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 In order to improve the reliability of electric machine drive systems, the 

position encoder is often replaced with an estimator, such as the extended 

Kalman filter. However, estimation errors can still occur, especially in 

machines with high pole number, commonly used in renewable energy 

systems. The high number of pole pairs amplifies the effect of estimation 

errors, leading to a substantial divergence between actual and controlled 

currents, potentially causing harm to the machine through the excessive heat 

generation or demagnetization of permanent magnets. To address this issue, 

an error compensation method has been proposed and tested in a control 

scheme for a tidal stream system based on a multipole dual-star permanent 

magnet synchronous generator. The method estimates the position error by 

determining the q-axis permanent magnet flux and correcting it through a PI 

regulator. Simulation results demonstrate the effectiveness of the proposed 

method, even with a non-null initial rotor position. 
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1. INTRODUCTION 

The field oriented control (FOC) is commonly used to control AC machines due to its high 

performance. However, it relies on a position encoder to obtain the rotor position, which reduces its 

reliability, as the position encoder is a weakness in rotating machines based systems [1]–[3]. In this context, 

previous research has focused on sensor less control of AC machines by replacing the position encoder with 

an estimator [4]–[7]. However, only few explored the effect of the position error introduced by the estimation 

method [8]–[11]. Since the FOC is very sensitive to the rotor position, introducing an error in this parameter 

leads to incorrect control of machine currents, which can be harmful to the machine through excessive heat 

generation and/or permanent magnet (PM) demagnetization in PM machines [12]. This issue is, however 

only visible on machines with a high number of pole pairs, since the effect of the position error is amplified 

by the number of pole pairs of the machine [13], [14]. The details of the error position effect on a high pole 

number PM machines were previously discussed and published in our article [15]. 

A method for estimating the rotor position of PMSM using high-frequency signal injection was 

proposed in [16], but the impact of pole pair number and non-zero initial rotor position was not examined. An 

approach to estimate the initial rotor position was proposed in [17], but it is only effective when the machine 

is at rest. A modified MRAS speed observer with good speed estimation and negligible position error was 

developed in [18]. However, the impact of high pole number machines and non-zero initial rotor position on 

the control scheme and machine current was not studied. A method is proposed to correct position estimation 

https://creativecommons.org/licenses/by-sa/4.0/
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error in a dual star PM synchronous generator (DSPMSG) by injecting current pulses in the two winding sets 

in order to detect any error in the position estimation [14]. However, it actually corrects errors in the machine 

parameters used in the model-based observer, and claims that the position error appears only because of 

parameter deviation, without considering the accuracy of the observer itself. The method proposed in [19] 

uses a low order harmonic suppression to detect and correct position estimation error. However, converter 

and machine faults also generate low order current harmonics, which may limit the effectiveness of the 

proposed correction method. 

In this paper, a new method with a simple structure is proposed to compensate for the position error 

and ensure correct control of currents of a DSPMSG. The position error is estimated from the q-axis PM flux 

using a PI controller. The PM flux is oriented along the d-axis in the rotor reference frame, and since the 

reference frame used in the control scheme is shifted, a non-zero q-axis PM flux component appears. This 

component serves as input for a PI controller, which regulates it to zero. The output of the controller 

represents the position error, which is then added to the estimated position to obtain a more accurate value. 

The estimation of the PM flux is performed using the machine's equations in the d-q reference frame. 

 

 

2. SYSTEM CONFIGURATION AND MODELLING 

The proposed method is tested in a control scheme for DSPMSG controlled by two two-level three-

phase converters, where outputs are connected in parallel to get a single DC bus, that feeds a standalone DC 

resistive load. Figure 1 shows a general scheme of the studied system. Figure 2 shows the coil configuration 

of a DSMSG, where the two stars of the stator are shifted by 30 electrical degrees, with isolated neutrals [20]. 
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Figure 1. General scheme of the studied system 

 

Figure 2. Dual star permanent magnet synchronous 

machine 

 

 

The machine electrical behavior can be described by (1), where 𝐿𝑎𝑏𝑐 represents the inductance 

matrix of the machine given by (2). in this equation, 𝐿𝑠𝑙  is the leakage inductance, 𝑚 the mutual inductance, 

𝐿𝑠2 is a harmonic coefficient generated by the rotor saliency, 𝜃 the rotor angle in respect to the magnetic axis 

of phase A1, 𝜃𝑖, and 𝜃𝑗 are the displacement angles of phases 𝑖 and 𝑗 respectively [21]. It’s clear that every 

term in the inductance matrix is dependent on the rotor position, which makes this model very heavy to 

simulate, and not appropriate to properly control the machine currents and speed [22]–[24]. 

