
International Journal of Power Electronics and Drive Systems (IJPEDS) 

Vol. 14, No. 4, December 2023, pp. 2457~2463 

ISSN: 2088-8694, DOI: 10.11591/ijpeds.v14.i4.pp2457-2463      2457  

 

Journal homepage: http://ijpeds.iaescore.com 

Application of EV aggregators and SMES for frequency 

deviation control using fractional fuzzy controller 

 

 

Sabita Tripathy, Manoj Kumar Debnath, Sanjeeb Kumar Kar 

Department of Electrical Engineering, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar, India 

 

 

Article Info  ABSTRACT 

Article history: 

Received Feb 21, 2023 

Revised Apr 30, 2023 

Accepted May 9, 2023 

 

 Secondary controllers are implemented in the alternator control loop to take 

care of the swinging of frequency initiated due to inequality of load and 

demand. A fractional fuzzy-PID controller (FFPID) is projected in this work 

for frequency deviation control in unified system including EV aggregators 

and superconducting magnetic energy storage (SMES). EVs and SMES are 

given primacy because of their ecofriendly nature. Proper adjustment of 

gains of FFPID is also required to extract the best performance of the 

secondary controllers. Here a recent tuning process named as artificial 

rabbits optimization (ARO) is applied for proper tuning of projected 

controller. The implemented dual area power system includes time varying 

delay-based EV aggregators, SMES, and thermal generating units. The ARO 

technique is applied in the model to tune the controller constraints with 

abrupt increment of demand in one of the control areas. A time-based 

function is treated as fitness function to evaluate the system performance. 

The dominance property of the projected FFPID controller over 

conventional PID and FPID controller in terms of different response 

specifications like maximum positive deviation (overshoot), settling time 

and minimum negative deviation (undershoot). The robust nature of the 

projected controller is also confirmed by multiple analysis like random load 

deviations and system constraint alteration. 
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1. INTRODUCTION 

Generator control loops take care of the active and reactive power generation of the system. Thereby 

it controls frequency and terminal voltage of the alternator [1]. Load frequency control (LFC) acts along with 

speed governor to regulate the deviations of frequency occurred due to imbalance between demand and 

generation [2]. It’s the duty of LFC to decay the oscillations of frequency and interline power of the unified 

system within a tolerable band due to uncertain demand variations. The reliable and stable operation of the 

unified power network mainly depends on the well-functioning of the LFC loop. The loss of stability due to 

uncertain load perturbations may results in the loss of synchronization of the alternators. 

LFC loop must cope up with the increasing demand of the load in the unified power network. The 

secondary controllers have used by many researchers in the alternator control loop to accelerate the control 

action of the LFC loop. Initially traditional simple controllers [3] were implemented by the researchers to 

enhance the alternator control loop. The increase in demand for bulk power having a proper increased 

reliability was established. Power system stability is an issue that can establish a state of operating 

equilibrium after the occurrence of the disturbance with bounded system constraints. The disruption stated in 

https://creativecommons.org/licenses/by-sa/4.0/
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the above could be by the load changes, fault, line outages, generator outages, voltage collapse or few 

combinations of these. The severe disturbances in power system produce large power swings. If this 

phenomenon continues for a long time, the faulted portion of the power system network/component is 

isolated from the remaining healthy system with the help of circuit breakers to prevent further additional 

damage. Isolation interrupts the continuity of power supply to the faulted section of the power system. In 

order to achieve stability different modes of condition is achieved like rotor angle, voltage and frequency 

stability. Numerous stochastic search techniques to set the gain parameters of the PID controller are 

explained in [4]. A decentralized control parameter to achieve an operating point in a three area power 

system is evaluated in [5]. Sensitive performance analysis for system parameter and operating load condition 

is explained in [6]. Schedule interchanging of distributed approach to modify the conventional AGC is done 

in [7]. Fuzzy and neural network approach to the AGC based on hydrothermal system is explained in [8], [9]. 

