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 The development of efficient data converters necessitates the design of low-

power and high-speed comparators with low offset. Data converters, such as 

analog to digital converters (ADCs) and digital to analog converters (DACs), 

are critical components in applications like wireless communication, 

multimedia, and sensor interfaces. To enhance the performance of these data 

converters, improving the speed and power efficiency of comparators 

becomes crucial. Designing dynamic comparators with low power 

consumption and high-speed capabilities greatly enhances the sampling rate 

and accuracy of data converters. Moreover, addressing the offset voltage of 

comparators becomes crucial for achieving accurate signal conversion. To 

fulfill this need, a novel dynamic comparator has been designed, featuring 

high-speed operation, low-power consumption, and minimal offset. The 

circuit comprises a pre-amplifier with a charge pump, followed by a decision 

circuit and an output stage. Through simulations, the comparator has 

demonstrated low power consumption of 15.04 µW, a delay of 80.51 ps, and 

an extremely low offset voltage of 8 µV. These characteristics make it highly 

suitable for data converters. The comparator operates at a clock frequency of 

1 GHz and a supply voltage of 1 V, and the simulation was conducted using 

the Cadence Virtuoso tool in a 45 nm CMOS technology. 
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1. INTRODUCTION 

CMOS comparators are versatile components with wide-ranging applications in various electronic 

systems. Their ability to compare voltages accurately, provide precise outputs, and consume low power makes 

them essential for achieving high-performance, low-power designs in ADCs [1]–[5], DACs [6], [7], voltage 

references [8], overvoltage and undervoltage protection [9], motor control systems [10], [11], photovoltaic 

systems [12], [13], pulse-width modulation circuits, voltage level detection and  window detection circuits. 

Comparators transform analog input signal differences into digital outputs. Figure 1 depicts the internal 

components, including a pre-amplifier for enhanced sensitivity. The decision stage identifies the larger input, 

generating the digital output. The post-amplifier (output buffer) amplifies this information to obtain the  

digital output. 

Static comparators utilizing CMOS amplifiers exhibit restricted speed and elevated power dissipation [14]. 

Dynamic comparators were introduced as a viable alternative to mitigate these challenges. Incorporating 

positive feedback and low static power consumption, dynamic comparators demonstrate rapid operation and 

power efficiency, rendering them indispensable in mixed-signal circuitry. Single-stage dynamic comparators, 
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which consist of a latching circuit and current-mode logic preamplifier, confer speed and power benefits; 

however, they are susceptible to kickback noise caused by capacitive interconnections [15]. 

Despite attempts to mitigate kickback noise, one-stage dynamic comparators compromise offset 

voltage and power consumption [16]. The strong-arm latch and its variations are favoured for low static power, 

high speed, and full output swing but require substantial voltage headroom [17], [18]. Consequently, two-stage 

dynamic comparators are preferred. A double-tail latch-type voltage sensing amplifier in a two-stage comparator 

delivers superior offset per power ratio at high common mode voltages and low supply voltage [19]. However, 

the second stage's gain reduction escalates input referred noise [20]. Alternative approaches like time domain 

bulk tuned offset cancellation reduce offset voltage but operate at slower speeds [21]. Positive feedback in the 

pre-amplifier improves regeneration but increases kickback noise [22]. Directly connecting the output nodes of 

the first and second stages enhances speed and area but results in significant offset, high power consumption, 

and severe kickback noise [23]. Techniques such as delayed clocks [24], dynamic bias preamplifiers [25], and 

nMOS transistor pre-amplifier stages [26] address offset, power, and speed trade-offs. Figure 2 depicts 

Miyahara's comparator, featuring a pMOS input pair which minimizes input-referred noise [27]. 

 

 

 
 

Figure 1. Block diagram of comparator 

 

 

 
 

Figure 2. The Miyahara’s comparator [27] 

 

 

The comparator in [28] employs multiple clock signals to extend the saturation time of input 

transistors, resulting in improved speed and noise response. However, this approach leads to increased power 

consumption and offset voltage. In the pre-amplifier of a two-stage comparator [29], a pMOS latch and cross-

coupled circuit are used to enhance speed, but at the expense of offset and power consumption. Recent 

advancements in dynamic comparators [30]–[35] include techniques such as cross-coupled transistors in the 

latching stage [30], which enhance transconductance but introduce significant offset voltage, affecting 

accuracy. Additionally at high operating frequencies the comparator operates at low speed and consumes high 

power and causes high offset. The comparator described in [31] utilizes a bulk driven approach to optimize 

offset and kickback noise, albeit at the expense of speed and increased power consumption.  

