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 State of charge estimation (SOC) is the most significant functionality of a 

vehicle's battery management system (BMS). The methods for this 

estimation are conventionally oriented towards model-based methods. As 

part of this paper, we introduce a first order equivalent circuit estimation 

approach known as the Thevenin model, along with an extended Kalman 

filter (EKF) approach to accurately estimate the SOC. We then deploy and 

simulate it in MATLAB by using a reference load profile from the new 

European driving cycle (NEDC). Afterwards, the simulation results are 

reviewed based on various initial noise values, and the results are compared 

to those of other EKF algorithms. According to the results, SOC estimation 

accuracy has significantly increased as a result of the improvements made. 

Specifically, the root-mean-square error decreased from 0.0068 to 0.0020. 
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1. INTRODUCTION 

With the growth of public demand and government support, technological development strongly 

encouraged the use of electric vehicles. Lithium-ion batteries (LIBs) are drawing more research interest due 

to their environmental friendliness, higher energy density, higher power output, and longer lifespan [1], [2]. 

Vehicles that are powered by new energy sources are commonly equipped with LIBs. Therefore, obtaining an 

accurate battery state of charge (SOC) estimate becomes a challenging task for safe battery operation [3], [4]. 

The estimation of the SOC inside the battery management system (BMS) has the potential to enhance both 

the reliability and efficiency of the system. However, estimating SOC is significantly influenced by 

complicated factors related to self-discharge, discharge current, and battery aging, which leads to an 

imprecise estimation of SOC [5].  

Currently, several approaches have emerged to estimate battery SOC. In general, the ampere-hour 

know as AH method is commonly employed because of its ease of implementation [6]. However, in practical 

application, this method is susceptible to errors caused by noise and random interference which tend to 

accumulate. As a result, various model-based algorithms have been proposed to correct those random errors. 

The model-based methods provide a consistent performing method, like an equivalent circuit model, 

such as employing an equivalent circuit model in combination with state estimation computations. Among 

these methods, the Kalman filter is the commonly employed model. Nevertheless, the linear Kalman filter 

https://creativecommons.org/licenses/by-sa/4.0/
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(LKF) [7], [8] an only be applied to simple linear systems. To address nonlinear system applications, recent 

research has led to the development of extensions to the Kalman filter. In particular, the extended Kalman 

filter (EKF) [9], unscented Kalman filter (UKF) [10], and cubature Kalman filter (CKF) [11]. Utilizing the 

EKF can reduce the time to convergence in SOC estimation, yet it amplifies the computing burden on the 

battery management system (BMS) [12]. Fang et al. [13] suggested an iterative EKF method to estimate the 

SOC, which has shown improvements. However, the algorithm's robustness is limited when identifying and 

updating parameters such as battery capacity or internal resistance. Xiong et al. [14] employed an EKF 

approach to assess the SOC in a vanadium redox flow battery. The method uses measurement of applied 

currents and terminal voltages to predict the SOC, achieving a maximum error of 5.5% in SOC estimation. 

Sun et al. [15] and Tian et al. [16] proposed a novel approach to improve the accuracy of SOC estimation by 

integrating the first-order resistor-capacitor (RC) equivalent model with the EKF. They reported that this 

approach reduced the root mean square error (RMSE) of SOC estimation by 43.34 while only slightly 

increasing computational time by 4.59%. 

The assessment of the EKF performance depends roughly on the key parameters Q and R, indeed 

Wang et al. [17] and Zhao et al. [18] show that picking these values provide a big challenge as the 

determination of the noise remains random and difficult. However, these values impact significantly on the 

estimation error and the convergence rate of the EKF process. The major contribution of this paper is to 

evaluate how the Q and R matrices influence the EKF estimation. 

In this work, we proposed a method for estimating SOC using an extended Kalman filter in 

combination with the Thevenin battery model. Additionally, we present and discuss the implementation of 

the EKF using the MATLAB software. Moreover, we utilize the new European driving cycle (NEDC) [19] as 

a load profile for online SOC estimation. The organization of this paper is as follows: i) Section 2 provides 

details of the mathematical modeling of the Lithium-ion battery and its parameter identification method used; 

ii) Followed by a demonstration of the state-of-charge estimation method employed; iii) Section 3 presents 

the proposed method deployed on a MATLAB Simulink program, along with a discussion of the simulation 

data; iv) In section 4, we discuss the results obtained from the previous section; and v) Section 5 presents the 

conclusion. 

