably for 

faults detection based on the values of voltages and currents of the transmission lines.  

 

 

6. CONCLUSION 

In this study, the process of faults detection in transmission lines was performed in five phases. The 

algorithm proposed in this work successfully detected faults in phase A, phase B, phase C, ground, and whole 

system. The detection of faults in the transmission lines was done through the use of K-nearest neighbor model 

on a simulated power system that is made up of 11 KV generators. Also, the detection involved the use of 

values of voltages and currents of the transmission lines and in different combinations. The algorithm’s 

performance was evaluated using different parameters from the confusion matrix, including accuracy, 

sensitivity, precision, and specificity. Analysis and discussion of the findings have been presented, showing 

the best feature combinations for the detection of faults in electrical transmission lines, as well as the worst 

combination.  
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APPENDIX 
 

 

 
 

 
 

 
 

Figure 3. Histogram distribution of input features 
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Figure 3. Histogram distribution of input features (continue) 
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Figure 4. Output features distribution 
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