Building upon the investigations conducted on dynamic comparators, this research paper introduces 

a two-stage dynamic comparator that incorporates a double-tail latch. To enhance comparator gain while 

reducing noise, the pre-amplifier stage employs a cascode differential amplifier. Within the preamplifier stage, 

a charge pump is employed to improve speed and achieve minimal offset and power consumption. The design 

of the proposed dual-stage dynamic comparator is detailed in section 2, followed by the analysis of simulation 
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results in section 3. Section 4 presents the key findings, emphasizing the significance of the proposed two-

stage dynamic comparator, and highlighting its potential impact in mixed-signal circuitry. 

 

 

2. DESIGN OF PROPOSED DUAL STAGE LATCH TYPE DYNAMIC COMPARATOR 

Figure 3 illustrates a latch type dynamic comparator consisting of two stages. The initial stage 

functions as a pre-amplifier and utilizes a cascode differential amplifier, comprising transistors M1, M2, Mg1, 

and Mg2. This configuration ensures high gain, low noise, and a high output impedance. Transistors M1 and 

M2 interact with the input voltages VIP and VIN. The current sources M3 and M4, regulated by the CLK 

signal, employ pMOS transistors. To enhance switching activity and generate VTOP, a charge pump employing 

transistors M16 and M17, as well as capacitors C1, C2, and C3, is incorporated. Following the pre-amplifier 

stage is the decision circuit, which consists of back-to-back inverters (M8, M10, M9, M11). The outputs of the 

first stage, DIN and DIP, serve as inputs for the decision stage. Finally, the comparator output is directed to 

the buffer stage, with transistors M6 to M7 serving as the post-amplifier. 

 

 

 
 

Figure 3. Schematic of proposed dual stage dynamic comparator 

 

 

2.1.  Working strategy of proposed dual stage dynamic comparator 

The comparator operates in three phases: reset, evaluation, and comparison. In the reset phase, M3 

and M4 charge the parasitic capacitance of DIP and DIN nodes, while M14 and M15 discharge the output 

nodes. During evaluation, M5 turns on, gradually reducing the voltages at DIP and DIN, and VTOP rises 

rapidly to activate the first stage input pair, increasing current flow and amplification. The second stage latch 

timing is optimized to reduce delay. M6 and M7 act as pre-charge switches and inputs to the second latch stage, 

boosting gain, sensitivity, and speed. During regeneration, M10 and M11 provide positive feedback for the 

result, while M12 and M13 reset QP and QN to prevent mismatch-induced offset. 

The output current of pre-amplifier stage is obtained as: 
 

𝐼𝑜𝑝 = −𝐼𝑜𝑛 (1) 
 

𝐼𝑜𝑝 =
𝑔𝑚

2(𝑉𝑖𝑝−𝑉𝑖𝑛)
+

𝐼𝑠𝑠

2
 (2) 

 

where gm is the transconductance, 𝑉𝑖𝑝  and 𝑉𝑖𝑛 are the input voltages. Assuming that 𝐼𝑜𝑝  is much larger than 𝐼𝑜𝑛  

and the output voltage 𝑉𝑜𝑝  is (3). 
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𝑉𝑜𝑝 =
√2𝐼𝑜𝑝

𝛽𝐴
+ 𝑉𝑇𝐻𝑁 (3) 

 

The current flowing through decision stage transistors M11 and M14 is obtained as (4) and (5). 

 

𝐼𝑜𝑛 =
𝛽𝐵

2(𝑉𝑜𝑝−𝑉𝑇𝐻𝑁)
2 (4) 

 

𝐼𝑜𝑝 =
𝛽𝐴

2(𝑉𝑜𝑝−𝑉𝑇𝐻𝑁)
2 (5) 

 

 

3. RESULTS AND DISCUSSION 

The double tail latch type dynamic latch comparator circuit underwent validation using the SPECTRE 

simulator within CADENCE Virtuoso. The validation was conducted under the conditions of a 1 V supply 

voltage, a temperature of 27 0C, and utilizing a 45nm CMOS process. Figure 4 illustrates the comparator output 

at node OUTP as obtained from the simulation. The adjustment of VTOP to 1.65 V effectively decreases the 

falling edge delay of DIP and DIN, leading to an accelerated latch time for the second stage. The propagation 

delay, which quantifies the duration between the clock edge and the output, measures 80.51 ps and is presented 

in Figure 5. Furthermore, the comparator design demonstrates a commendably low offset voltage of 8 µV, 

visually represented in Figure 6. 

