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 This paper presents a modulation strategy applied to a 13-level three-phase 

transistor clamped H-bridge (TCHB) inverter, aimed at a renewable and 

electric vehicle drives application. A comparison is performed between the 

TCHB inverter and a traditional cascaded H-bridge (CHB) inverter, 

considering circuit complexity, switching losses, and total harmonic 

distortion (THD) attained from each multilevel inverter topologies. The 

TCHB inverter achieves a 13-level output with only 15 switches, whereas 

the conventional CHB inverter requires 24 switches. The modulation 

technique, employing a nearest level control, yields improved output quality 

for both the TCHB and CHB multilevel inverters. The results demonstrate 

that this strategy effectively minimizes the overall THD. Notably, previous 

modulation techniques mainly focused on carrier-based PWM or SVPWM, 

making this approach distinctive. The FFT analysis reveals a voltage THD of 

5.49% for TCHB and 5.15% for CHB, indicating a marginal difference in 

THD content for each multilevel inverter. Despite the CHB inverter 

experiencing double the switching stress compared to TCHB, since less 

switches are required in the TCHB inverter, consequently, the system's total 

cost and complexity are reduced. The achieved results are verified through 

the use of simulations carried out in the MATLAB Simulink. 
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1. INTRODUCTION 

A multi-level inverter is composed of several switching and DC source components, resulting in a 

waveform output that is stepped by a number of DC levels. Numerous topologies by various controller 

strategies have been produced over the previous few decades [1], [2]. For applications involving medium and 

high-voltage, there is a choice of various different topologies for multilayer inverters. Neutral-point-clamped 

(NPC), flying-capacitor (FC), and cascaded h-bridge (CHB) are the most popular topologies among  

them [3]–[6]. The complexity of NPC and FC multilevel inverters rises with the number of voltage levels, 

requiring more switches, diodes, and capacitors. Balancing voltage is another issue with both inverters. The 

CHB inverter is more reliable while producing larger voltages when compared to the other two  

topologies [7], [8]. The CHB inverter arrangement is made up of several single-phase inverters linked in 

series, with the total number of inverters in series being determined by the desired amount of output power. It 

takes (n -1) series-connected single-phase inverters to make up a multilevel inverter for an n-level  

CHB [9], [10]. However, the cost rises since each h-bridge inverter needs its own dedicated DC power  

https://creativecommons.org/licenses/by-sa/4.0/
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source [11], [12]. Having this problem is critical for the CHB inverters. One of the potential answers to this 

problem is transistor clamped h-bridge (TCHB). The TCHB inverter utilizes a smaller DC sources and fewer 

switches to achieve the same number of levels as a standard CHB multilevel inverter [13], [14] illustrated in 

Figure 1, where Figure 1(a) for five-level TCHB and Figure 1(b) for five-level CHB inverter. The first 

publication to mention the TCHB inverter was [15]. Additionally, the response of the TCHB inverter 

successfully reduces the harmonic content of voltage and current output [16].  

Due to the modulation strategy influencing the system's harmonics of voltage and current, the 

efficiency of these multilevel inverters is highly dependent on the modulation technique. Modulation 

techniques used in a multilevel inverter have an effect on the inverter's efficiency, switching losses, and 

reductions in harmonics. To enhance the shape of the output voltage waveform with reduced switching losses 

and minimal harmonic distortion, many modulation approaches have been proposed. Space vector 

modulation (SVM), selective harmonic elimination (SHE), and sinusoidal pulse width modulation (SPWM) 

are some examples of modulation techniques used in multilevel inverters [17], [18]. Despite their advantages 

in generating high-quality output, SPWM and SVM are dominated by switching losses. Low-frequency 

modulation is effective in improving the efficiency of high-power applications. By using the SHE technique, 

not only the low-order harmonics reduced, but total harmonic distortion (THD) is also significantly reduced. 

Still, it necessitates using iterative techniques like the Newton-Raphson method, partial swarm optimization, 

to solve complicated, non-linear transcendental equations. 

The nearest level control (NLC) method is straightforward, which makes it a feasible choice for 

high-level multilevel inverters [19]. The NLC technique is proposed and used in a multilevel inverter with 

asymmetrical cascaded h-bridges (A-CHB) configuration [20]. The results indicate a substantial drop in THD 

even without filtering. At high levels, the NLC technique also significantly reduces switching losses. The 

result in [21], for a 27-level asymmetrical cascaded h-bridge inverter, the author developed the NLC method. 