 

 

2. MATHEMATICAL MODEL 

2.1.  Lithium-ion battery model 

The most common battery models are electrochemical models (EM) and equivalent circuit models 

(ECM). An electrochemical model can be used to characterize external characteristics as well as to simulate 

changes in distribution and internal characteristics. Any physical meaning that can be attributed to a process 

can be represented by these changes. Nonetheless, since the electrochemical parameters and partial 

differential equations require considerable amounts of computation, electrochemical models are not 

commonly used in practice to assess the reliability of estimates of SOC. Equivalent circuit models, on the 

other hand, are more widely used for this purpose. 

An equivalent circuit model represents a battery's external properties using hardware circuit 

elements like capacitors, resistors, and current loads. Due to their ease of use, these models are widely used 

to simulate battery performance. One of the most popular equivalent circuit models used is Thevenin model. 

Thevenin model shown in Figure 1 consists of voltage source a parallel RC circuit and a rint model. The 

main concept behind using Thevenin model is to characterize the battery's behavior by representing it with an 

equivalent resistance in series and a voltage source. The Thevenin model allows for better characterization of 

the dynamic properties of the battery compared to simpler models like rint model. 

 

 

 
 

Figure 1. Thevenin battery model 
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In Figure, the terminal voltage and ohmic voltage are represented by 𝑈𝐿 and 𝑈𝑅 respectively. Here, 

𝑅0 stands for the internal resistance. The resistor-capacitor circuit, commonly referred to as the RC circuit, 

comprises both polarization resistance 𝑅𝑝 and the polarization capacitance 𝐶𝑝. This circuit is utilized to 

illustrate the polarization effect exhibited by Li-ion batteries, with 𝑈𝑝 indicating the polarization voltage. The 

Thevenin battery model equations are defined as (1), employing Kirchhoff's law for their derivation. 

 

{
𝑈𝐿 = 𝑈𝑜𝑐 − 𝐼𝑅0 − 𝑈𝑝 

�̇�𝑝 = −
1

𝐶𝑝𝑅𝑝
𝑈𝑝 +

1

𝐶𝑝
𝐼
 (1) 

 

2.2.  Parameter identification 

In this subsection, the hybrid pulse power characterization (HPPC) test and the recursive least square 

with forgetting factor (FFRLS) algorithms are conceived for the estimation of online battery parameters. The 

HPPC test is commonly used to determine the OCV-SOC relation. However, the test also provides a way to 

identify the parameter values from the ECM model which is derived from the offline parameter identification 

method [20], [21]. For performing the HPPC test, the outlined steps in Table 1, must be followed. 

 

 

Table 1. HPPC test steps 
Step The test steps 

Step 1 Keep the battery cell in a temperature control at 25 °C for four hours 

Step 2 Load the cell with a constant current 1 C up to 4.2 V, then switch to a constant voltage 4.2 V until the current ≤ 0.05 C 

Step 3 Give the cell a one hour rest 

Step 4 Unload the cell with a current 1 C until 90% SOC. Wait until 1 hour, then discharge the cell at a current of 3 C for 10 s, 
put the cell to rest for 30s, then load it with a current 2.25 C for 10 s 

Step 5 Now perform the same steps 4) for various SOC (80%, 70%..., 10%) 

 

 

As a result, we adopt a sextic polynomial as a fit to the relation. Using 𝑘0~𝑘6 as a constants, as (2). 

 

𝑉𝑜𝑐𝑣 = 𝑘0 + 𝑘1𝑆𝑜𝑐 + 𝑘2𝑆𝑜𝑐
2 + 𝑘3𝑆𝑜𝑐

3 + 𝑘4𝑆𝑜𝑐
4 + 𝑘5𝑆𝑜𝑐

5 + 𝑘6𝑆𝑜𝑐
6 (2) 

 

On the other hand, the FFRLS is employed to determine the battery parameters. Generally, recursive least 

square (RLS) algorithms are derived from the least square (LS) algorithm, and the basic principle is given by 

(3). Based on the Thevenin model described in Figure 1, the transfer function of the battery impedance is 

given by the following electrical equation with respect to the Laplace domain as (3). 

