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 Electric vehicles (EVs) and their associated charging stations (CSs) are a 

promising avenue for greenhouse gas reduction and energy security. 

However, improper location and size of the EV charging station (CSs/EVs) 

negatively affect the power system. It results in some technical challenges 

such as increased real power-loss, decreased voltage stability and increased 

voltage deviation. This paper suggests optimum planning of CSs/EVs 

locations to conserve voltage, improve power-loss and reduce the effect of 

CSs/EVs in electrical distribution systems. The multi objective genetic 

algorithm method (MOGA) is utilized to solve the optimization problem and 

reduce the impact of the random location of CSs/EVs. The simulations are 

performed on IEEE 33-bus and IEEE 69-bus radial distribution systems 

(RDS). In addition, the optimal EV allocation is carried out with two fixed 

levels of loading from 100% to 150% of the candidate EV load. A 

comparison between the proposed MOGA technique and other optimization 

techniques is carried out. The results demonstrated the capability of the 

proposed technique for optimal placement of CSs/EVs in RDS. Moreover, it 

is providing an objective value to solve a complex multi-objective nonlinear 

optimization problem to reduce the total power-loss, improve the voltage 

profile and extend the voltage stability. 
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1. INTRODUCTION  

Globally, electric vehicles are one of the best ways to reduce pollution. The economic and 

environmental problems of transporting fossil fuels have spurred the electrification of vehicles around the 

world. Moreover, many expected benefits are also increasing as technology improved [1]. The electric vehicles 

(EVs) market share reached 28.8% in Norway, 6.4% in the Netherlands and 1.4% in China, whereas many 

countries have set targets to reach 100% EV penetration in the foreseeable future [2]. By 2025, the number of 

global EVs is expected to surpass 40 million [3]. If this rate continues until 2050, EVs will replace 62% of 

fleet vehicles [4]. Researchers highlighted the significant impact of switching from conventional vehicles to 

EVs to reduce the transportation sector's contribution to greenhouse gases, due to the lower costs of electricity 

compared to fossil fuels [5]. One of the drawbacks of EVs is their limited driving range. The EV batteries state 

of charge (SOC) reduces while EVs are moving, and hence need to be linked to the grid for recharging [6]. 

Therefore, there is a great emphasis on the establishment of large-scale EV charging stations [7]. It is worth 

noting that the appropriate location of EV charging stations is critical to preventing detrimental impacts on 

power quality [8]. EVs are mostly related to the distribution voltage level. With high EV penetration, the load 

flow of energy changed not only in the distribution system, but also in the transmission subsystem [9]. 

https://ieeexplore.ieee.org/author/37088218352
https://ieeexplore.ieee.org/author/37086131614
https://ieeexplore.ieee.org/author/37658554200
https://ieeexplore.ieee.org/author/38277253500
https://creativecommons.org/licenses/by-sa/4.0/


Int J Pow Elec & Dri Syst  ISSN: 2088-8694  

 

Enhancing the performance of radial distribution systems via optimal integration … (Afaf Rabie) 

2515 

Deployment of charging station (CS) infrastructure is the most important for EV technology, and location of 

the CSs will bring new challenges to power supply systems if technical specification is not considered during 

the planning process. Academia and industry are moving towards proper CSs planning in electrical systems 

[10]. Generally, many optimization algorithms are used to solve the problem of locating the electric vehicles' 

charging stations (CSs/EVs). It usually focuses on maximizing customer needs or reducing travel costs [4]. In 

addition, many public transportation vehicles depend on renewable energy sources, so in some areas the 

photovoltaic system is set up to efficiently charge interchangeable battery systems [11]. 

A review on determining the optimal location of EV charging station infrastructure and its model 

classification based on transmission and distribution systems is presented in [12]. The work in [13] explain 

an optimal place of the electric vehicle charging station in a transmission network is determined considering 

the EV Leadership range, which sub-edited the problem of the road node covering (RNC). Furthermore, 

results show that the selection of an intelligent path, flexibility and efficiency of the design can select optimal 

locations for CSs from different potential locations without difficulties. According to [14], the CS/EV site in 

Sweden is planned to use geographical information system (GIS) depending on traffic flux average and earth 

sorting data. The problem of optimization is dealt with combined linear and integer programming to 

maximize revenues using the new CS/EV. The charging station infrastructure and its location are defined for 

the transportation network in Italy considering features of the highway and driving behavior in [15]. 

