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 The degree of reliability is one of the main issues in having the uninterrupted 

operation of fault-tolerant measurement and control systems. This paper 

presents a technique for detecting and localizing current sensor fault in 

doubly fed induction generator wind turbine systems (DFIG-WT). For this 

purpose, a methodology divided into three steps has been carried out and is 

presented as follows: the first step is the application of the zero-sequence 

component as an indicator of the presence of the sensor fault. The second 

step is based on the application of Concordia transformation on the current 

signals to generate different criteria for localizing the faulty sensor. Finally, 

an artificial neural network model is developed to analyze the localization 

criteria and identify the faulty sensor. All simulations are carried out in 

MATLAB/Simulink environment. Results show that the proposed technique 

is effective and can be used in real-time fault detection and localization in 

the DFIG-WT. 
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1. INTRODUCTION 

The DFIG associated with the AC/DC/AC converter is one of the essential components usually 

deployed in sizeable grid-connected wind turbines due to their ability to provide power at constant voltage 

and frequency while the rotor speed varies, which allows better wind capture compared to fixed-speed wind 

turbines. However, DFIG-WT is overly sensitive to unknown grid inputs, such as disturbances, noises, and 

sensor faults [1], [2]. 

Fault detection and diagnosis in real-time operating mode of DFIG-WT are essential to the operation 

and management of automated systems [3]. There is a strong need to develop diagnostic systems capable of 

autonomously detecting the presence of anomalies and localizing faults that may occur in various 

components of DFIG-WT during operation [4]. Due to their ability to handle non-linearities in complex 

systems more efficiently and their benefits in real-time applications, ANNs have become increasingly crucial 

in fault detection and diagnosis. Therefore, designing ANN models for fault detection in wind turbines is 

advantageous [5], [6]. 

Diagnostic systems use sensor readings to assess the system's state, detect abnormal conditions, and 

determine the root cause to recommend corrective actions to operators to prevent significant system  

damage [7]. Sensors are considered the monitoring interface for dynamic systems because measurement data 

is the only source of information about the system. They are designed to generate reliable measurement data 

that provide estimates of variables or parameters. 

https://creativecommons.org/licenses/by-sa/4.0/
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Under certain operating conditions, unanticipated inconsistencies between sensor readings and their 

expected values can immediately lead to the instability of the system being monitored. Identifying the source 

of the failure is critical for monitoring systems because different corrective actions or compensatory 

responses are required in the event of a sensor or system failure, depending on the diagnostic decision. Much 

research has been done in fault detection to extract sensor faults from measurement data [7]. This work aims 

to develop a method for detecting and localizing current sensor faults in DFIG-WT. To this end, a technique 

based on zero-sequence component is used for current sensor fault detection because of its fast data processing 

speed. The technique is non-invasive, simple, and does not require complex calculations [8], [9]. 

A two-dimensional representation based on the Concordia current vector is performed by 

transforming a three-phase system (Ia, Ib ,and Ic) into a two-phase system (Iαn, Iβn) in different ways [10], [11]; 

this reduces the number of current components and makes the computation easier [12], [13]. From the 

expressions Iαn and Iβn, we define three localization criteria (Cr1, Cr2, and Cr3) to isolate the faulty sensor. 

Each localization criterion is derived from only two measurements, so it is only sensitive to these two 

measurements and does not vary when the third sensor is faulty. 

Concordia's transformation approach must be combined with intelligent techniques that automate 

fault detection and diagnosis [12], [14]. A feedforward backpropagation neural network (FF-BPNN) is used 

to analyze the localization criteria and determine the faulty sensor [15], [16]. In sim power system, Simulink 

is used to analyze and test the different performances of the DFIG-WT. The modeling and simulation of the 

DFIG-WT with the vector control technique are done on the MATLAB/Simulink platform. 

This paper presents a current sensor fault detection method based on the zero-sequence component 

and a feedforward backpropagation neural network that uses the localization criteria as inputs to determine 

the faulty sensor localization. The paper is organized as follows: section 2 presents and explains the method 

used for this study. Section 3 shows and describes the results obtained from the detection and validation of 

the ANN model and the fault localization test in all possible operating cases. Finally, section 4 concludes the 

paper. 