 

𝐺(𝑠) =
𝑈(𝑠)−𝑈𝑜𝑐(𝑠)

𝐼(𝑠)
= −(𝑅0 +

𝑅𝑝

1+𝑅𝑝𝐶𝑝𝑠
) (3) 

 

A bilinear transformation is used to map as (3) to the Z plane. The transformation is represented 

as (4). 

 

𝐺(𝑠) =
𝑎2+𝑎3𝑧

−1

1−𝑎1𝑧
−1  (4) 

 

The model parameters can be obtained as (5). 

 

{
 
 

 
 𝑎1 =

∆𝑡−2𝑅𝑝𝐶𝑝

∆𝑡+2𝑅𝑝𝐶𝑝

𝑎2 =
𝑅0∆𝑡+𝑅𝑝∆𝑡+2𝑅0𝑅𝑝∆𝑡

∆𝑡+2𝑅𝑝𝐶𝑝

𝑎3 =
𝑅0∆𝑡+𝑅𝑝∆𝑡−2𝑅0𝑅𝑝∆𝑡

∆𝑡+2𝑅𝑝𝐶𝑝

 (5) 

 

{
 
 

 
 
𝑅0 =

𝑎2−𝑎3

1−𝑎1

𝑅𝑝 =
𝑎2+𝑎3

1+𝑎1
−

𝑎2−𝑎3

1−𝑎1

𝐶𝑝 =
(1−𝑎1)∆𝑡

2(1−𝑎1)𝑅𝑝

 (6) 
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2.3.  State of charge estimation methods by EKF 

As a standard method of estimating the battery's system of cells, we commonly use the EKF method.  

Due to its model of a nonlinear system, its approximation can accurately estimate system states across a wide 

range of operations [22]. Using the EKF, you get first-order polynomial accuracy where both quadratic and 

higher order terms are discarded. In addition to improving the algorithm's ability to handle nonlinear systems, 

EKF also adds flexibility to the algorithm, further improvements are needed to handle complex state 

monitoring problems in practical applications such as Li-ion batteries. 

In the scenario of estimating SOC with an extended Kalman filter, the linear equation for the state-

space model is requested at every time point near the latest estimation of SOC. To implement the EKF 

equations, the battery model must first be obtained. The input signal in this case is the charge/discharge 

current while the output is the voltage of the battery. The discrete state-space battery model equation for a 

nonlinear system can be as (7). 

 
𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) + 𝑑𝑘
𝑦𝑘 = 𝑔(𝑥𝑘 , 𝑢𝑘) + 𝑠𝑘

 (7) 

 

Let 𝑓(𝑥𝑘 , 𝑢𝑘) represent the nonlinear state transition function, and 𝑔(𝑥𝑘 , 𝑢𝑘) denote the nonlinear 

measurement function. Taking into account both the state equation and measurement noise, we can express 

(7) as (8). 

 

𝑥𝑘+1 = �̂�𝑘𝑥𝑘 + 𝑓(�̂�𝑘 , 𝑢𝑘) − �̂�𝑘�̂�𝑘 + 𝑑𝑘
𝑦𝑘 = �̂�𝑘𝑥𝑘 + 𝑔(�̂�𝑘 , 𝑢𝑘) − �̂�𝑘�̂�𝑘 + 𝑠𝑘

 (8) 

 

The state along with the output, is predicted via nonlinear battery models. At time step 𝑘, the 

nonlinear battery model is linearized through the predicted state �̂�𝑘
− to obtain the matrices �̂�𝑘, �̂�𝑘, and �̂�𝑘. 

These matrices are used when calculating and updating the covariance matrix of the state estimation errors 

and Kalman gain. This process leads to the main purpose of predicting �̂�𝑘
− and 𝑃𝑘

−, 

 

�̂�𝑘
− = 𝐴�̂�𝑘−1

+ + 𝐵𝑢𝑘−1 + 𝑤𝑘 (9) 

 

𝑃𝑘
− = 𝐴𝑃𝑘−1𝐴

𝑇 + 𝑄 (10) 

 

and the update process is as (11), (12), and (13). 