Moreover, depending on service venture and risk, the sites and sizes of CSs are specified utilizing whale 

optimization algorithm (WOA) [16]. The optimal locations of CS/EVs are determined in [2] based on the 

particle swarm optimization (PSO) algorithm. The objective function is solved considering planning time, the 

overall cost of the CSs (i.e., development, operation, and repairing) as well as voltages and current 

limitations. Depending on the EVs transportation cost and the performance of the system, the optimal 

assignment of the EV charging problem is elaborated in [17]. The location problem of fast charging stations 

is settled in [18]. The presented work uses the candidate places with investment operation in the supreme 

network considering the effect of EV stations on motorists, traffic status, losses power of EVs and operation 

in the low voltage network. The locations of fast charging stations are suggested for a 123-bus distribution 

network in [19] using multi-objective grey wolf optimizer (MOGWO) algorithm considering transport 

system limits. In addition, an optimal site of charging stations in presents of capacitors is proposed in view of 

power loss and voltage profile improvement in electric distribution networks [20]. Moreover, other 

algorithms have studied the optimal position of CSs/EVs in radiation distributed systems. The result in [21], 

depending on transformer ratings and the determination of available EV numbers, the 107-bus residential 

low-voltage distribution system is analyzed in real time to locate CSs/EVs optimally. The cost of charging is 

reduced by the algorithm of salp swarm (SSA), considering the technical constraints of the network under 

classical and smart modes of charging. The results demonstrated that the voltage deviation due to increasing 

EV loads in secondary feeders is higher than the primary feeder deviation. The effect of EV charging on the 

distribution network is reduced by designing policies for EV charging with the objective function of reducing 

the cost of operation, EV penetration and overall losses. The cost function is defined with two components. 

The first is specified as the aging of the transformer and the second component coincided with distribution 

system losses [22]. In addition, depending on actual data, a financial cost of charging batteries has been 

added to the cost index as a third component which regards the EV itself [23]. While the simulation proved 

that the proposed policy for EV charging worked quite likewise the current charging policies. However, it 

discovered more origins of the profiles in the existence of predictive errors. Moreover, the study in [24], 

identified the optimal location of a number of fast charging stations in the American network to serve 10% of 

EV load penetration without exceeding network operational constraints like voltage levels and harmonic 

distortions. The analysis includes the geographical, social, and technical sides of defining the infrastructure 

needed to model a fast EV charging station of a 50 kW with a DC/DC and AC/DC power converter. On the 

other hand, the CS demand for spread EVs was estimated in [25] depending on a probabilistic model or by an 

approximate model for improving reliability in the system. In [25], the required power for CSs/EVs are 

determined according to the EVs’ demand power that mainly depends on the number and types of charging 

ports. Hence, according to various charging schemes, the smart charging method is suggested to reduce the 

cost of operation at the peak require while maintaining reliability and network security agents [26]. From 

this, it was necessary to plan the increasing EVs penetration on the distribution networks appropriately to 

upgrade the economic and technical benefits and raise EV penetration rate as presented in [27]. Due to EV 

power change depending on its type, multiple charging ports (CPs) are established for several types of EVs 

achieving economic targets and raising penetration level of EVs [28]. Furthermore, various types of AC and 

DC models and power demand characteristics are reviewed in [29]. In view of the above works, MOGA and 

voltage stability index (VSI) are utilized to customize CS/EV in a distribution system considering system 

improvements. VSI is utilized to reduce active power losses by identifying candidate buses. While GA 

produces a new generation of chromosomes and calculates fitness values of improving the voltage profile and 

voltage stability enhancing. The algorithm has been tested on 33-bus and 69-bus systems with CS/EV load. 
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The efficiency of the proposed algorithm is simulated with different scenarios. The rest of this paper is 

arranged as follows. In section 2, the mathematical model of the problem is presented. The objective function 

as well as its constraints are discussed in section 3. In section 4, details of the proposed optimization method 

using MOGA are illustrated. Simulation results and analysis of different operating scenarios are presented in 

section 5. Finally, some conclusion remarks are provided in section 6. 

 

 

2. PROBLEM FORMULATION 

In order to reduce the effect of EV load on the performance of the radial distribution system, the 

CSs/EVs are located optimally using MOGA. The load flow analysis of RDS is performed using the back-

and-forward sweep [30]. The elements of the multi objective function (MOF) that include the reduction of 

real power loss, enhancing voltage stability and optimizing voltage profile are debated as follows: 
 

2.1.  Minimizing real power loss 

The first component of the objective function is minimizing actual power loss (PL), 𝐹1 which is 

determined in (1). 
 

𝐹1 =  reducing (𝑃𝐿𝑜𝑠𝑠) (1) 
 

The active power losses are defined by summing up all losses in the branches as given in (2). 
 