 

 

2. METHOD 

This study employs combined techniques to detect and localize current sensor faults. To detect 

current sensor faults, the current signals Ia, Ib, and Ic are measured, then the absolute value of the zero 

sequence component of these measured currents is calculated, and finally, this value is compared to a 

predetermined threshold. The detection of the presence of the current sensor fault allows the localization 

process to start identifying the faulty sensor using an ANN model powered by localization criteria obtained 

from the Concordia transformation on the measured currents. The details of the method are presented in the 

sub-sections below and summarized in the flowchart in Figure 1. 

 

 

 
 

Figure 1. Flowchart of current sensor fault detection and localization 
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2.1.  DFIG wind turbine system configuration  

This section briefly describes the DFIG-WT architecture under study. The system considered for 

detection and localization has been developed in the MATLAB/Simulink environment, as shown in Figure 2. 

The designed system includes a generator connected directly to the grid on the stator side. The DFIG rotor 

circuit is supplied by a voltage source inverter controlled by a hybrid hysteresis current (HC) with field-

oriented control (FOC) [17], [18]. 

In this system, a fixed hysteresis band is applied for the current control of the rotor side converter 

(RSC). As shown in Figure 3, hysteresis current control is basically a feedback current control technique [19], 

[20]. A hypothetical control band surrounding the reference current controls the current error, which is the 

difference between the reference and inverter currents [21]. When the load current exceeds the upper band, the 

comparator output is activated so that the output voltage is altered to decrease the load current and maintain it 

between the bands; it is deactivated when the load current falls below the lower limit. The switching frequency 

varies with the distance between the upper and lower bands. The switching strategy is as [22]: 𝑖𝑓 𝑖𝑟𝑎 > 𝑖𝑟𝑎
∗   

+HB, then upper switch is turned ON and 𝑖𝑓 𝑖𝑟𝑎 < 𝑖𝑟𝑎
∗  –HB, then lower switch is turned ON. 

 

 

 
 

Figure 2. The simulated model of the system 
 
 

 
 

Figure 3. Control block of rotor side converter 
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2.2.  Current sensor faults detection using zero-sequence component 

Due to their simplicity of implementation and the fact that they do not require complex calculations 

such as FFT, the zero-sequence component methods are widely used in online and real-time monitoring 

systems [8], [9]. In fact, in a double-fed induction generator, the connection to the grid does not usually use a 

neutral connection. Therefore, the grid current has no zero-sequence component, and the sum of the three-

phase currents is zero [10], [23]. 

 

𝐼𝑎0 =
1

3
(𝐼𝑎 + 𝐼𝑏 + 𝐼𝑐) (1) 

 

𝑎𝑏𝑠 (𝐼𝑎0) ≈ 0 (2) 

 

For healthy operation, the zero-sequence component of the measured current must be very small, 

almost zero, so that a fault in one of the current sensors can be detected [23]. A comparator can then be used 

to find out if one of the current sensors might be faulty. For this purpose, the absolute value of the measured 

zero-sequence current Ia0 is compared to a current threshold Ith. Consequently, when a fault occurs in one of 

the current sensors, the output of this comparator, denoted Fi, becomes equal to 1. The choice of the current 

threshold Ith depends on the current sensor's accuracy [24], [25]. So, the detection can be done immediately 

whenever the zero-sequence current appears due to a sensor fault.  

 

2.3.  The Concordia transformation for the generation of fault localization criteria 

In the previous sub-section, we defined the indicator Fi as an indicator of the presence of a fault, but 

it does not allow us to determine the localization of the faulty sensor. In order to generate fault localization 

criteria, an algorithm based on the Concordia transformation is applied as follows: if we have three current 

signals, Ia, Ib, and Ic, constituting a balanced three-phase system, we can calculate the Concordia transform in 

different ways [10], as given in Table 1. 
 