According to the findings, the NLC modulation method achieves the lowest THD, about 3% for the staircase 

output voltage. Saleh et al. [19] investigate a TCHB inverter operating on 13th-level single-phase system. The 

findings demonstrate that the THD 5.18% was at its lowest is, attained with a modulation index of M = 

1.044, and that the NLC technique improves in efficiency with the amount of level rises. As a consequence of 

this, it is clearly shown that a considerable amount of investigation was carried out on the single-phase 

TCHB inverter. So far, only a small amount of research is available this time that applied the NLC method 

for the three-phase TCHB inverter. This research makes an effort to find a solution to the mentioned issue of 

creating an NLC method for a three-phase TCHB inverter. 
 

 

 
(a) 

 
 

Figure 1. Basic MLI circuits: (a) five-level TCHB inverter and (b) five-level CHB inverter 
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2. NEAREST LEVEL CONTROL MODULATION TECHNIQUE 

Nearest level control, also referred to the rounded approach, uses the voltage level that is most 

closely equivalent to the required output voltage reference [22]. Using NLC approach, each of the three 

phases may have their own individual adjustment depending on the results of their own independent 

comparison. Figure 2 shows the nearest level selection where Figure 2(a) for webform generation and  

Figure 2(b) for control diagram. It can be seen in Figure 2(a), by comparing the reference waveform with an 

existing voltage, a staircase can be developed. We can estimate the nearest output voltage level 𝑣 with as (1). 
 

𝑣 = 𝑣𝑑𝑐 ∗ 𝑟𝑜𝑢𝑛𝑑0.5(𝑣 ∗
𝑣𝑑𝑐⁄ ) (1) 

 

Where, 𝑣∗ is the reference and 0.5𝑣𝑑𝑐 is the capacitor voltage. The function rounds the number to the next 

integer and returns that value (for example, round (3.40) = 3, round (3.60) = 4) [23]. The nearest level to the 

reference produced by the inverter is the nearest integer multiplied by 0.5𝑣𝑑𝑐  [24]. Figure 2(b) illustrates the 

implementation of the nearest level synthesis. 
 

 

 
(a) 

 
(b) 

 

Figure 2. Nearest level selection process: (a) waveform generation and (b) control diagram 
 
 

Using the NLC approach, the following equation is used to determine the switching angles for any 

number of levels: 
 

𝜃𝑖 = 𝑠𝑖𝑛−1( 
𝑖−0.5

𝑥
) (2) 

 

where i = 1,2..., 
𝑛−1

2
, the total number of levels is represented by the value of n and 𝑥 =

𝑛−1

2
. When number of 

levels rises, the switching angles 𝜃𝑖 become closer to one another, producing a waveform that is nearly 

sinusoidal. 

 

 

3. THREE-PHASE 13-LEVEL TRANSISTOR CLAMPED H-BRIDGE INVERTER 

Figure 3 illustrates a 13-level three-phase TCHB multilevel inverter, where Figure 3(a) [25] shows a 

basic arrangement for the 13-level three-phase TCHB multilevel inverter and Figure 3(b) [25] shows the 

configuration for five-level TCHB inverter for each h-bridge cell. The power circuit for an TCHB multilevel 

inverter with these three h-bridge configurations is sufficient to produce a 13-level output voltage using a 

lesser number of power switches. 

According to the configurations of the switches presented in Table 1, five distinct output voltage 

levels may be generated with an additional bilateral switch attached between the initial section of the H-

bridge and the capacitor's midpoint. Furthermore, Table 2 will illustrate the switching operations for this 13-

level voltage output. Figure 4 [26] illustrates the inverter output voltage waveform with the intervals during 

the switches are activated. One cycle of the output waveform from a TCHB inverter can be separated into six 

distinct regions, as shown in Table 3 [26]. In order to prevent a short circuit problem from occurring through 

the DC voltage supply, the switches 𝑆1 and 𝑆3 or 𝑆2 and 𝑆4 shouldn’t be switched on at the same time. 
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In general, the maximum level of an output voltage of the inverter, based on the number of h-bridge, 

are given by (3):  
 

𝑉𝑜𝑢𝑡  = 4𝑁ℎ−𝑏 +1 (3) 
 

where, ‘𝑁ℎ−𝑏’ is the number of h-bridges connected. 
 