A droop control microgrid with DSC control is explained in [10]. An optimized hybrid fuzzy PID controller 

with LUS-TLBO algorithm is explained in [11], [12]. FOPI-FOPD based energy storage devices in 

deregulated AGC are explained in [13]. Frequency regulated based PID-fuzzy-PID two area network is 

proposed in [14]. Stability criterion analysis with delay constraints in the LFC based system is explained in 

[15], [16]. Meta heuristic approach on bio inspired optimization issues are explained in [17], [18]. Modified 

TID controller with interconnected diverse unit power system is elaborated in [19]. Deregulated power 

system with brain emotional based intelligent controller is explained in [20]. To compensate the increasing 

demand, renewable sources integrated microgrids [21], [22] were examined by the researchers for frequency 

deviation control. Communication delay was considered in article [23] along with EV aggregator for 

observing control of frequency oscillations. Leader Harris Hawks technique was employed in paper [24] for 

LFC observation in unified network. Arya [25] implemented FTIλDN controller for damping the oscillations 

of response in the thermal based unified network. 

From the above survey it can be observed that many research articles have incorporated different 

control techniques for effective control of frequency deviations in multi-area unified power system. In this 

research paper fractional calculus is used along with fuzzy controller to develop fractional fuzzy controller 

for frequency deviation regulation of unified power network. The following points highlighted the key 

contributions of the paper: 

− Application of EV aggregators, SMES along with thermal units in unified network for examining 

frequency deviation control. 

− Use of fractional calculus to model fractional fuzzy-PID (FFPID) controller. 

− Augment the recommended controllers with the efficient artificial rabbits optimization technique. 

− Endorsing the ascendency of stated FFPID controller over FPID and PID controller in view of different 

response specifications like maximum positive deviation (overshoot), settling time and minimum negative 

deviation (undershoot). 

− Evidencing the robustness of implemented FFPID controller by applying arbitrary demand variations and 

system constraint deviations. 

 

 

2. SYSTEM EXAMINED 

Frequency deviation control analysis is become essential with the application of EV aggregators. A 

large number of EVs are accounted as EV aggregators and employed along with other generating sources in 

multi-area system for frequency deviation control. The time delay of EV aggregators may result in the delay 

of system response because of which the stability of the system may be affected. In this research analysis a 

dual-area system is examined where EV aggregators are employed along with thermal generating power units 

in each area. Governor dead band (GDB) and generation rate constraints (GRC) are also considered along 

with each thermal unit to make the system more practical. The examined model includes GRC of 3%/min for 

each thermal unit. For the GDB, 0.036 is considered as limiting value. The transfer function-based model of 

the examined dual-area unified power system is illustrated in Figure 1. The nominal parameters of the model 

are considered from article [14] and are detailed in the Table 1. The simplified transfer function of the EV 

aggregators [14] is presented by (1). 

 

𝐺𝐸𝑉(𝑠) =
𝐾𝐸𝑉

1+𝑠𝑇𝐸𝑉
 (1) 

 

Where the EV gain is denoted by KEV and TEV is the battery-based time co-efficient of the EV. For the EV 

aggregators the time varying delay is accounted by a sine wave function [14] with bias and amplitude taken 

as 1. For the scrutinized system the time varying delay is taken in the range [0.5 s]. 
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An SMES unit [6] is installed in each control area which has the ability to normalize the real power 

of the unified system. The transfer function of the SMES unit is depicted in Figure 1. In the Figure 1, α1, and 

α2 are the participation factors for each generating unit of the dual-control area system. Two FFPID 

controllers are applied for smooth control of frequency in the designed unified model. The rated values of the 

system constraints are delivered in the Table 1. 

 

 

Table 1. Nominal values of the constraints of the scrutinized model 
Parameters Values Parameters Values Parameters Values 

M 8.8 Fp 1/6 α2 0.4 

Tg 0.2 Tev 0.1 α1 0.6 

Tr 12 Kev 1 T12 2 
Tc 0.3 B 21 TSMES 0.035l 

D 1 R 1/11 KSMES 0.12 
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Figure 1. Power system integrated with EV and SMES represented by transfer function 

 

 

3. METHODOLOGY 

3.1.  Artificial rabbits optimization (ARO) 

ARO is an effective and modern tuning algorithm projected by Wang et al [18]. The entire process 

of ARO is centered on the survival behavior of rabbits in the environment. This tuning process basically 

based on two behaviors of the rabbits namely, random hiding and detour foraging. The detour foraging 

approach of rabbits applies them to eat food near the nests of other rabbits, by this their nest can’t be 

discovered by the predators. Random hiding behavior of rabbits allows them to choose a burrow arbitrarily 

for hiding, by this they can avoid the enemies from being captured. The various steps involved in ARO 

algorithm is as follows: 

a) Initialize the position of rabbits ( 1pC 2pC dC iC   ) and all other controlling factors. As there are two 

controllers, total number of controller’s parameters is 12. 

b) Compute the energy coefficient A. 

c) For A>1 select a random rabbit and execute detour foraging. 

d) For A<1 choose a random burrow for hiding and execute arbitrary hiding. 

e) Use fitness function in (2) to evaluate rabbits and update their positions. 

f) Based on fitness update the fittest solution. 

g) Check the termination criteria of the algorithm, if met stop and return the finest solution, else go to step b. 