𝑃𝐿𝑜𝑠𝑠 = ∑ (
(𝑝𝑖

2+𝑄𝑖
2)

|𝑣𝑖|2 )𝑁𝑏𝑠
𝑖=1 ∗ 𝑟𝑖𝑗  (2) 

 

For 𝑖 is the sending end node and 𝑗 is the receiving end node. 
 

2.2.  Minimizing voltage deviation index 

The second component 𝐹2 of the objective function is minimizing the voltage deviation index. The 

voltage deviation index (VDI) is introduced to evaluate the improvement that occurs in the voltage profile, 

which can be determined as the disparity between the nominal voltage and the actual voltage. The VDI can be 

evaluated using the following expression [30], [31]. 
 

𝑉𝐷𝐼 =
1

𝑁𝑏𝑠
∑ |

𝑉𝑛𝑖−𝑉𝑖

𝑉𝑛
|𝑁𝑏𝑠

𝑖=1  (3) 

 

Where 𝑉𝑛𝑖 is nominal voltage of the ith bus. Usually, it is taken as 𝑉𝑛= 1.0 p.u. and the ith bus voltage 

magnitude is 𝑉𝑖. 
 

2.3.  Voltage stability index 

The third component 𝐹3 of the objective function is the voltage stability index (VSI) which used as an 

indicator of system stability and load ability. As indicated in [32], the voltage stability index (VSI) of a branch 

can be defined depending on the magnitude of voltage of the sending bus, active and reactive power for loads at 

the receiving bus and the resistance of lines and reactance. VSI can be estimated as given in (4). 
 

𝑉𝑆𝐼𝑖 = [|𝑉𝑗|
4

− 4(𝑃𝑖𝑥𝑖𝑗 − 𝑄𝑖𝑟𝑖𝑗)2 − 4(𝑃𝑖𝑟𝑖𝑗 − 𝑄𝑖𝑥𝑖𝑗) |𝑉𝑗|
2

] (4) 

 

When VSI for all the buses are more than zero, the system stability is achieved. VSI of minimum value is 

addressed as the overall stable condition of the system [9]. Improved VSI (𝐹3) can be realized as shown in (5). 
 

𝐹3 = 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒(𝑉𝑆𝐼) = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (
1

(𝑉𝑆𝐼)
) (5) 

 
 

3. OBJECTIVE FUNCTION FORMULATION 

An optimization problem involving more than one objective is called a multi-objective optimization 

problem [30]. All measured objective functions are integrated to form a multi-objective function (MOF) as 

presented in (6) in order to minimize the losses, improve the voltage stability index and reduce the voltage 

deviation. 

 

𝑀𝑂𝐹𝑖 = min  ( 𝑤1𝐹1 + 𝑤2𝐹2 + 𝑤3𝑓𝐹3) (6) 
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Where 𝑤1 to 𝑤3 are weighting constants appropriated to each objective and their summation must equal unity 

[33]. The constraints that achieve optimization of the multiple goals are mentioned in the next section [31]. 

The multi-objective function presented in (6) can be achieved along with inequality and equality 

constraints. The operational bus-voltage boundaries 𝑉𝑖 and power flow 𝑆𝑖 and the charging station (CSs/EV) 

design constrains such as the number of charging ports and (CSs/EV) number are considered as (7). 
 

NCP𝑚𝑖𝑛 ≤ NCP ≤ NCP𝑚𝑎𝑥   
 

NCS𝑚𝑖𝑛 ≤ NCS ≤ NCS𝑚𝑎𝑥 (7) 
 

Where (NCP) and (NCS) are the number of EV charging ports and number of EV charging stations 

respectively. NPC and NCP boundaries should be between the minimum and maximum permissible limits. 

The algorithm of load flow is provided to set the values of the optimization function defined in the MOF 

while the MOGA algorithm considers the constraints while realizing the MOF. 
 

 

4. PROPOSED ALGORITHM 

In this paper, it is proposed to utilize an improved genetic algorithm (GA) in order to customize 

CS/EV in a distribution system considering system improvements. The objective function is defined as a 

multi-term objective function as formulated in section 2. Generally, GA is a generalized optimization 

technique based on the theory of biological growth and natural genetics. Unlike conventional methods that 

involve iterative changes to a single solution, GA works with a set of solutions and the candidate solutions to 

the problem are preserved by a set of individuals represented by GA [34]. In the following subsections, 

details of multiple objective genetic algorithm (MOGA) based optimal utilization of CS/EV in a distribution 

system is presented. 
 

