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 Induction motors are widely used in various industries due to their high 

efficiency, reliability and low cost. However, faults in these motors can lead 

to serious problems, such as unexpected shutdowns, decreased efficiency, 

and even damage to other parts of the system. Monitoring and diagnosing 

these faults are necessary. In this study, we propose a new approach for 

diagnosing bearing faults using convolutional neural network (CNN) and 

continuous wavelet transform (CWT). The suggested approach uses 

Scalograms with various CWT types as the network's input and utilizes 

many epochs and various batch sizes (Multi Ep-Batch) throughout the 

bearing fault classification training and testing phases. To assess our method, 

we implemented an extension of the Squeeze Net pre-trained model (transfer 

learning). The results show that the proposed method outperforms traditional 

methods in terms of accuracy and computational efficiency in detecting 

bearing faults. These results are based on publicly available MFPT data, and 

the proposed approach is compared to traditional methods. This work opens 

new research avenues in the field of bearing fault diagnosis and provides a 

promising solution for real-world applications. 
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1. INTRODUCTION 

Industrial maintenance efficiency is a key economic concern in major sectors today, where quick 

and efficient decision-making is essential [1]–[3]. The main challenges and sources of inefficiency are in 

deciding which maintenance actions to take in the event of machine malfunction, particularly when the 

machine is vital to the production process. Certain decisions can have severe economic consequences. 

Therefore, it is necessary to constantly monitor equipment and detect precursory signs of defects before they 

cause unexpected production stoppages and resulting economic losses [4], [5]. 

Vibration analysis is a frequently used method for the purpose of condition monitoring. Vibration 

analysis provides information about the functional state of bearings, including wear, misalignment, or other 

forms of degradation. This information allows for early detection and proactive measures to avoid 

unexpected downtime and expensive repairs. Signal processing tools, particularly in the diagnosis and 

prognosis stage of bearing health, play a vital role in maintenance [6]–[9]. Which time-frequency domain 

analysis method effectively extracts bearing vibration signal characteristics by decomposing them into 

frequency bands [10], [11]. 

https://creativecommons.org/licenses/by-sa/4.0/
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In addition, sophisticated algorithms and software can help analyse this data and provide detailed 

information about the condition of the bearings. CNNs are a form of deep learning algorithm that has found 

widespread use in image and signal processing applications [12]–[15]. In recent years, several studies have 

combined WT and CNN in order to attain optimal precision and durability in bearing failure detection, 

because they can automatically learn the features of vibration signals and diagnose faults without the need to 

create features by hand. 

Such as, a method in [16] was proposed that utilizes the orthogonal matching pursuit (OMP) 

algorithm for removing harmonic signals while preserving impact signals and noise. Additionally, the method 

employs wavelet transform (WT) to generate the time-frequency map of the signal and finally uses deformable 

CNN (D-CNN) to extract features and classify faults. Li et al. [17] proposed a method that uses wavelet packet 

transform (WPT) to decompose the signal into different frequency sub-bands, then selects the most 

informative sub-bands based on energy entropy, and finally uses CNN to extract features and classify faults. 

Both methods achieved high recognition rates of 99.9% and 99.8%, respectively, under various fault 

modes and noise levels, demonstrating the effectiveness of combining WT and CNN for bearing fault 

diagnosis. Another study by [18] applied a CNN to vibration signals with different types of bearing defects 

and compared its performance with traditional signal processing methods. The results showed that the CNN-

based method was more accurate and robust than traditional methods, demonstrating the potential of deep 

learning techniques for diagnosing errors.  

A CNN was utilized to extract features from IM vibration signals, followed by the use of an SVM 

classifier for fault diagnosis [19]. The study found that the CNN-based method was more effective than 

traditional signal processing methods for bearing fault diagnosis, highlighting the potential of deep learning 

techniques in this area. Another study [20] proposed a method for detecting faults in induction motor 

bearings. The authors discuss the importance of early fault detection in induction motors and the limitations 

of traditional techniques for fault detection. The paper presents wavelet analysis as an effective method for 

decomposing the vibration signal of the motor into multiple frequency bands. The authors then describe the 

use of SVMs for classifying the features extracted from the wavelet analysis as either healthy or faulty. 