 

 

 
 

Figure 4. Simulated output of the proposed comparator 

 

 

 
 

Figure 5. Propagation delay 
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Figure 6. Comparator offset voltage 

 

 

3.1.  Monte Carlo analysis for power 

The proposed comparator has achieved an average power of 15.04 μW at 1 GHz clock frequency. 

Monte Carlo study on average power is performed through 200 random statistical runs of simulation. The mean 

value of the average power is found to be very much close to the value obtained at the (ss) corner. Using Monte 

Carlo simulations, a histogram plot of average power is shown in Figure 7. 

 

 

 
 

Figure 7. Histogram plot of average power for the proposed comparator 
 
 

3.2.  Corner simulations 

To validate the benefit of low power consumption, the proposed comparator was examined under 

various process corners (ss-slow-slow, tt-typical-typical, ff-fast-fast), voltage (0.6, 0.8, and 1 V) and 

temperature (0°, 27°, and 70 °C). The power consumption varies based on VDD variation. Table1 presents the 

results of average power obtained for 1 GHz at 27 corners. 

 

3.3.  Layout 

A proposed comparator has been realized in 45nm CMOS technology and the layout in Figure 8 is 

obtained using Cadence Virtuoso layout tool. Table 2 presents a comparative analysis of the newly suggested 

and previously reported circuits. The critical aspects of the comparators are high power consumption and offset 

voltage. Mainly higher offset voltage directly affects the accuracy of the comparator. From Table 2, the 

reported works in [22], [29], and [30] exhibit higher offset and power consumption. Compared to [27], the 

proposed comparator consumes less power at a 1 GHz frequency. The proposed circuit achieves a minimal 
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offset of 8 µV. Compared to [31], the proposed comparator operates at low power of 15.04 µW and has a delay 

of 80.5 1 ps, making it a better design in terms of lower PDP. 

 
 

Table 1. Power of the comparator obtained at different corners 
VDD Power @ 1G Hz (μW) 

 T = 0 °C T = 27 °C T = 70 °C 

ss tt ff ss tt ff ss tt ff 
0.6 V 7.70 11.49 16.26 7.33 12.68 20.54 15.9 44.53 62.82 

 T = 0 °C T = 27 °C T = 70 °C 

ss tt ff ss tt ff ss tt ff 
0.8 V 12.22 19.08 30.62 11.65 19.15 32.58 15.32 39.77 65.82 

 T = 0 °C T = 27 °C T = 70 °C 

ss tt ff ss tt ff ss tt ff 
1 V 16.24 35.42 58.22 15.04 35.04 56.59 21.04 46.9 78.86 

 

 

Table 2. Performance comparison 
References Technology Operating 

Frequency 

(Hz) 

Supply 
Voltage 

(V) 

Power 
(µ W) 

Delay 
(ps) 

Offset 
voltage 

(mV) 

PDP 

[22] 180 nm 500M 1.2 329 550 7.8 22.7fJ 
[29] 180 nm 0.5G 1.8 230  263 2 60.5fJ 

[30] 180 nm 2G 1.2 72.2  268.6 7.3 19.39fJ 

[27] 90 nm 1G 1 40 122 1.69 4.90fJ 
[31] 45 nm 250M 1.2 24.92  127 -- 3.16fJ 

Proposed 45 nm 1G 1 15.04  80.51  8 µ 1.21fJ 

--Not reported 

 

 

 
 

Figure 8. Layout of the proposed comparator 
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4. CONCLUSION 

A unique high-speed dual stage latch type dynamic comparator is introduced. By incorporating a 

cascode differential amplifier and a charge pump into the pre-amplifier stage, the comparator's speed is 

significantly enhanced. Simulation results indicate that the comparator operates with reduced power 

consumption and minimal offset. Consequently, this design is better suited for developing data converters for 

applications that require high-speed performance and low power consumption. 
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