4.1.  Multiple objective genetic algorithm (MOGA) 

MOGA is an extension of the basic GA algorithm in order to solve multi-object optimization 

problems in various fields [35]. It uses different specified random weights of multiple objective functions 

which can be combined into a scalar fitness function. Once the determination of the fitness is obtained, 

selection can be done and utilization of conventional GA can be followed. For the solution 𝑆𝒊 of a multi-

object problem, a rank amount to one is assigned and added to the number of solutions 𝑛𝑆𝒊
 which dominates 

solution 𝑆𝒊. Each rank-solution is considered simultaneously, and their initial fit is averaged. This average fit 

is now called the custom fit for each mattress solution in (8). 
 

𝐹𝑖 = 𝑁 − ∑ 𝜇(𝑟𝑆𝑖) − 0.5(𝜇(𝑟𝑆𝑖) − 1)
𝑟𝑆𝑖−1
𝑟𝑆𝑖=1  (8) 

 

Where 𝜇(𝑟𝑆𝑖) is the number of solutions in a rank 𝑟𝑆𝑖 and 𝑆𝑖 =1, 2, …, N. 

This confirms the non-dominant solutions in the population. To keep diversity among the non-

dominant solutions, appropriate solutions are given for each rank by calculating the niche count by collecting 

the values of sharing function as shown in (9). 
 

𝑛𝑐𝑆𝑖 = ∑ 𝑠ℎ(𝑑𝑆𝑖𝑆𝑗)
𝜇(𝑟𝑆𝑖)

𝑆𝑗=1  (9) 

 

Where, 𝑠ℎ(𝑑𝑆𝑖𝑆𝑗) is the sharing function value of two solution 𝑆𝒊 and 𝑆𝒋. The sharing function is set based on 

the objective function as a measure of distance as (10). 
 

𝑠ℎ(𝑑𝑆𝑖𝑆𝑗) = {
1 − (

𝑑𝑆𝑖𝑆𝑗

𝜎𝑠ℎ𝑎𝑟𝑒
)

𝛼

𝑑𝑆𝑖𝑆𝑗 ≤ 𝜎𝑠ℎ𝑎𝑟𝑒

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (10) 

 

The 𝜎𝑠ℎ𝑎𝑟𝑒  is the exchange element which indicates the extreme dimension between any pair solutions before 

they meet at the similar niche. 𝛼 is a scaling agent less than or equal to one, and 𝑑𝑆𝑖𝑆𝑗  is the settled distance 

between pair of solution 𝑆𝒊 and 𝑆𝒋.  Hence, the membership function for undefined solutions is evaluated as (11), 
 

𝜇𝑘 =
∑ 𝜇𝑖

𝑘𝑁𝑜𝑏j
𝑖=1

∑ ∑ 𝜇𝑖
𝑘𝑁𝑜𝑏𝑗

𝑖=1
𝑀
𝑘=1

 (11) 

 

Where M is the number of undefined solutions and 𝑁𝑜𝑏𝑗is the number of targets. Finally, the finest compromise 

is the one that increases the functionality of the membership. 
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4.2.  Applying MOGA to solve optimization problems in RDS with CSS/EVS 

In this part, CSs/EVs sites are identified to reduce system losses and improve VSI using MOGA. MOGA 

proceeds in several directed steps as shown in Figure 1 that describes the flow chart of the proposed algorithm. 

i) Step 1: Firstly, the multi-objective function that is subject to all constraints of the system variables is 

identified. 

ii) Step 2: Initialize the chromosome population size that equals to the number of individuals and layout 

variables including the number of CS/EV, sizes in kW, and the first position in the network for each 

CS/EV. 

iii) Step 3: Assess fitness by running load flow, performing an initial evaluation of individuals/the 

population, and determining the multi objective function values (MOF) in (6). 

iv) Step 4: Define iteration g=1 and select the better population/individual that provided the best MOF and 

handle these individuals as decent. Also, identify the average of the entire population for ranking, and 

sharing. 

v) Step 5: Update existing solutions by substituting the mutation with one or some specific coordinates. 

And if the solutions lead to acceptable results than the existing ones, proceed with all confirmed 

solutions. 

vi) Step 6: Modify the acquired solutions from the previous step, check the fit, and select the confirmed 

solutions after crossover if they lead to acceptable solutions than the existing ones. 

vii) Step 7: Keep the best present individuals and repeat the steps (4) through (6) until the maximum number 

of iterations is reached and the convergence point is attained. 

viii) Step 8: Finally, print the best solution/MOF as a perfect result, plot the preserved parameters that were 

recorded for all iterations as affinity properties then stop. Figure 1 shows a flow chart of the proposed 

algorithm. 
 