However, deep learning techniques alone may not always provide optimal results in bearing fault 

diagnosis. These algorithms can be sensitive to noise and other types of interference, which can affect the 

accuracy of fault diagnosis. Therefore, it is important to combine these advanced techniques with traditional 

methods, such as signal processing and statistical analysis, to achieve optimal results. 

In this paper, we propose a new approach for bearing fault diagnosis that combines the time-

frequency analysis capabilities of continuous wavelet transform (CWT) with the feature extraction 

capabilities of CNNs. The proposed method provides comprehensive and accurate diagnosis of different 

types of bearing faults and outperforms traditional methods in terms of accuracy and computational 

efficiency. The datasets are based on publicly available MFPT data and demonstrate the effectiveness of the 

proposed approach in detecting different types of defects.  

The rest of this manuscript is organized as follows. In first Section, we explain the theorical 

background for the proposed approach. Then, we provide a detailed description of the proposed method, 

including the design of the CNN and the application of CWT to the vibration signals, we also describe the 

MFPT bearing fault dataset and the data pre-processing steps. In section 5, we present the results and 

compare the proposed method with other methods. Finally, we provide concluding remarks and suggestions 

for future research. 
 
 

2. THEORETICAL BACKGROUND 

A novel and intelligent rolling bearing defect diagnosis method is presented in this work. 

Continuous wavelet transform converts raw vibration impulses into time-frequency representations. The 

time-frequency representations are then processed by a CNN to extract significant characteristics. Finally, a 

classifier is trained on the retrieved characteristics to construct a reliable diagnosis system. Following 

sections explain CWT and CNN's theoretical basis. 
 

2.1.  Time-frequency analysis using the continuous wavelet transform 

Scaling and translating procedures improve signals in the continuous wavelet transform (CWT) 

time-frequency analysis approach. CWT is useful for presenting signal frequency evolution over time 

because it adapts to time-frequency signal analysis [21]. In this work, CWT is used to convert 1-dimensional 

time-domain data into 2-dimensional time-frequency pictures before feature extraction. 
 

2.1.1. Bearing fault frequencies 

Figure 1 depicts the construction of a rolling bearing. A fault in this bearing can cause high-

frequency vibrations. Vibrations are generated when rolling elements collide with defects on the outer or 
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inner race, or when a flaw on a rolling element contacts the outer or inner race. Figure 1 depicts the 

components of a rolling bearing's construction [22], [23]. 

 

Outer race defect: 𝑓𝑜𝑟 =
𝑛𝑓𝑟

2
(1 −

𝑑

𝐷
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Inner race defect: 𝑓𝑖𝑟 =
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Rolling element defect: 𝑓𝑟𝑒 =
𝐷
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2

] (4) 

 

In Figure 2, the geometric characteristics of a bearing are depicted, illustrating the various 

parameters involved. Specifically, the figure shows the number of balls 𝑛, the ball diameter 𝑑, the cage 

diameter 𝐷, the angles of the balls 𝜑, and the rotational frequency of the bearing 𝑓𝑟. These geometric 

characteristics are essential in understanding the design and performance of the bearing in different 

applications. 

 

 

  
  

Figure 1. Diagram of the construction of a rolling bearing Figure 2. Geometric characteristic of a bearing 

 

 

2.1.2. Continuous wavelet transforms 

Data may be analysed in the time and frequency domains with the use of the continuous wavelet 

transform, a mathematical technique. It transforms a signal from the time domain to the time-frequency 

domain using wavelet functions of varying sizes and positions, resulting in coefficients that characterize the 

signal's frequency content across time. The CWT is useful for analysing non-stationary signals and has 

various applications in signal processing, image processing, and pattern recognition. The continuous wavelet 

transform (CWT) has reached a level of maturity, and its basic definition can be succinctly presented [24]. 