 

𝑣𝑎𝑏𝑐 = 𝑟 𝑖𝑎𝑏𝑐 +
ⅆ

ⅆ𝑡
(𝐿𝑎𝑏𝑐𝑖𝑎𝑏𝑐 + 𝜑𝑃𝑀𝑎𝑏𝑐) (1) 

 

{
 
 
 
 

 
 
 
 

𝐿𝑎𝑏𝑐 =

[
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]
 
 
 
 
 

𝐿𝑖 = 𝐿𝑠𝑙 +𝑚 + 𝐿𝑠2 cos(2(𝜃 + 𝜃𝑖))

𝑀𝑖𝑗 = 𝑚 cos(𝜃𝑖 − 𝜃𝑗) + 𝐿𝑠2 cos(2𝜃 + 𝜃𝑖 + 𝜃𝑗)

 (2) 



Int J Pow Elec & Dri Syst  ISSN: 2088-8694  

 

Online position error correction technique for sensorless control of multipole permanent … (Said Aissou) 

1931 

In order to simplify the control algorithm, a simplified model, called extended d-q model, is often 

derived using the transformation matrix in (3), which results in the model given in (4) [25]. 

 

{
 
 

 
 𝑇𝑝(𝜃) =

1

√2
[
𝑇(𝜃) 𝑇(𝜃 − 𝛼)

𝑇(𝜃) −𝑇(𝜃 − 𝛼)
]

𝑇(𝜃) = √
2

3
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3
) cos (𝜃 +
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3
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3
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3
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]

 (3) 
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=

1
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 (4) 

 

𝜔𝑒 is the electric frequency, and the terms 𝐿𝑥 (𝑥 =  𝑛𝑑, 𝑛𝑞, 𝑎𝑑, or 𝑎𝑞) are the cyclic inductances of the 

machine given in (5). Also, the mechanical behavior of the machine is described by (6). In this equation, 𝐽 
is the total inertia of the system, 𝛺 the mechanical angular speed of the machine, 𝑇𝑚 the mechanical 

torque applied on the machine shaft, and 𝑇𝑒𝑚 the electromagnetic torque developed by the machine given 

in (7) [26]–[28]. 

 

{
𝐿𝑎ⅆ = 𝐿𝑎𝑞 = 𝐿𝑙

𝐿𝑛ⅆ = 𝐿𝑛𝑞 = 𝐿𝑙 + 3𝑚
 (5) 

 

𝐽
ⅆ𝛺

ⅆ𝑡
= 𝑇𝑚 − 𝑇𝑒𝑚 − 𝑓𝛺 (6) 

 

𝑇𝑒𝑚 = 𝑃(𝜑𝑛ⅆ𝑖𝑛𝑞 − 𝜑𝑛𝑞𝑖𝑛ⅆ + 𝜑𝑎ⅆ𝑖𝑎𝑞 − 𝜑𝑎𝑞𝑖𝑎ⅆ) (7) 

 

 

3. PROPOSED CONTROL STRATEGY 

The control strategy used in this work is the same as the one used un our previous work [15]. 

However, the proposed compensation technique is integrated in the control scheme as shown in Figure 3. 

First of all, lets explain the behavior of the control algorithm in the two situations, i.e., with and without 

position error. Applying the transformation (3) to the PM flux given by (8) (with 𝛹𝑝𝑚 the amplitude of the 

PM flux) using the real rotor angle 𝜃, results in (9). 

As the 𝑑 axis is oriented along the PM north pole, all the PM flux appears in this axis, and the flux 

in the 𝑞 axis is null. But from the control point of view, the angle used to perform the coordinate 

transformation is 𝜃 given by (10), so the PM flux in this case appears as in (11). It’s clear that the 𝑞 axis flux 

isn’t null in this case, which can be resumed in Figure 4. 

 

𝜑𝑃𝑀𝑎𝑏𝑐 = 𝛹𝑝𝑚

[
 
 
 
 
 
 
 
 

cos(𝜃)

cos (𝜃 −
2𝜋

3
)

cos (𝜃 +
2𝜋

3
)

cos(𝜃 − 𝛼)

cos (𝜃 −
2𝜋

3
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 (8) 

 

𝜑𝑃𝑀𝑑𝑞 = 𝛹𝑝𝑚[√3 0 0 0]
𝑡 (9) 

 

�̂� = 𝜃 + ∆𝜃 (10) 

 

𝜑𝑃𝑀𝑑�̂� = √3𝛹𝑝𝑚[cos ∆𝜃 − sin ∆𝜃 0 0]𝑡 (11) 
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The q-axis PM flux can be estimated using the machine’s equations, and is given as (12). 