 

𝐾𝑘 = 𝑃𝑘𝐶(𝐶𝑃𝑘
−𝐶𝑇 + 𝑅) (11) 

 

�̂�𝑘
+ = �̂�𝑘

− + 𝐾𝑘(𝑦𝑘 − 𝐶�̂�𝑘
− − 𝐷) (12) 

 

𝑃𝑘
+ = 𝑃𝑘

−(𝐼 − 𝐾𝑘𝐶) (13) 

 

Where 𝐾𝑘 represents the Kalman gain vector, R is the covariance matrix of the zero-mean Gaussian 

measurement noise 𝑣𝑘, Q is the covariance matrix of the zero-mean Gaussian process noise 𝑤𝑘, and 𝑃𝑘 is the 

covariance matrix of the state estimation error. 

 

 

3. METHOD 

The proposed model consists of three parts, as illustrated in Figure 2. The first part is the data input, 

where the input data is initialized. The FFRLS algorithm and the HPPC test are considered to determine the 

initial values for variables 𝑘0 to 𝑘6 and (𝑅0, 𝑅𝑝, 𝐶𝑝) in the system. These values play a crucial role in 

predicting the load state. Moving on to the second part, known as the Thevenin model, it involves two sub-

steps. In step A, the model estimates certain parameters. Then, in step B, the SOC-OCV calculation is 

performed, which estimates the terminal voltage defined by (1). The third part is the SOC estimation, where 

the EKF algorithm is utilized. This estimation process comprises two steps. First, the model calculates the 

predicted state and current state. Next, the process incorporates initial noises Q and R as inputs. Finally, the 

state filter determines the resulting estimated SOC value. Notably, the proposed MATLAB model's current 

profile is derived from the new European driving cycle (NEDC) [23]. These three interconnected parts work 

together to predict and estimate various parameters and the state of charge in the system under study. 
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Figure 2. Flowchart of the proposed method 
 

 

The NEDC current profile illustrated in Figure 3 has been used to construct the simulation of the 

battery using the proposed model. Based on the key parameters on both Tables 2 and 3, Figure 4 presents 

Thevenin model estimation of terminal voltage. Additionally, Figure 5 demonstrates the empirical model for 

estimating the state of charge. The HPPC test is conducted to gain the connection between OCV and SOC. 

The results obtained are fitted via a sixth-order polynomial with 𝑘0~6 shown at Table 2 [24]. The system 

parameter identification is employed to obtain the parameter of the model on the basis of the SOC-OCV 

curve. Here the result of the parameters based on the FFRLS function is given in Table 3 [25]. 

Although the EKF estimation is adopted to estimate the SOC, their initial values of the Kalman 

parameters are determined as (14). 
 

𝑃0 = [1𝑒
−1 0
0 1𝑒−1

], 𝑄 = [
Qa 0
0 Qb

] = [2𝑒
−8 0
0 5𝑒−3

], 𝑅 = 2𝑒−1 (14) 

 

In accordance with (14), those values can be considered inputs to the EKF algorithm, as can be seen in  

Figure 6, which shows a comparison between the AH empirical method and the EKF SOC estimation of the 

NEDC test profile load for an electric vehicle, as well as Figure 7, which shows the respective errors of the 

methods. 
 
 

 
 

Figure 3. New European driving cycle (NEDC) load profile 
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Table 2. OCV-SOC fitting results at 25 °C 
𝑘0 𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑘6 

3.353 2.478 −9.902 19.01 −14.44 2.351 1.319 
 

Table 3. Model parameters at 25 °C 
𝑅0(Ω) 𝑅𝑃(Ω) 𝐶𝑃(𝐹) 
0.0703 0.0481 750.6747 

 

 

 

 
 

Figure 4. Terminal voltage using Thevenin model 

 

 

 
 

Figure 5. SOC Estimation using ampere-hour method 

 

 

  
 

Figure 6. SOC Estimation results of the  

proposed model 

 

Figure 7. SOC Estimation error results of the 

proposed model 

 

 

4. RESULT AND DISCUSSION 

This section utilizes MATLAB/Simulink simulations to evaluate the proposed model under various 

parameters of the covariance matrix and compares it to the empirical ampere-hour (AH) model. According to 
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the proposed model, SOC results are influenced by three key parameters: i) Qa, ii) Qb, and iii) R. 