 

𝑋𝜔(𝑎, 𝑏) =
1

√𝑎
∫ 𝑥(𝑡)𝜓∗ (

𝑡−𝑏

𝑎
)

+∞

−∞
𝑑𝑡 (5) 

 

In this context, the variable 𝑎 denotes the scale parameter, while 𝑏 represents the time or translation 

parameter, the function 𝑥(𝑡) is used to denote the original one-dimensional data signal, the symbol 𝜙 

represents the wavelet function with scale 𝑎 and position offset 𝑏, and 𝜓∗ is the complex conjugate of 𝜓. 

 

2.1.3. Continuous wavelet transforms types  

In the realm of fault diagnosis pertaining to induction motors (IMs), various techniques have been 

employed to analyze vibration signals and detect faults accurately. One widely used approach is the (CWT). 

Among the CWT methods, three common wavelet types have shown promise in fault diagnosis for IMs: the 

Morse wavelet, the Bump wavelet, and the Analytic Morlet wavelet [24], [25]. The generalized Morse 

wavelets are a type of analytical wavelet that are useful for analysing signals that have varying frequencies 

and detecting changes or discontinuities in these signals. This wavelet has several adjustable parameters, 

including the shape parameter (𝛾 >  0), the oscillation control parameter (𝛽 >  0), and the order parameter 
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(𝑍 < 0). These parameters can be adjusted to optimize the time and frequency range for different types of 

signals, allowing for more accurate analysis [26]. Mathematically, the Morse wavelet can be as (6): 
 

𝜓𝛽𝛾(𝜔) = ∫ 𝜓𝛽𝛾(𝑡)
+∞

−∞
𝑒−𝑖𝜔𝑡𝑑𝑡 = 𝑈(𝜔)𝑎𝛽𝛾𝜔𝛽𝑒−𝜔𝛾

 (6) 

 

The shape parameter, denoted as β , and the time variable, denoted as 𝑡. 

In the frequency domain, the bump wavelet is a band-limiting function with three adjustable 

settings. The time-domain variance is higher than the frequency-domain one. The ranges of practical 

importance for the parameters and are (3,6) and (0.1,1.2), respectively [27]. The equation for the Bump 

wavelet may be as (7). 
 

𝜓(𝑠𝜔) = 𝑒

(1−
1

1−
(𝑠𝜔−𝜇)2

𝜌2

)

. 𝐼
[
𝜇−𝜎

𝑠
,
𝜇+𝜎

𝑠
]
 (7) 

 

Where 𝐼
[
𝜇−𝜎

𝑠⁄ ,
𝜇+𝜎

𝑠⁄ ]
 is the indicator function for the interval. 

The analytic Morlet wavelet is a special case of the Morlet wavelet that has the property of being 

analytic, which means it has a zero mean and its positive and negative frequencies are conjugate pairs. This 

property makes the Analytic Morlet wavelet well-suited for analysing signals with complex structures and is 

commonly used in the field of time-frequency analysis. Mathematically, by dilation with 𝑎 and translation 

with 𝑏, the Analytic Morlet wavelet family can be as (8). 
 

𝜓𝑎,𝑏(𝑡) = 𝑒
[−

𝛽2(𝑡−𝑏)2

𝑎2 ]
 𝑐𝑜𝑠 [

𝜋(𝑡−𝑏)

𝑎
] (8) 

 

Table 1 provides a comprehensive overview of these wavelet types and their specific characteristics 

for detecting faults in vibration signals from induction motors. Each of these wavelets offers unique 

advantages that make them well-suited for particular fault detection scenarios. For instance, the Morse 

wavelet is particularly effective in identifying abrupt changes in vibration signals associated with inner race 

and outer race faults. On the other hand, the Bump wavelet excels at detecting changes in the amplitude of 

vibration signals, commonly associated with rolling element faults. Lastly, the Analytic Morlet wavelet is 

specifically designed to analyze complex signal structures, making it a valuable tool for detecting faults in 

the inner race and outer race of induction motors. 