 

Table 1. Calculation of the Concordia transformation by different ways 
Expressions of the component 

on the α axis 

Expressions of the component 

on the β axis  

𝐼𝛼1 = √
3

2
𝐼𝑎 𝐼𝛽1 = √

1

2
(𝐼𝑏 − 𝐼𝑐) 

𝐼𝛼2 = −√
3

2
(𝐼𝑏 + 𝐼𝑐) 𝐼𝛽2 = √

1

2
(𝐼𝑎 + 2𝐼𝑏) 

 

𝐼𝛽3 = −√
1

2
(𝐼𝑎 + 2𝐼𝑐) 

 
 

The current component Iα1 can be calculated only using the measurement of the current in phase a 

(see Iα1 in Table1), whereas Iα2 is estimated using the measurement of the currents in phases b and c (see Iα2 

in Table 1). Therefore, some α and β components might not be expressed in terms of the faulty current 

sensor. We define three localization criteria from these different expressions to isolate the faulty sensor. Each 

localization criterion is calculated from only two measurements, as shown in (3), (4), and (5). Therefore, it 

will only be sensitive to those two measurements and will not show any variation when the third sensor 

becomes faulty, as shown in Table 2. 

 

𝐶𝑟1 = (𝐼𝛼2
2 − 𝐼𝛽1

2 ) (3) 

 

𝐶𝑟2 = (𝐼𝛼1
2 − 𝐼𝛽3

2 ) (4) 

 

𝐶𝑟3 = (𝐼𝛼1
2 − 𝐼𝛽2

2 ) (5) 

 

In a healthy system, Cr1, Cr2, and Cr3 exhibit nearly identical values. However, significant 

deviations arise when a sensor malfunctions, unless the same fault occurs simultaneously across all three 

sensors, which is highly unlikely. The localization criteria obtained by combining the coefficients αn and βn 

represent the input data of the ANN model, which has been trained for the various operating conditions to 

precisely determine the localization of the faulty sensor by an output set to “0” or “1”. 
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Table 2. Sensitivity of the criteria to the current 
Localization criteria Ia Ib Ic Used component 

Cr1 - + + Iα2, Iβ1 
Cr2 + - + Iα1, Iβ3 

Cr3 + + - Iα1, Iβ2 

 

 

2.4.  ANN sensor fault localization  

In this work, a model developed using an FF-BPNN was applied to localize the faulty sensor in 

DFIG-WT. A three-layer nonlinear model has been trained using the Levenberg Marquardt algorithm to 

localize the faulty sensor [5], [26]. Four operating conditions were considered: healthy, fault at sensor 1, fault 

at sensor 2, and fault at sensor 3. As shown in Figure 4, the structure of the ANN fault locator was chosen as 

follows: 3 inputs, 1 hidden layer with 10 neurons, and 3 outputs. 

 

 

 
 

Figure 4. ANN training model 

 

 

The inputs of the ANN fault locator are Cr1, Cr2, and Cr3, which are obtained from the Concordia 

coefficients (αn, βn) combination. The outputs of the locator are set to '0' or '1' depending on the state of each 

sensor according to the fault condition [27], as shown in Table 3. In order to ensure that the testing and 

validation process was rigorous and thorough, the ANN fault locator was tested and validated with different 

current sensor faults (gain and offset) to replicate the types of faults that can occur in real-world applications. 

 

 

Table 3. Target output for ANN fault localization 
Stat of sensors Sensor 1  Sensor 2 Sensor 3 

Healthy 0 0 0 

Fault at sensor 1 1 0 0 

Fault at sensor 2 0 1 0 
Fault at sensor 3 0 0 1 

 

 

3. RESULTS AND DISCUSSION 

In this section, we will examine an offset fault, as illustrated in Figure 5. The offset fault is 

introduced in the Matlab simulation environment at 0.1 sec. To simulate this fault, a constant (known as the 

offset fault) is added to the output of the current Ia. This approach has been widely used in previous studies 

[28]–[30] to analyze the effects of offset faults in various systems. By considering this fault scenario, we can 

gain valuable insights into the behavior of the system and assess its robustness in the presence of such faults. 

 

3.1.  Results for detection 

Figures 6(a) and 6(b) show the sensor current offset fault results. Figure 6(a) shows the zero-

sequence current Ia0 for both sensor operating conditions: healthy and faulty. On the other hand, Figure 6(b) 

represents the sensor fault presence indicator Fi by comparing the value Ia0 with the zero-sequence current 

threshold Ith. The result contains two operating cases: healthy case '0' and faulty case '1'. 