 

𝜑𝑃𝑀𝑞 =
1

𝜔𝑒
(−𝑣𝑛ⅆ + 𝑟𝑖𝑛ⅆ + 𝐿𝑛ⅆ

ⅆ𝑖𝑛𝑑

ⅆ𝑡
) − 𝐿𝑛𝑞𝑖𝑛𝑞 (12) 

 

If the position error ∆𝜃 is known and subtracted from the estimated angle �̂�, so the value of 𝜑𝑃𝑀𝑞 should 

become null. As the error is not known, the value of 𝜑𝑃𝑀𝑞  is used as input to a PI controller to estimate it, 

where ∆𝜃 is the output of the controller. Doing so, the error is continuously tuned until a null 𝜑𝑃𝑀𝑞  is 

obtained. The estimated error is used to correct the angle used to perform the transformation as explained in 

Figure 4. A low pass filter is used to filter out undesirable high frequency oscillations and get a smooth 

estimation. 
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Figure 3. Proposed error compensation  

method 

 

Figure 4. Configuration of the real dq frame 

and the one used in the control algorithm dq’ 

 

 

4. RESULTS AND DISCUSSION 

The system was simulated in MATLAB/Simulink. A tidal stream system similar to the one used  

in [15] is used as prime mover for the machine. Initially, the simulation was run without any correction for 

position error. Next, the correction method was integrated, and new results were obtained. Finally, to 

evaluate the effectiveness of the proposed position error correction (PEC) technique in different conditions, 

the simulation was run again with a non-zero initial rotor position. 

Figures 5(a) and 5(b) shows the actual and estimated speed of the machine with and without PEC. 

The results demonstrate a good tracking behavior and accurate speed estimation. No difference can be 

observed between the two figures; however, Figure 6 indicates that the PEC affects the accuracy of the EKF, 

leading to increased fluctuations in the speed estimation (maximum of 0.2% without correction and 0.5% 

with correction). 

 

 

  
(a) (b) 

 

Figure 5. Actual and estimated speed of the machine: (a) without PEC and (b) with PEC 

 

 

The fluctuations in speed estimation result in an error of 1.4 degrees in the estimated mechanical 

angle without PEC, as shown in Figure 7. This, in turn, leads to an electrical angle error that is eleven times 

higher, reaching 15.4 degrees. The figure also shows that the position error is higher when the correction is 
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applied, but still correctly estimated with sufficiently high accuracy. The Figure 8 shows that due to this 

error, a high d-axis current is observed, as shown in Figure 8(a), despite the estimated current being kept at 

zero from the control point of view, as shown in Figure 8(b). Figure 8(a) also indicates that the correction is 

effective in eliminating the unwanted d-axis current, demonstrating the efficacy of the proposed 

compensation method. The actual q-axis current is presented in Figure 9. The Figure 9(a) shows that the 

actual q-axis current is 1.67 times higher than the estimated one when the proposed PEC is not applied. In 

cases of high position errors, the divergence becomes greater and more dangerous. The proposed PEC adjusts 

this current and ensures the system runs safely, as shown in Figure 9(b). Also, the second sub-machine’s 

currents have not been affected by the correction as can be seen in Figure 10, which represents the currents 

with and without PEC. 

 

 

  
 

Figure 6. Speed estimation error evolution  

over time 

 

Figure 7. The actual and the estimated position  

error in mechanical degrees 

 

 

After the initial results were presented, a non-zero initial rotor position of 7.27 degrees (80 electrical 

degrees) was applied in this test. As shown in Figure 11, the position correction PI controller quickly 

responds to the error and corrects it within 0.008 seconds. Figure 12 confirms that the currents are properly 

controlled and the d-axis current is maintained at zero. 
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Figure 8. Machine stator currents: (a) actual d-axis current and (b) estimated dq currents 
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Figure 9. Actual and estimated q axis current: (a) without PEC and (b) with PEC 
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(a) (b) 

 

Figure 10. The currents of the 2nd sub-machine, (a) without PEC and (b) with PEC 
 

 

  
 

Figure 11. Actual and estimated electrical position 

error with a non-null initial position 

 

Figure 12. Actual currents when the PEC is applied 

with non-null initial rotor position 
 

 

5. CONCLUSION 

The field-oriented control is a widely used control strategy, but it requires the use of a position 

encoder for proper coordinate transformation. This makes it less reliable, particularly in applications 

requiring high reliability. The extended Kalman filter can help eliminate this drawback by estimating the 

machine's speed and position. However, no estimator can achieve 100% accuracy, therefore, small errors in 

position estimation can occur. This poses problems for multi-pole machines, as the mechanical angle error 

effect is amplified by the number of pole pairs, resulting in higher actual stator currents than those seen by 

the control system. This can cause various types of damage to the machine, including overheating, and 

saturation. 

A technique is proposed in this paper, which is capable of estimating the position error and 

compensate it in order to get a more accurate and reliable control algorithm for a dual star PMSM. Firstly, the 

q-axis PM flux is estimated basing on the machine’s electrical equations, and then a PI regulator is used to 

estimate the position error using the q-axis PM flux component. The real d-q reference frame is oriented 

along the PM poles, but because of the position error, the reference frame used in the control algorithm is 

shifted in respect to the PM poles, therefore, the q-axis PM component is no longer null. Simulation results 

show a good accuracy in estimating the position error, which confirms the effectiveness of the proposed 

technique. The technique is also tested in case of non-null initial rotor position, and it showed up good 

behavior, and is capable of estimating and correcting the error very quickly. 
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