Additionally, two other parameters X and Y have a direct effect on these three key parameters. This 

relationship can be expressed as 𝑄𝑎 = 𝑋𝑒
−𝑌, and similarly for Qb and R, and vice versa. 

 

4.1.  Case 1: variation of Qa and Qb input noise parameters 

In this case, the SOC was estimated using a parametric study. The R parameter is kept constant with 

a value of 𝑅 = 2𝑒−1. To vary the input noise parameters, we use 𝑄𝑎 = 𝑋𝑒
−𝑌 and 𝑄𝑏 = 𝑋𝑒−𝑌, where X and 

Y are subparameters that can be adjusted independently. The simulation of the EKF estimation using these 

parameters was performed under the NEDC load profile. The research aimed to evaluate the performance of 

the conventional EKF algorithm in estimating SOC for a specific system. The obtained results were presented 

in Figures 8 and 9, using the input values specified in Table 4. The analysis included comparisons between 

the estimated SOC values, as well as the corresponding errors introduced by the EKF algorithm. 

To investigate the impact of the Y factor we conducted a comprehensive analysis by varying its 

values from 1 to 6. The results of this study were quite promising, as we observed in both Figures 8 and 9 a 

remarkable reduction in the maximum SOC estimation error. Initially recorded at 0.9778%, the error 

decreased significantly to 0.8971% as we made adjustments to the Y factor. This improvement in accuracy 

was further validated by a corresponding reduction in the RMSE, which dropped from 0.0075 to 0.0068. 

These findings demonstrate a substantial enhancement in the SOC estimation precision, underscoring the 

significance of the Y factor in refining the algorithm's performance. 

 

 

Table 4. RMSE of SOC estimation under various Qa and Qb sub-parameters 
 Sub parameter X Sub parameter Y 

X1 X2 Y1 Y2 

𝑄𝑎 = 𝑋𝑒
−𝑌 1𝑒−8 6𝑒−8 2𝑒−1 2𝑒−6 

𝑄𝑏 = 𝑋𝑒
−𝑌 1𝑒−3 6𝑒−3 5𝑒−1 5𝑒−6 

RMSE of EKF 0.0068 0.0068 0.0075 0.0068 

 

 

  
 

Figure 8. SOC estimation results under varied sub-

parameters X and Y of Qa & Qb 

 

Figure 9. SOC estimation error results under varied 

sub-parameters X and Y of Qa & Qb 

 

 

4.2.  Case 2: variation of Qa input noise parameters 

In this study, we estimation the SOC using a parametric study. The objective was to systematically 

investigate the system's behavior over a range of input parameters. For this example, we kept the parameters 

𝑄𝑏 = 5𝑒
−3 and 𝑅 = 2𝑒−1 constant, while we varied the parameters X and Y of 𝑄𝑎 according to 𝑄𝑎 = 𝑋𝑒−𝑌. 

Based on the input values specified in Table 5, we simulated the EKF estimation under the NEDS load 

profile. Figures 10 and 11 present the results obtained. 

In this study, Figure 10 shows the measured and estimated SOC based on the input values provided 

in Table 5. Additionally, Figure 11 show the corresponding SOC errors. By comparing these results with 

other algorithms, it is evident that this algorithm produces a large error when 𝑄𝑎 = 2𝑒
−1. However, by 

varying the Y factor between 1 and 4, we found that the maximum SOC estimation error was reduced from 

1.8826% to 0.8856%, and the RMSE was reduced from 0.0140 to 0.0068. 
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Table 5. RMSE of SOC estimation under different Qa sub-parameters 
 Sub parameter X Sub parameter Y 

X1 X2 Y1 Y2 

𝑄𝑎 = 𝑋𝑒
−𝑌 1𝑒−8 6𝑒−8 2𝑒−1 2𝑒−4 

RMSE of EKF 0.0068 0.0068 0.0140 0.0068 

 

 

  
  

Figure 10. SOC estimation results under varied sub-

parameters X and Y of Qa 

Figure 11. SOC estimation error results under varied 

sub-parameters X and Y of Qa 

 

 

4.3.  Case 3: variation of Qb input noise parameters 

Through a parametric study, an estimation of SOC was performed. In the following example, the 

𝑄𝑎 = 2𝑒−8 and 𝑅 = 2𝑒−1 parameter are kept constant, while X and Y sub parameters of 𝑄𝑏 = 𝑋𝑒
−𝑌 is 

varied. Using the parameters specified in Table 6, we simulated EKF estimation under the NEDS load 

profile. The results obtained are presented in Figures 12 and 13. 