 

 

Start 

Define objective function and 

constraints 

set iteration g = 1 for 

Optimization step rundom

 determine (MOF) function 

values  using (6) considering, 

suitable CSs location  

Run power flow, evaluating 

fitness

G= g+ 1

relocate EVCSs concerning 

the suitability 

Select the best point

Crossover( Update the 

existing solutions reaching 

out new coordination)

Mutate (modulate obtained 

solutions)

update all acceptable results 

to get the best MOF

print the best solution/ MOF 

as the perfect result

End 

Modify the obtained result 

and carry over all accepted 

solutions

If iteration count 

reaches maximum

Identify the average of 

population for best fitness

Initialize initial population 

size

 
 

Figure 1. Flow chart of the proposed algorithm 
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5. SIMULATION RESULTS 

Depending on the methodology proposed, the algorithm software tool was built in the MATLAB 

environment to run the load flow and identify the best location of CSs/EVs that reduces the active power loss 

and improves the stability. The simulation results are described as an algorithm analysis of the technical 

benefits of the IEEE 33-bus system and the tested RDS 69-bus systems, and the system's data are taken from 

ref [36], [37]. The MOGA parameters contain three unknown variants number in the space of search (for 3 

locations of CS/EV), maximum number of iterations is 100, and the population number is 30. Initial 

crossover and mutation are 0.95, and 0.01 respectively. 

To demonstrate the effectiveness of the proposed algorithm different models of EV have been added in 

the CS design considering the charging ports (CPs) for AC/DC type 2 of charging as shown in Table 1 (Chevrolet 

VOLT, BMW I3, Tesla Model X, Chang an Yidong). The intended CP type is suitable for both hybrid electric 

vehicles (PHEVs) and battery electric vehicles (BEVs) under SAE J1772 standard, with a maximum rated power 

of 7 kW [38]. Table 1 details CPs features such as the EVs types and the rated power for each type that can be 

charged simultaneously in a specific CS, as well as the maximum and minimum number of CPs for the various 

EVs types and the appropriate maximum and minimum rated power for the CS [1], [29], [39]. 
 

 

Table 1. Features of simulator charging stations of electric vehicles (CSs/EVs) 
Category of EV Rated power of EV (kW) EV number CS/EV rating power (kW) 

Min Max Min Max 

Chevrolet Volt 2.20 25 35 55.0 77.0 

BMW i3 44.0 10 20 440.0 880.0 
Tesla model X 13.0 15 25 195.0 325.0 

Saej1772 standard 7.0 30 40 210.0 280.0 

Chang an Yidong 3.80 20 30 75.0 112.50 

Total power rating of CSs/EVs (kW) 100 EV 150 EV 975 kW 1674.50 kW 

 

 

For the designed CSs the minimum power rating of one CS is 975 KW as shown in Table 1. 

Comparably the demand power rating increased to 1675.5 KW for the maximum power of the CS. The 

following scenarios are approaches to address the results and show the effectiveness and quality of the 

MOGA algorithm. 

i) Scenario 1: Base case without CS/EV 

ii) Scenario 2: Adding three minimum CS/EV (300EV) without optimal location 

iii) Scenario 3: Adding three minimum CS/EV (300EV) with optimal location 

iv) Scenario 4: Adding two min CSs and one max CS (350EV) without optimal location 

v) Scenario 5: Adding two min CSs and one max CS (350EV) with optimal location 

vi) Scenario 6: Adding one min CSs and two max CS (400 EV) without optimal location 

vii) Scenario 7: Adding one min CSs and two max CS (400 EV) with optimal location 

viii) Scenario 8: Adding three maximum CS (450 EV) without optimal location 

ix) Scenario 9: Adding three maximum CS (450 EV) with optimal location 

The above scenarios are applied to two different systems namely, IEEE 33-Bus System and IEEE 69-Bus 

system. 
 

5.1.  Simulation results for IEEE 33-bus system 

The 33-bus system [36] is presented in Figure 2 containing a primary feeder (slack bus), three 

laterals and 32 branches that have 3715 kW real power and reactive power loads equal to 2300 kV with  

12.66 kV as operating voltage. The conventional power flow studies are not suitable for determining line 

flow and bus voltage in RDS. The back/forward sweep (BFS) algorithm is one of the effective methods for 

RDS for energy flow studies. By applying the previous scenarios on this system, the results are listed in the 

following subsection. 
 

5.1.1. Scenario 1: Base case without CS/EV 

When carrying out the load flow for the base case, the real power loss is 210.99 kW (5.675% of the 

system's active power) while the reactive loss is 143.03 kVAR. The minimum voltage is observed at bus 18 

(0.9042 pu) with a minimum voltage stability index (VSI) of 0.67036 p.u. Moreover, in this simulation, the 

average (AVDI) voltage deflection index is 0.00393 p.u and the system voltage deviation is 9.621%. 
 