The finest solution represents the optimum controller’s gain. 

The details of the algorithm can be found in the article [18]. 

 

3.2.  FFPID controller architecture 

The traditional fuzzy-PID controller consists of integer order PID controller with a fuzzy inference 

system. This means that the values of two tuning variables attached to the integral and derivative controller 
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should have unity value i.e, 𝜆 = 𝜇 = 1. In a fractional calculus based fuzzy PID controller, the integral and 

derivative controllers come with two adjustable parameters λ and µ and can have any values between 0 and 1. 

Keeping aside the stated differences, all other design aspects of a FFPID controller is exactly the identical as 

the traditional integer order fuzzy-PID controller. Fuzzy-PID controller can be said to be a special case of 

FFPID when 𝜆 = 𝜇 = 1. Figure 2 illustrates the structure of FFPID controller. The membership functions 

and rule-base of FFPID controller are depicted in Figure 3 and Table 2 respectively. 
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Figure 2. Internal design of FFPID controller 

 

Figure 3. Membership function structure of 

FFPID controller 

 

 

Table 2. Twenty-five rules of fuzzy structure of FFPID controller 
Error Δerror 

MF1 MF2 MF3 MF4 MF5 

MF1 MF1 MF1 MF2 MF2 MF3 
MF2 MF1 MF2 MF2 MF3 MF4 

MF3 MF2 MF2 MF3 MF4 MF4 

MF4 MF2 MF3 MF4 MF4 MF5 
MF5 MF3 MF4 MF4 MF5 MF5 

 

 

4. RESULT AND DISCUSSION 

The multi-area EV incorporated model is examined by applying an unpredicted load fluctuation in 

control area 1. The constraints of the employed PID, FPID, and FFPID controllers are adjusted by ARO 

technique with the application of 0.01 p.u. sharp load variation in control area 1. The ITAE also known as 

integral time absolute error in (2) is act as fitness function for the said tuning process. The suitable tuned 

controller constraints obtained with ARO process is tabulated under Table 3. The capability of the controllers 

is judged by observing the oscillations of frequency in control area and interline power, portrayed by  

Figures 4 and 5 respectively. The mathematical computation of maximum positive deviation (overshoot), 

settling time and minimum negative deviation (undershoot) of system responses are carried out and tabulated 

in Table 4. The said Table shows the dominance of FFPID controller over FPID and PID controller as the 

former controller possess the better values of the response specifications. Further the flexibility of the 

implemented FFPID controller is established by following robustness analysis. 

 

𝐼𝑇𝐴𝐸 = ∫ (|𝛥𝑓1| + |𝛥𝑓2| + |𝛥𝑃𝑡𝑖𝑒|). 𝑡𝑑𝑡
𝑡

0
 (2) 

 

 

  
 

Figure 4. Oscillations of frequency of area 1 due to 

demand variation in control area 1 

 

Figure 5. Oscillations of interline power due to 

demand variation in control area 1 
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Table 3. ARO tuned optimum controller gains 
Controller Control area 1 Control area 2 

𝐶𝑝1 
𝐶𝑝2 

𝐶𝑑 𝐶𝑖 𝜆 𝜇 𝐶𝑝1 
𝐶𝑝2 

𝐶𝑑 𝐶𝑖 𝜆 𝜇 

FFPID 1.463 0.9811 1.7541 1.0221 0.81 0.97 1.7910 0.4811 1.2203 1.9501 0.99 0.79 

FPID 1.842 1.0122 1.7456 1.9741 NA NA 1.5542 0.1423 1.0789 1.5247 NA NA 

PID 𝐶𝑝 𝐶𝑖 𝐶𝑑
 

𝐶𝑝 𝐶𝑖 𝐶𝑑
 1.3154 1.9864 0.2147 1.1258 0.5963 1.2456 

 

 

Table 4. Response evaluative specifications of the scrutinized model with FFPID, FPID, and PID controllers 
Controller 𝛥𝑓1 𝛥𝑓2 𝛥𝑃𝑡𝑖𝑒 

𝑈𝑠ℎ in 

Hz 

𝑇𝑠 in 

sec 

𝑂𝑠ℎ × 10−3 

Hz 

𝑈𝑠ℎ in 

Hz 

𝑇𝑠 in 

sec 

𝑂𝑠ℎ ×
10−3Hz 

𝑈𝑠ℎ in 

p.u. 