By leveraging the strengths of these wavelet types, researchers and practitioners can make informed 

decisions regarding the selection of the most appropriate wavelet for fault diagnosis based on the specific 

characteristics of the signals they are analyzing [28], [29]. This, in turn, can lead to more accurate and 

reliable fault detection and diagnosis, contributing to improved maintenance strategies and increased 

operational efficiency of induction motors. 

The choice of wavelet for fault diagnosis in IMs depends on the type of fault and the properties of 

the vibration signals. It is important to consider the unique properties of each wavelet and select the 

appropriate wavelet for the specific fault diagnosis scenario. By selecting the appropriate wavelet, it is 

possible to extract relevant features from the vibration signals and improve the accuracy and robustness of 

the fault diagnosis process. 
 

 

Table 1. Wavelet types and their characteristics for detecting faults in vibration signals 
Wavelet Type Characteristics Used for Detecting 

Morse Abrupt changes in signals Abrupt changes in vibration signals (inner race and outer race faults) 

Bump Changes in amplitude of signals Changes in amplitude of vibration signals (rolling element faults) 
Analytic Morlet Complex signal structures Complex signal structures in vibration signals (inner race and outer race 

faults) 

 

 

2.2.  Convolutional neural network 

In the field of image recognition, CNN has achieved tremendous strides [30], [31]. Figure 3 

illustrates CNN's overall organizational structure. Its underlying hidden layer structure, which consists of a 

convolution layer, pooling layer, and fully connected layer, deep learning models greatly benefit from the 

utilization of a powerful tool known as data feature extraction. 
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Figure 3. The CNN model's structure 

 

 

2.2.1. Convolution layer 

Convolutional procedures are used to produce a more sophisticated feature representation by using 

input data to perform local feature extraction, reducing complexity and network parameters. The following is 

the convolution as (9). 
 

𝑥𝑗
𝑙 = 𝑓 (∑ 𝑥𝑖

𝑙−1𝑘𝑖𝑗
𝑙 + 𝑏𝑗

𝑙
𝑖∈𝑀𝑗

) (9) 

 

In this context, we denote 𝑥𝑗
𝑙 as the output of layer 𝑙, while 𝑥𝑖

𝑙−1 represents the output of layer 𝑙 − 1, which 

serves as the input for layer 𝑙. The feature set of layer 𝑙 − 1 is denoted as 𝑀𝑗, and 𝑘𝑖𝑗
𝑙  represents the weight 

matrix. Additionally, 𝑏𝑗
𝑙 represents the network bias, and 𝑓 (·) denotes the activation function. 

 

2.2.2. Pooling layer 

Data is down-sampled at the pooling layer is typically implemented by calculating either the local 

average or maximum value, lowering the network's computational complexity while preserving features. The 

calculation method can be expressed as (10). 
 

𝑥𝑗
𝑙 = 𝑓(𝛽𝑗

𝑙𝑑𝑜𝑤𝑛(𝑥𝑗
𝑙−1) + 𝑏𝑗

𝑙) (10) 
 

Where 𝑑𝑜𝑤𝑛 (·) is the down-sampling function and 𝛽 indicates the network's weight. 
 

2.2.3. Fully connected layer 

The fully connected layer serves to combine feature information with category differentiation. The 

mathematical equation may be represented as (11). 
 

𝑦𝑘 = 𝑓(𝜔𝑘𝑥𝑘−1 + 𝑏𝑘) (11) 
 

In the context of neural networks, the variable 𝑘 denotes the specific layer within the network. The output of 

the fully connected layer is denoted as 𝑦𝑘, while 𝑥𝑘−1 represents the input to this layer. The weight 

coefficient is denoted as 𝜔𝑘, and 𝑏𝑘 represents the network offset. 