 

 
 

(a) (b) 

 

Figure 3. 13-level three-phase TCHB multilevel inverter: (a) general circuit diagram and  

(b) circuit for each h-bridge 
 
 

Table 1. 5-level TCHB inverter switching states 
No. ON switches Voltage level 

1 𝑆1, 𝑆4 +𝑉𝑑𝑐 
2 𝑆4, 𝑆5 + 1

2⁄ 𝑉𝑑𝑐 
3 𝑆1, 𝑆2 Or 𝑆3, 𝑆4 0 
4 𝑆2, 𝑆5 − 1

2⁄ 𝑉𝑑𝑐 
5 𝑆2, 𝑆3 −𝑉𝑑𝑐 

 
 

Table 2. Divisions of a single TCHB inverter output cycle 
Region Interval Voltage level 

1 0 ≤ 𝜔𝑡 ≤ 𝜃1 and 𝜋 − 𝜃1≤ 𝜔𝑡 ≤𝜋 0 
2 𝜃1 ≤ 𝜔𝑡 ≤ 𝜃2 and 𝜋 − 𝜃2≤ 𝜔𝑡 ≤𝜋 − 𝜃1 +𝑉𝑑𝑐 
3 𝜃2 ≤ 𝜔𝑡 ≤ 𝜋 − 𝜃2 + 1

2⁄ 𝑉𝑑𝑐 
4 𝜋≤ 𝜔𝑡 ≤𝜋 + 𝜃1 and 2𝜋 − 𝜃1≤ 𝜔𝑡 ≤2𝜋 0 
5 𝜋 + 𝜃1≤ 𝜔𝑡 ≤𝜋 + 𝜃2 and 2𝜋 − 𝜃2≤ 𝜔𝑡 ≤2𝜋 − 𝜃1 − 1

2⁄ 𝑉𝑑𝑐 
6 𝜋 + 𝜃2≤ 𝜔𝑡 ≤2𝜋 − 𝜃2 −𝑉𝑑𝑐 

 

 

Table 3. The 13-level TCHB inverter switching states 
State 𝑆11 𝑆12 𝑆13 𝑆14 𝑆15 𝑆21 𝑆22 𝑆23 𝑆24 𝑆25 𝑆31 𝑆32 𝑆33 𝑆34 𝑆35 𝑉𝑖𝑛𝑣 

1 1 0 0 c 0 1 0 0 1 0 1 0 0 1 0 3𝑉𝑑𝑐 

2 1 0 0 1 0 1 0 0 1 0 0 0 0 1 1 21
2⁄  𝑉𝑑𝑐  

3 1 0 0 1 0 0 0 0 1 1 0 0 0 1 1 2𝑉𝑑𝑐 

4 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1
2⁄  𝑉𝑑𝑐 

5 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 𝑉𝑑𝑐 

6 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 1
2⁄  𝑉𝑑𝑐 

7 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 
8 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 

9 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 − 1
2⁄  𝑉𝑑𝑐 

10 0 1 0 0 1 0 1 0 0 1 1 1 0 0 0 −𝑉𝑑𝑐 

11 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 −1 1
2⁄  𝑉𝑑𝑐 

12 0 1 1 0 0 0 1 0 0 1 0 1 0 0 1 −2𝑉𝑑𝑐 

13 0 1 1 0 0 0 1 1 0 0 0 1 0 0 1 −2 1
2⁄  𝑉𝑑𝑐 

14 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 −3𝑉𝑑𝑐 
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Figure 4. Five-level TCHB inverter output voltage waveform 
 

 

4. TRADITIONAL THREE-PHASE 13-LEVEL CASCADED H-BRIDGE INVERTER 

A multilevel CHB inverter with 13-levels is shown in Figure 5, where Figure 5(a) shows a 

traditional three-phase 13-level cascaded h-bridge multilevel inverter following the switching combination 

shown in Tables 4 and Table 5. It made up of six h-bridge inverters connected in series, along with six DC 

power supply. Three levels of output voltage will be produced for each cell of CHB inverter configurations 

so there were six cells needed in order to produce thirteen levels of output level from this type of inverter. 

Figure 5(b) shows the configuration for h-bridge circuit for each h-bridge cell. In order to create a voltage 

waveform, switching pulses are generated using the nearest level control modulation method. 

According to (4), a 13-level cascaded h-bridge multilevel inverter output voltage is equal to the total 

of the six independent DC supplies provided by every one of the symmetric h-bridges.  
 

𝑉𝑂=𝑉𝑑𝑐1 +𝑉𝑑𝑐2+𝑉𝑑𝑐3+𝑉𝑑𝑐4+𝑉𝑑𝑐5+𝑉𝑑𝑐6 (4) 
 

The range of available output voltage levels is provided by (5). 
 