𝑇𝑠 in 

sec 

𝑂𝑠ℎ × 10−3 

p.u. 

PID -0.0116 2.0893 0.04649 -0.0066 3.3720 0.02388 -0.0029 2.6434 0 

FPID -0.0081 1.0886 0.2709 -0.0027 2.1713 0.0004 -0.0018 2.6339 0 

FFPID -0.0054 1.0288 0.0227 -0.0022 2.0786 0 -0.0014 2.5630 0 

 

 

4.1.  Robustness analysis with random demand variations 

The implemented FFPID controller in the multi-area system is considered to be robust if it can settle 

the abnormalities of any kind of unpredicted load fluctuations. To analyze this, the EV integrated model is 

subjected to random demand variations in control area 1 and the system responses are examined in terms of 

interline power oscillations and frequency deviations in both control areas. The shape of the random demand 

variations and system responses are displayed in Figure 6. This Figure evidence the robustness capability of 

the considered FFPID controller as it damps out the oscillations of frequency and interline power and make 

the system stable in a better manner. 

 

 

 
 

Figure 6. Oscillation of interline power and area frequency due to random demand deviation 

 

 

4.2.  Robustness analysis with system parameters variations 

As an extension of robustness check the constraints or the nominal parameters of the system are 

subjected to a wide range of deviations and the responses of the system are examined. Some constraints like 

regulation index (R) and bias index (B) of the examined model as shown in Figure 1 are varied ±50% and 

±25% and the performance evaluative indices i.e., maximum positive deviation(overshoot), settling time and 

minimum negative deviation(undershoot) are obtained and tabulated in Table 5. From these evaluative 

indices it can be seen that the maximum positive deviation (overshoot), settling time and minimum negative 

deviation (undershoot) are not changing widely even the constraints R and B are changing widely. The 

analysis again witnesses the robustness behavior of the projected FFPID controller. 

 

 

Table 5. Response evaluative specifications due to variation of system constraints 
System 

constraints 

% age 

variation 

Ush for 𝛥𝑓1 

(in p.u.) 

Tsfor 𝛥𝑓1 

(in sec) 

Osh × 10-3 for 

𝛥𝑓1 (in p.u.) 

Ush for 𝛥𝑃𝑡𝑖𝑒 

(in p.u.) 

Tsfor 𝛥𝑃𝑡𝑖𝑒 

(in sec) 

Osh × 10-3 for 

𝛥𝑃𝑡𝑖𝑒 (in p.u.) 

R 

-50% -0.0052 1.0311 0.0234 -0.0017 2.5669 0 
-25% -0.0053 1.0299 0.0231 -0.0016 2.5644 0 

+25% -0.0052 1.0300 0.0233 -0.0015 2.5654 0 

+50% -0.0051 1.0321 0.0235 -0.0016 2.5678 0 

B 

-50% -0.0051 1.0312 0.0235 -0.0017 2.5673 0 

-25% -0.0052 1.0298 0.0233 -0.0014 2.5654 0 

+25% -0.0054 1.0311 0.0234 -0.0013 2.5666 0 

+50% -0.0051 1.0322 0.0236 -0.0016 2.5681 0 
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5. CONCLUSION 

The research analysis confirmed the dominance of fractional fuzzy-PID (FFPID) controller over 

FPID and PID controller in the multi generation unified power system. The Multi-area model considered the 

nonlinear EV aggregators, SMES along with thermal power sources for evidencing the frequency deviation 

control. The result analysis and robustness analysis showed that the implemented controller successfully 

regulates the deviations of area frequency and interline power during unpredicted load disturbance in control 

areas. The random loading application and parameter alteration further proved the ability of the projected 

FFPID controller. Response specifications like maximum positive deviation (overshoot), settling time, and 

minimum negative deviation (undershoot) are calculated for evidencing the dominance of the said FFPID 

controller over FPID and PID controller. 
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