5.1.2.  Scenario 2: Adding three minimum CS/EV (300 EV) without optimal location 

In this scenario, three CSs are connected as concentrated load in a sub-feeder randomly to the 

system. The estimated load demand is increased by 2925 kW, as given in Table 1, increasing the active load 

to 1.78731 times the original condition. The losses were increased from 210.99 kW to 570.1210 kW raising 
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the original load flow in the first scenario to 63.379%). The minimum voltage still occurs at bus 18 has been 

reduced from 0.9042 p.u to 0.8950 p.u. Therefore, the average (AVDI) voltage deflection index is raised to 

0.00962 from 0.00393, also the decreasing of stability index (VSI) was observed from 0.67036 to 0.6333. 
 

 
S

la
ck

 b
u

s

19 20 21 22

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

23 24 25 26 27 28 29 30 31 32 33
 

 

Figure 2. 33-Bus test distribution system 
 

 

5.1.3. Scenario 3: Adding three minimum CS/EV (300 EV) with optimal location 

By applying the optimization algorithm, the CSs/EVs best locations are at buses (2, 19 and 25). The 

real power losses have been reduced from 570.1210 kW to 295.0750 kW, there is a clear increase in voltage 

at bus 18 from 0.8950 p.u to 0.9019 p.u as shown in Figure 3, the voltage stability index is upgraded from 

0.6333 to 0.654631 as shown in Figure 4. By monitoring the results, the average voltage deviation index is 

decreased to 0.003064 from 0.00962 and the losses have been reduced by 48.24% when compared to the 

losses in scenario 2. Comparing the results for scenarios 1, 2 and 3 is illustrated in Table 2. 
 

 

  
  

Figure 3. Per unit voltage of 33-bus system with 

scenarios 1, 2 and 3 

Figure 4. Voltage stability index of 33-bus system 

with scenarios 1, 2 and 3 
 
 

Table 2. Performance indices comparison for 33- bus system (scenarios 1, 2 and 3) 
System Scenario P-loss (kW) VSImin (P.U) Vmin (P.U) AVDI (P.U) 

33 buses Scenario 1 211 0.67036 0.9042 0.00393 

Scenario 2 570.1210 0.6333 0.8950 0.00962 

Scenario 3 295.0750 0.654631 0.9019 0.003064 

 
 

5.1.4. Scenario 4: Adding two min CSS and one max CS (350 EV) without optimal location 

For a total EV load of a three CS/EV consisting of two min and one max number of CPs/CS (about 

350 EV). By estimating the total power demand of EV from Table 1 which equal to 3624.5 kW integrated to 

the system without optimization. Thus, total load in the system is increased to 7339.5 kW from 3715 kW 
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(which was 1.97564 times the original load). Since the EV load is integrated randomly without optimal site 

planning, losses were increased from 210.99 kW to 570.526 kW raising the original load flow in the first 

scenario to 63.192%). As shown in Figure 5, the voltage on bus 18 has been reduced from 0.9042 p.u to 

0.8917 p.u. Therefore, the AVDI is raised to 0.00983 from 0.00393, also VSI is decreased from 0.67036 to 

0.6258 as shown in Figure 6. 

 

5.1.5. Scenario 5: Adding two min css and one max CS (350 EV) with optimal location 

In this case, the CSs/EV best locations are at buses (2,19 and 25) by applying the optimization 

algorithm for the same load of scenario 4. The real power losses have been reduced from 570.526 kW to 302.09 

kW, there is a clear increase in voltage at bus 18 from 0.8917 p.u to 0.9015 p.u, the VSI is upgraded from 

0.6258 to 0.6533, and AVDI is decreased to 0.00384 from 0.00983. By monitoring the results as illustrated in 

Table 3, the losses have been reduced by 47.051% when compared to the losses in scenario 4. Figures 5, and 6 

indicate the bus voltage profile and the stability index in the case of connecting 350 EVs to the 33-bus system. 
 

 

  
  

Figure 5. Per unit voltage of 33-bus system with 

scenarios 1, 4 and 5 

Figure 6. Voltage stability index of 33-bus system 

with scenarios 1, 4 and 5 
 

 

Table 3. 33 Performance indices comparison for 33- bus system (scenarios 1, 4 and 5) 
System Scenario P-loss (kW) VSImin (P.U) Vmin (P.U) AVDI (P.U) 

33 buses Scenario 1 210.99 0.67036 0.9042 0.00393 

Scenario 4 570.526 0.6258 0.8917 0.00983 

Scenario 5 302.09 0.6533 0.9015 0.00384 

 

 

5.1.6. Scenario 6: Adding one min CSS and two max CS (400 EV) without optimal location 

By adding 400 EVs with a load demand of 4324 kW to the 33-bus system. Thus, the total load in the 

system is increased to 8039 kW from 3715 kW (which is 3.16393 times the original load). Since the EV load 

is integrated randomly, losses are increased from 210.99 kW in the base case to 690.66 kW raising the 

original load flow in the first scenario to 69.451%) as listed in Table 4. The voltage on bus 18 has been 

reduced from 0.9042 p.u to 0.8886 p.u. Therefore, the average (AVDI) is raised to 0.0103 from 0.00393, and 

a decrease from 0.67036 to 0.6172 in the stability index (VSI) is observed. 