 

 

3. THE PROPOSED APPROACH  

In this manuscript, we propose a novel method that requires less time and exhibits better accuracy 

than the state-of-the-art methods in the training and testing phases of deep learning. In our implementation, 

we used scalograms and Squeeze Net with a CNN architecture to study our method, for the classification of 

three types of bearing faults in IMs (normal, inner race, and outer race). A flow chart of the proposed 

methodology for fault classification is shown in Figure 4.  

All of the raw vibration signals used in this investigation were first divided into cycles. The 

vibration signals were then broken down into cycles using CWT, and the result was then transformed into a 

different 2D representation to create scalograms, which are pictures created using three different kinds of 

continuous wavelet transformations. The Squeeze Net deep neural network was then given these images, 

which had been resized to a size of 227×227 pixels in RGB format. Second, we examined the accuracy of the 

various CWT types by classifying the normal, inner race, and outer race vibration signals using a Squeeze 

Net model. 
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Figure 4. Flowchart for the proposed approach of fault classification. 

 

 

3.1.  Design of CNN 

The CNN architecture commonly comprises three fundamental layers: a convolutional layer, a 

pooling layer, and a fully connected layer. Recently, researchers have focused on designing these layers to 

create various architectures for classifying vibration signals into different categories. The time domain 

signals are converted into 2D time-frequency spectrograms. Our technique leverages the CNN model, which 

uses the Squeeze Net network introduced by [32] and has three phases. First, all vibration signal segments are 

transformed into scalogram feature maps. The Squeeze Net network requires three 227×227×3 pictures; 

therefore, the photos are downsized.  

The final stage of Squeeze Net’s classification process involves using the 'conv10' and 

'Classification Layer predictions' layers to extract image features and classify the input image. These layers 

combine the extracted features to generate class probabilities, predicted labels, and a loss value. To customize 

Squeeze Net for new image classification tasks, such as with bearing images, it is crucial to replace these two 

layers with new ones tailored to the specific image domain. The classification layer is responsible for 

determining the network's output classes, and it may be necessary to replace it with a new one that doesn't 

have pre-defined class labels to adapt the network for new tasks. The train network function can 

automatically determine the appropriate output classes for the layer during training. 

 

3.2.  The approach given for diagnosing of bearing faults 

In the present study, a brand-new technique for detecting rolling bearing problems is put forward. 

CNNs are utilized. in this approach to enhance diagnostic performance since there is a dearth of bearing 

defect data accessible in practical engineering and because conventional intelligent diagnosis methods are 

complicated. The suggested technique is illustrated in a flowchart in Figure 4 that goes through the processes 

listed below:  

- Step 1: Obtain vibration data from faulty bearings  

- Step 2: The vibration data is first segmented and then converted into time-frequency images with 

dimensions of 227×227×3, using the continuous wavelet transform (CWT) techniques. The time-

frequency pictures are then divided into separate sets of training and test samples, whereby each sample is 

assigned a corresponding label. 

- Step 3: Open MATLAB and load the Squeeze Net network that has already been trained via Add-Ons. 

After that, feed the model the samples that were prepped in Step 2, the fully connected layer is employed 

in order to extract the high-level representations of features from both the training and testing images. The 

SoftMax function is trained using the features obtained from the training data as predictor variables.  
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- Step 4: The process entails inputting test samples into the trained model in order to evaluate the 

diagnostic accuracy. 

 

 

4. EXPERIMENT MFPT DATA 

This study evaluates a bearing fault diagnosis model using open-source datasets, with a focus on the 

MFPT dataset. The utilization of openly accessible datasets enables a thorough evaluation of the model's 

efficacy and improves its versatility and transparency in research. The use of MFPT data in this study 

enhances its credibility, allowing for thorough evaluation of the model in different fault scenarios [33]. 