The most striking results that emerge from the data are the considerable increase in zero-sequence 

current in the presence of a current sensor fault and the speed of fault detection. Indeed, as illustrated in 

Figures 6(a) and 6(b), the value of Ia0 is very low, nearly equal to zero, for the healthy case, and it varies 

significantly when a sensor fault occurs. Thus, the indicator Fi changes simultaneously from the healthy to 

the faulty state when the sensor fault occurs. 
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Figure 5. The current sensors offset fault at t = 0.1(s) 
 
 

 
(a) 

 
 

Figure 6. Sensor current offset fault: (a) zero sequence current and (b) sensor fault presence indicator 
 

 

3.2.  Results for ANN training model 

During the training process, the learning performance of the ANN model was evaluated by 

comparing the model's target and output using the learning regression plot. The learning process was 
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repeated until the performance results became satisfactory. The post-training performance plots are shown in 

Figures 7 and 8. 
 
 

 
 

Figure 7. Regression FIT of the output vs targets for the network 
 

 

 
 

Figure 8. Mean squared error for training, validation and test 

 

 

The correlation coefficient was found to be 0.99867 from Figure 7, which indicates a satisfactory 

correlation between the targets and the outputs. Thus, the results of mean-square error training, validation, 

and test plots in Figure 8 are feasible because of the similarity between the test curve and the validation curve 

and the nihility of the overfitting. 

 

3.3.  Results for sensor fault localization 

The neural network model proposed here should localize the faulty sensor, as shown in Table 3 of 

the previous sub-section. The results obtained from the ANN fault localization model are presented in Table 4. The 

localization process has two possible cases for each of the three sensors: the healthy case, represented by '0', 
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and the faulty case, represented by '1'. Figure 9 shows an offset fault in sensor 1 (phase a) localized by the 

ANN localization model. It can be noticed from the data in Table 4 and Figure 9 that the ANN fault 

localization followed the target output for all operating conditions, and the test of faulty sensor localization 

showed good performance and efficiency. 

The obtained results for fault detection, the learning process, and the localization of the faulty sensor 

indicate that the proposed method can detect and locate faulty current sensors with high accuracy and 

reliability. Furthermore, this method can detect current sensor faults early before they cause severe damage 

or downtime, which is a significant benefit. These advantages are achieved due to the small ANN structure, 

which makes it more efficient and faster than complex networks. In terms of fault detection, this can be 

important for real-time processing and decision-making. In conclusion, the proposed fault detection and 

localization method for faulty current sensors represents a significant improvement over existing techniques. 

 

 

Table 4. Results of validation for ANN fault localization model 
Condition Target ANN output 

 X Y Z X Y Z 

Healthy 0 0 0 9,43e-05 9,43e-05 9,43e-05 

Fault at sensor 1 1 0 0 0,9998 0,0062 0,0019 
1 0 0 1,0016 0,0063 0,0036 

1 0 0 1,0031 0,0065 0,0052 

Fault at sensor 2 0 1 0 -0,0018 1,0014 0,0024 
0 1 0 -0,0018 1,0014 0,0024 

0 1 0 -0,0018 1,0014 0,0024 

Fault at sensor 3 0 0 1 0,0002 -0,0007 0,9991 
0 0 1 0,0002 -0,0007 0,9991 

0 0 1 0,0002 -0,0007 0,9991 

 
 

 
 

Figure 9. Sensor offset fault localization 
 
 

4. CONCLUSION 

This paper presents the detection and localization current sensor faults in DFIG-WT using various 

techniques. Current sensor faults can be detected by a comparator that analyzes the current threshold of the 

zero-sequence component in DFIG-WT with isolated neutral load topology. However, a locator based on the 

FF-BPNN with the Levenberg Marquardt algorithm is developed to localize the faulty sensor. The primary 

benefit of the suggested method is its ease of implementation, and it does not involve many complex 

calculations. The proposed current sensor fault detection technique was found to have satisfactory 

performance. Thus, the obtained results showed that the ANN fault locator accurately tracked the target 

output for different data under all operating conditions. In conclusion, the developed detection and 

localization approach is a better candidate for online and real-time surveillance. Future research should focus 

on adding speed sensor faults to DFIG-WT systems and implementing a complete detection and localization 

algorithm in an extensive online and real-time monitoring system. 
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