 

5.1.7. Scenario 7: Adding one min CSS and two max CS (400 EV) with optimal location 

Hence, the goal of optimizing CSs/EV placement is to reduce the overloading effect on the system and 

improve the performance of the system for the condition of EV penetration. By applying the optimization 

algorithm for this scenario, the CSs/EV best locations are at buses (2, 19 and 25). The real power losses have 

been reduced from 690.66 kW to 311.39 kW. There is a clear increase in voltage at bus 18 from 0.8886 p.u to 

0.9011 p.u, and the voltage stability index is upgraded from 0.6172 to 0.6520 as shown in Figures 7 and 8 

respectively, and the average voltage deviation index is decreased to 0.004041 from 0.0103. By observing the 

results, the losses have been reduced by 54.914% when compared to the losses in scenario 6 as shown in Table 4. 
 

5.1.8. Scenario 8: Adding three max CS (450 EV) without optimal location 

In this scenario, the total load has been incremented to 5023.50 kW (that is 2.35221 times more). 

Like scenario 2, losses have been increased to 1023.84 kW, that was 79.39% over the original case. The 

deviation index of voltage is increased to 0.01608, the stability index is reduced to 0.6172 and the lowest 

voltage on bus 18 failed to 0.8857 p.u as shown in Table 5. 
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Table 4. Performance indices comparison for 33- bus system (scenarios 1, 6 and 7) 
System Scenario P-loss (kW) VSImin (P.U) Vmin (P.U) AVDI (P.U) 

33 buses Scenario 1 210.99 0.67036 0.9042 0.00393 
 Scenario 6 690.66 0.6172 0.8886 0.0103 

 Scenario 7 311.39 0.6520 0.9011 0.00404 

 

 

  
  

Figure 7. Voltage magnitude of 33- bus system with 

scenarios 1, 6 and 7 

Figure 8. Voltage stability Index of 33-bus system 

with Scenarios 1, 6 and 7 
 

 

Table 5. Performance indices comparison for 33- bus system (scenarios 8 and 9) 
System Scenario P-loss (kW) VSImin (P.U) Vmin (P.U) AVDI (P.U) 

33 buses Scenario 8 1023.84 0.6172 0.8857 0.01608 

 Scenario 9 390.168 0.6546 0.8989 0.063777 

 

 

5.1.9. Scenario 9: Adding three max CS (450 EV) with optimal location 

Consequently, the results of applying the optimal location algorithm of the system with maximum 

EV penetration are at the positions (2, 19 and 25) as shown in Table 5. The real losses were reduced from 

1023.8 kW to 390.168 kW, the low voltage on bus 18 increased from 0.8857 to 0.8989 p.u, the system 

stability index has improved from 0.6172 to 0.6546, and the mean deviation index reached 0.063777 from 

0.01608. From the results, losses have been reduced by 61.89% when compared to the condition without the 

optimal sites for CSs/EV. Figures 9 and 10 indicate the profiles of the voltage and stability index for 

scenarios 8 and 9 respectively. 
 
 

  
  

Figure 9. Voltage magnitude of 33- bus system with 

scenarios 1, 8 and 9 

Figure 10. Voltage stability index of 33-bus system 

with scenarios 1, 8 and 9 
 

 

Although the CSs/EV rated power are changed in the process of optimization in the chosen 

scenarios, the best locations of CSs/EV are the same for all optimization scenarios. Figures 11 and 12 

indicate the bus voltage magnitude and stability index for all scenarios. The obtained results proved the 
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effectiveness of the proposed algorithm's in reducing the active power losses while minimizing the voltage 

deviation and improving the voltage stability index. 

Since the CSs/EV rated power are the same in the process of optimization, the best locations of 

CSs/EVs are the same for all the mentioned algorithms in Table 6. Table 6 indicates a comparison of various 

algorithms for active power losses of lower, upper, and average values in the two optimization scenarios with 

minimum and maximum EV penetration. By observing the average value of objective function, the proposed 

algorithm (MOGA) outperformed TLBO, FPA, PSO, CSA, and ALO in all conditions with the best mean. 
 