 

4.1.  Data description 

Research and analysis of rolling bearing failures are conducted using data from the MFPT project of 

the society for machinery failure prevention technology. Three sets of actual fault data and three sets of 

experimental bearing vibration data are included in the MFPT dataset. Baseline data, inner race fault data, 

and outer race fault data are all included in the experiments. The reference data consists of three files, and 

each file contains information sampled at 97656 Hz for six seconds, for a total of 585936 samples while 

sustaining 270 pounds. The seven files that make up the inner race fault set were obtained by sampling at 

48828 Hz for three seconds, yielding a total of 146484 samples, and subjected to loads ranging from zero to 

three hundred pounds. The seven files in the outer race fault set were sampled at 48828 Hz for three seconds 

under seven different loads ranging from 25 to 300 pounds. Deep groove ball bearings with an eight-element 

design, a pitch diameter of 31.62 mm, ball diameter of 5.97 mm, and contact angle are the bearings used  

in the experiments included in the MFPT dataset. We utilize information on bearing vibration from  

three sources. 

 

4.2.  Data processing   

All of the data points from the three defect data sets were utilized in this experiment. The  

117 segments of the three files in the baseline set each included 5000 samples. Each of the seven inner fault 

files had 58 segments, while each of the seven outer fault files had 117 segments. For each state, a matching 

number of time-frequency pictures were created by applying CWT types. A total of 234 time-frequency 

pictures for the first two baseline sets, 290 time-frequency photos for the first five inner race signals, and  

524 time-frequency images for the outer race were acquired by combining the load circumstances for the 

three fault types. 

Finally, as shown in Table 2, 80% of the images were chosen as training samples, and the remaining 

20% were used as test samples. Figures 5 to 7 show the time-frequency images with the three types of CWT 

for the three conditions listed in Table 2, presented in sequence. Figure 5 displays the Morse wavelet output 

image, Figure 6 displays the Morlet wavelet output image, and Figure 7 displays the Bump wavelet output 

image. For each figure, subfigures 7(a)-7(b) represent normal condition, Figures 7(c)-7(d) represent inner 

race fault, and Figures 7(e)-7(f) represent outer race fault. 

 

 

Table 2. Signal types, lengths, and segment numbers for training and testing data with various fault conditions 
 Signals types Signal length Number of segments 

Training baseline_1 585936 117 
baseline_2 585936 117 

InnerRaceFault _various load 1 146484 58 

InnerRaceFault _various load 2 146484 58 
InnerRaceFault _various load 3 146484 58 

InnerRaceFault _various load 4 146484 58 

InnerRaceFault _various load 5 146484 58 
OuterRaceFault_1 585936 117 

OuterRaceFault_2 585936 117 

OuterRaceFault _various load 1 146484 58 
OuterRaceFault _various load 1 146484 58 

OuterRaceFault _various load 1 146484 58 

OuterRaceFault _various load 1 146484 58 
OuterRaceFault _various load 1 146484 58 

Testing baseline_3 585936 117 

InnerRaceFault _various load 6 146484 58 
InnerRaceFault _various load 7 146484 58 

OuterRaceFault_3 585936 117 

OuterRaceFault _various load 6 146484 58 
OuterRaceFault _various load 7 146484 58 
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(a) (b) (c) (d) (e) (f) 

 

Figure 5. Morse wavelet output image (a)-(b) normal, (c)-(d) inner race fault, and (e)-(f) outer race fault 

 

 

      
(a) (b) (c) (d) (e) (f) 

 

Figure 6. Morlet wavelet output image (a)-(b) normal, (c)-(d) inner race fault, and (e)-(f) outer race fault 

 

 

      
(a) (b) (c) (d) (e) (f) 

 

Figure 7. Bump wavelet output image (a)-(b) normal, (c)-(d) inner race fault, and (e)-(f) outer race fault 

 

 

5. RESULTS AND DISCUSSION 

Once the images were generated and dividing them into an 80:20 ratio for training and testing, a 

total of 1048 images were used for training, and 466 instances were reserved for the testing set for each type 

of wavelet image. The model's performance was evaluated using different parameters, namely accuracy and 

loss, as presented in Figures 8 to 10 for the three different wavelet images. Additionally, to gain a better 

understanding of the correctly and incorrectly classified instances, confusion matrices were provided in 

Figure 11, which is the Confusion matrix of CNN, we have provided three subfigures illustrating the results 

for different wavelet images. Specifically, subfigure 11(a) corresponds to the Morse wavelet, subfigure 11(b) 

displays results for the Morlet wavelet, and subfigure 11(c) showcases outcomes for the Bump wavelet. 