𝑁𝑠𝑡𝑒𝑝𝑠  =  2𝑛 + 1 (5) 
 

Where 'n' refers to the overall quantity of H-bridge inverters. 
 
 

 

 

(a) (b) 
 

Figure 5. 13-level CHB multilevel inverter: (a) general circuit diagram and (b) circuit for each h-bridge 
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Table 4. Switching states of the 5-level CHB inverter 
No ON switches Voltage level 

1 𝑆1, 𝑆4 +𝑉𝑑𝑐 

2 𝑆1, 𝑆2 Or 𝑆3, 𝑆4 0 

3 𝑆2, 𝑆3 −𝑉𝑑𝑐 

 

 

Table 5. Switching states of the 13-level CHB inverter 
No ON switches Voltage level 

Cell 1 

1 𝑆11 , 𝑆14 +𝑉𝑑𝑐 

2 𝑆11, 𝑆12 or 𝑆13, 𝑆14 0 

3 𝑆12 , 𝑆13 − 𝑉𝑑𝑐 

Cell 2 

1 𝑆21 , 𝑆24 +𝑉𝑑𝑐 

2 𝑆21, 𝑆22 or 𝑆23, 𝑆24 0 

3 𝑆22 , 𝑆23 − 𝑉𝑑𝑐 

Cell 3 

1 𝑆31 , 𝑆34 +𝑉𝑑𝑐 

2 𝑆31, 𝑆32 or 𝑆33, 𝑆34 0 

3 𝑆32 , 𝑆33 − 𝑉𝑑𝑐 

Cell 4 

1 𝑆41 , 𝑆44 +𝑉𝑑𝑐 

2 𝑆14, 𝑆42 or 𝑆43, 𝑆44 0 

3 𝑆42 , 𝑆43 − 𝑉𝑑𝑐 

Cell 5 

1 𝑆51 , 𝑆54 +𝑉𝑑𝑐 

2 𝑆51, 𝑆52 or 𝑆53, 𝑆54 0 

3 𝑆52 , 𝑆53 − 𝑉𝑑𝑐 

Cell 6 

1 𝑆61 , 𝑆64 +𝑉𝑑𝑐 

2 𝑆61, 𝑆62 or 𝑆63, 𝑆64 0 

3 𝑆62 , 𝑆63 − 𝑉𝑑𝑐 

  
6𝑉𝑑𝑐 , 5 𝑉𝑑𝑐 , 4𝑉𝑑𝑐 , 3 𝑉𝑑𝑐 , 2 𝑉𝑑𝑐 , 1 𝑉𝑑𝑐 , 0, 

−1 𝑉𝑑𝑐 , −2 𝑉𝑑𝑐 , −3𝑉𝑑𝑐, −4 𝑉𝑑𝑐 , −5𝑉𝑑𝑐 , −6 𝑉𝑑𝑐 

 

 

5. SIMULATION RESULTS AND DISCUSSION 

The reduced switching count TCHB multilevel inverter is designed and simulated using the 

MATLAB-Simulink environment. The simulation is conducted with a modulation index between 0.85 and 

1.0. It is expected that the TCHB multilevel inverter will be fed by an RL load. Using similar modulation 

indices and load parameters, the result that is achieved is compared to a traditional CHB inverter. A three-

phase 13-level transistor clamped h-bridge inverter simulation system design specification is shown in  

Table 6. Table 7 provides the system design specifications for the simulation of a traditional 13-level 

cascaded h-bridge inverter.  

 

 

Table 6. System parameter used for TCHB simulation 
Parameter Value 

DC supply for h-bridge 1,2,3 60 V 
DC link capacitor 2200 µF 

Modulation Index (m) 0.85 < m < 1.0 

Resistive load 100 Ohm 
Inductive load 20 mH 

Fundamental frequency 50 Hz 
 

Table 7. System parameter used for CHB simulation 
Parameter Value 

DC supply for h-bridge 1 to 6 60 V 

Modulation Index (m) 0.85 < m < 1.0 
Resistive load 100 Ohm 

Inductive load 20 mH 

Fundamental frequency 50 Hz 
 

 

 

5.1.  Results obtained with TCHB multilevel inverter 

Figures 6 and 7 show the waveforms of the simulation output voltage and output current using RL 

load, respectively. It shows how 13-level voltage output are synthesized. The presence of a load that is 

inductive causes the waveforms of the current output to be more sinusoidal. Figures 8 and 9 show the output 

voltage and current harmonic spectrum produced by a TCHB multilevel inverter with a modulation index of 