 

  
  

Figure 11. Voltage magnitude for all scenarios in  

33-bus system 

Figure 12. Voltage stability index for all scenarios in 

33-bus system 
 

 

Table 6. Characteristics of confluence of energy losses for various algorithms in 33 bus systems 
Scheme OF level  OF value for Different algorithms 

MOGA TLBO FPA PSO CSA ALO 

Scheme 3 Minimum 

penetration 
of EV load 

Lower 279.1910 279.1910 279.1900 279.1910 279.1910 279.1910 

Upper 310.5340 311.8340 354.2120 375.1570 311.8340 330.3820 
mean 279.0230 279.7760 298.3300 298.7520 298.6550 279.8550 

Scheme 9 Maximum 

penetration 
of EV load 

lower 392.1990 392.1990 392.1980 392.9900 392.1990 392.1990 

upper 587.2700 588.3400 524.6200 583.2091 760.5141 720.2550 
mean 397.1050 397.8240 402.0910 403.8210 412.0380 403.2560 

 

 

5.2. Simulation results for IEEE 69-bus system depend on growth of EV load 

The 69-bus system operates at 12.66 kV [37], with total load of 3801.40 kW as a real power and 

reactive power load is 2693.60 kVAR. The active and reactive power losses resulting from load flow are 

224.881 kW and 102.1090 kVAR, respectively. Also, the minimum observed voltage at bus 65 is 0.9101 p.u 

and, the VSI at bus 65 is 0.6878 p.u.  

Similar to the simulation of the 33-bus system, the three CSs/EV given in Table 1 are integrated into 

the tested system with and without applying the proposed algorithm. As the CSs/EV rated power is changed 

in the process of optimization in various chosen schemes, the CSs/EV are distributed in buses (2, 28 and 47) 

as the best location for all optimization schemes. Table 7 illustrated the results of all schemes of 69-bus 

system. Again, the results proved the effectiveness of the proposed algorithm for reducing the active power 

losses while minimizing the voltage deviation and improving the voltage stability index. But unlike 33-bus 

system, the optimization process returns the system to its original state, and hence the results are identical to 

the base case without connecting any car as shown in Figures 13 and 14. These figures indicate the stability 

index and the bus voltage magnitude. 
 

 

Table 7. 69-bus system performance with penetration of EV load with and without optimal placing 
System Scheme load condition P-loss (kW) VSImin (P.U) Vmin (P.U) AVDI (P.U) 

69 buses Scheme 1 without EV load 224.881 0.6878 0.9101 0.00139 

Scheme 2 300 EV (without optimal place) 613.183 0.5695 0.8830 0.0034 
Scheme 3 300 EV (with optimal place) 225.0328 0.6878 0.9101 0.00139 

Scheme 4 350 EV (without optimal place) 625.28 0.5457 0.8241 0.00255 

Scheme 5 350 EV (with optimal place) 225.090 0.6878 0.9101 0.00139 
Scheme 6 400 EV (without optimal place) 804.240 0.5220 0.8486 0.00617 

Scheme 7 400 EV (with optimal place) 225.65 0.6878 0.9101 0.00139 

Scheme 8 max EV (without optimal place) 1108.41 0.3414 0.7637 0.0075 

Scheme 9 max EV (with optimal place) 225.4762 0.6878 0.9101 0.00139 
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Figure 13. Stability index in 69-bus system for all 

schemes 

Figure 14. Voltage profile in 69-bus system for all 

schemes 

 

 

6. CONCLUSION 

A multi objective genetic algorithm was presented to formulate optimization problems for 

minimizing power-loss and improving the voltage stability index in the radial distribution systems. In 

addition, the voltage deviation index has been considered in order to enhance system stability and accelerate 

the determination process of detecting the optimal locations of EV charging stations (CS/EV). Different types 

of CSs as well as EVs were considered and integrated during the design process of the proposed algorithm. In 

addition, its application in standard IEEE systems is investigated. The optimal location of the CS/EV is 

observed to have a significant effect on the 33-bus system with losses increase of 39.81% for minimum 

penetration of EV and 84.83% for maximum EV penetration in comparison with the original operating 

condition of the system. But with the adoption of the optimal location of CSs/EV in 69-bus system, the 

technical interest required was nearly negligible when compared with the original load condition (without EV 

load). In addition, optimizing CS/EV allocation is depending on the performance of the distribution system. 

On the other hand, the algorithm demonstrated the ability to solve complex multi-objective nonlinear 

problem by consistently giving an objective value. It is worth noting that optimization with an intelligent EV 

charging feature significantly improves the performance of the system, and this will be the future field of 

research. 
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