 

 

Table 6. RMSE of SOC estimation under different Qb sub-parameters 
 Sub parameter X Sub parameter Y 

X1 X2 Y1 Y2 

𝑄𝑏 = 𝑋𝑒
−𝑌 1𝑒−3 6𝑒−3 5𝑒−1 5𝑒−6 

RMSE of EKF 0.0068 0.0067 0.0030 0.0068 

 

 

  
  

Figure 12. SOC estimation results under varied sub-

parameters X and Y of Qb 

Figure 13. SOC estimation Error results under varied 

sub-parameters X and Y of Qb 
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According to Table 6, Figures 12 and 13 shows the measured and estimated SOC, along with the 

errors resulting from the conventional EKF algorithm. With 𝑄𝑏 = 5𝑒
−1, this algorithm induces a very small 

error in comparison with other EKF algorithms. As a result of the Y factor being varied from 6 to 1, the 

maximum SOC estimation error has decreased from 0.8970% to 0.4554%, while the RMSE has decreased 

from 0.0068 to 0.0030. 

 

4.4.  Case 4: variation of R input noise parameters 

A parametric study was conducted to estimate the SOC using the EKF method. In the following 

example, we kept the parameters 𝑄𝑎 = 2𝑒−8 and 𝑄𝑏 = 5𝑒−1 constant while varying the sub-parameters X 

and Y of 𝑅 = 𝑋𝑒−𝑌. These parameters were used as inputs in Table 7 to simulate the EKF estimation under a 

specific load profile known as the NEDS load profile. The results are shown in Figures 14 and 15. 

The provided data in Table 7 serves as input values for the EKF algorithm, which is then illustrated 

in Figures 14 and 15. These figures represent both the measured and estimated SOC values, as well as the 

conventional EKF errors used for system evaluation. In comparison to other algorithms, this particular EKF 

algorithm shows a higher error of 0.5652% for 𝑅 = 5𝑒−1. However, the error reduces significantly when the 

X factor is varied between 1 and 7. Specifically, the maximum error associated with SOC estimation 

decreases from 0.5051% to 0.3082%, and the RMSE reduces from 0.0034 to 0.0020. This improvement 

indicates the effectiveness of the EKF algorithm as the X factor is adjusted. 

 

 

Table 7. RMSE of SOC estimation under different R sub-parameters 
 Sub parameter X Sub parameter Y 

X1 X2 Y1 Y2 

𝑅 = 𝑋𝑒−𝑌 1𝑒−1 7𝑒−1 2𝑒−4 2𝑒−8 

RMSE of EKF 0.0034 0.0020 0.0039 0.0039 

 

 

  
  

Figure 14. SOC estimation results under varied sub-

parameters X and Y of R 

Figure 15. SOC estimation Error results under varied 

sub-parameters X and Y of R 

 

 

5. CONCLUSION 

To enhance the SOC estimation method's accuracy, we utilized the Thevenin model with an 

extended Kalman filter. Additionally, we introduced the new European driving cycle (NEDC) for testing 

purposes. The simulated data results demonstrate that our proposed model can predict SOC with a root mean 

square error (RMSE) of approximately 0.68%. During the implementation of the EKF algorithm, During the 

implementation of the EKF algorithm, we observed that the initial noise values of both the process 

covariance matrix Q and the measurement noise covariance matrix R significantly affect the state estimation 

process. To analyze this effect, we varied the initial noise matrices (Q and R) in MATLAB/Simulink. The 

comparative results indicate that the SOC estimation accuracy was notably improved, reducing the maximum 

SOC estimation error from 1.8826% to 0.3082%, and the RMSE from 0.0140 (1.4%) to 0.0020 (0.2%). 
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