0.94, respectively. With a transistor clamped h-bridge architecture, the THD for the voltage is 5.49%, while 

the THD for the current is 5.19%. 
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Figure 6. Output voltage of TCHB multilevel inverter for M=0.94 

 

 

 
 

Figure 7. Output current of TCHB multilevel inverter for M=0.94 

 

 

 
 

Figure 8. Inverter voltage harmonic spectrum of TCHB multilevel 
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Figure 9. Inverter current harmonic spectrum of TCHB multilevel 
 

 

5.2.  Results obtained with CHB multilevel inverter 

Figures 10 and 11 show the waveforms of the simulation output voltage and output current using RL 

load, respectively. It illustrates how 13-level voltage output are synthesized. The presence of a load that is 

inductive causes the waveforms of the current output to be more sinusoidal. Figures 12 and 13 show the 

output voltage and current output harmonic spectrum produced by a CHB multilevel inverter with a 

modulation index of 0.94, respectively. With a traditional cascaded h-bridge architecture results in a THD of 

4.13% for the current and 5.15% for the voltage achieved. 

The NLC technique showed that this control technique is not able to eliminate particular harmonics 

like the SHE method, which is able to eliminate some low-order harmonics rather than reducing the entire 

THD of the inverter output voltage and current. From the harmonic spectrum, it shows that both TCHB and 

CHB are good with overall harmonic elimination with NLC technique. 

It has been noticed that the THD content of both multilevel inverter is almost the same. The 

switching stress acquired with a TCHB inverter is twice as great as that obtained with a CHB inverter, 

however a TCHB multilevel inverter needed a smaller number of switches. Table 8 shows the analysis 

between the three-phase traditional CHB multilevel inverter and the proposed three-phase TCHB multilevel 

inverter. It is found that isolated DC supply, power switches is double for conventional CHB compared to the 

TCHB multilevel inverter, and switching losses for TCHB is less than CHB multilevel inverter. Nevertheless, 

as a matter of maintenance, a more substantial number of components in CHB are challenging to maintain for 

the long term; hence, more financial costs are needed for the maintenance services in the real 

implementation. This paper focused on NLC technique for both CHB and TCHB inverter topologies. 

Recent advancements and trends easily indicate the rapid growth of grid-tied photovoltaic system 

applications. In conjunction with the constant rise in capacity and power output of wind turbines, these  

types of multilevel inverters have become a possible solution. However, the drive systems of electric  

vehicles and hybrid electric vehicles will also benefit from these converters for better power quality and 

increased efficiency. 
 

 

 
 

Figure 10. Output voltage of CHB multilevel inverter for M=0.94 
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Figure 11. Output current of CHB multilevel inverter for M=0.94 
 

 

 
 

Figure 12. Inverter voltage harmonic spectrum of CHB multilevel 
 

 

 
 

Figure 13. Inverter current harmonic spectrum of CHB multilevel 
 
 

Table 8. Comparison of three-phase TCHB and CHB multilevel inverter topology 
Parameter TCHB Multilevel 

Inverter 

CHB Multilevel 

Inverter 

Parameter TCHB Multilevel 

Inverter 

CHB Multilevel 

Inverter 

Number of cells 3 6 Capacitor 6 - 

Voltage levels 4n + 1 2n + 1 Switching losses Low High 

Isolated DC supply 3 6 Cost of 
implementation 

Low high 

Power switch 15 24 Simplicity of circuit Simple Complex 

Bi-directional 

switch 

3 - Maintenance Easy Difficult 
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6. CONCLUSION 

In this study, an analysis of a 13-level TCHB inverter topology is presented. This configuration 

depends on a five-level TCHB power unit and utilizes the nearest level control modulation method. In terms 

of DC supply, power switches, and power losses, detailed comparisons between the suggested three-phase 

TCHB multilevel inverter and the traditional CHB multilevel inverter were provided. For a modulation index 

of 0.94, both the multilevel inverter output voltage and current were analyzed and found voltage THD is 

5.49% for TCHB and 5.15% for CHB. From the findings, the proposed TCHB multilevel inverter synthesizes 

the same amount of output level as a traditional CHB multilevel inverter, although having a lower number of 

switches. In terms of the harmonic, the NLC approach provides simplicity in technique and better quality 

with reduced overall output THD for both CHB and TCHB inverter topology. It is necessary to do more 

research with the aim to examine the performance of the approach in closed-loop applications. 
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