These subfigures offer a detailed breakdown of the model's performance for each type of wavelet image, 

providing valuable insights into correctly and incorrectly classified instances. 

To assess a model's performance during training and testing in deep learning, accuracy and loss are 

two frequently used metrics. The loss measures how closely the model's predicted values match the actual 

values, whereas the accuracy measures how frequently the model predicts the class label of the input data 

correctly. The accuracy figure of a deep learning model shows how well the model performs in terms of 

correctly classifying the input data. It is typically represented as a percentage, where higher values indicate 

better performance. For example, an accuracy of 90% means that the model correctly predicted the class label 

of 9 out of 10 input data. 
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Figure 8. Performance evaluation using accuracy and loss of Morse 
 
 

 

 
 

Figure 9. Performance evaluation using accuracy and loss of Morlet 
 

 

On the other hand, the loss figure of a deep learning model shows how well the model's predicted 

values match the actual values. It is usually represented as a numerical value, where lower values indicate 

better performance. The loss function, which calculates the difference between predicted values and actual 

values, is defined based on the task at hand and the nature of the data. The reduction of the loss function is 

the aim of deep learning model training. 

The accuracy and loss figures are used to track the model's performance during training and decide 

whether any changes are necessary. The model needs to be adjusted if the accuracy is poor and the loss is 

high, for instance by altering the architecture or hyperparameters. In contrast, the model is performing well 

and can be used for inference on new data if the accuracy is high and the loss is low. Overall, accuracy and 

loss figures offer important insights into how well a deep learning model is performing and aid in directing 

the development process toward a more accurate and efficient model. 
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Figure 10. Performance evaluation using accuracy and loss of bump 
 
 

  
(a) (b) 

 
(c) 

 

Figure 11. Confusion matrix of CNN (a) Morse wavelet, (b) Morlet wavelet, and (c) bump wavelet 
 
 

By comparing the predictions of a classification model with the actual class labels of the test data, a 

confusion matrix is a table that is used to assess the performance of the model. Along with the number of 
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instances of each actual class in the data, it also displays the model's percentage of correct and incorrect 

predictions. 

The ratio of correct predictions to all of the model's predictions determines the accuracy, which 

measures how frequently the model correctly predicts the class label of the input data. Based on the accuracy 

values provided, we can compare the performance of three different classification models (Morse, Morlet, 

and Bump) and draw the following conclusions: 

− Morse has the highest accuracy value of 99.79%, which means that it has the highest number of correct 

predictions compared to the other two models. 

− Morlet has an accuracy value of 97.64%, which is the lowest among the three models. 

− Bump has an accuracy value of 98.71%, which is higher than Morlet but lower than Morse. 

− Therefore, we can conclude that Morse is the best performing model among the three models evaluated 

based on accuracy. 
 
 

6. CONCLUSION  

In conclusion, this study showcases the successful implementation of a convolutional neural 

network (CNN) for the accurate classification of various bearing defects based on frequency information. By 

utilizing three types of continuous wavelet transforms (CWTs) to convert the 1-D signal into RGB images, 

which were then processed by a multilayer CNN, the study achieved more than 97% accuracy in defect 

classification. Furthermore, the use of the pre-trained CNN model (SqueezeNet) proved effective in 

classifying the CWT images. This study highlights the potential for time-frequency signal representation as a 

feature conversion method to streamline bearing fault diagnosis in the field and pave the way for future 

research in this area. Ultimately, this paper presents a promising solution for real-world applications in 

bearing fault diagnosis. 
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