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 This paper examines the impact of multiple control algorithms, such as 

genetic algorithm (GA), artificial neural network (ANN), and proportional 

integral derivative (PID), on programmable logic controller (PLC) 

performance during a nonlinear thermodynamic process. The ANN was 

trained with data that modeled the thermodynamic process and then 

generated the control algorithm. GA was improved by applying the counter-

premature algorithm (CPA) to address issues of pre-mature convergence, 

while the PID presents the current algorithm used to optimize the PLC in the 

existing testbed. Experimental evaluation of these models against the 

process set-points showed that all the algorithms were able to reject 

disturbance and follow the reference set points under different step changes, 

but each algorithm experienced different internal behaviors while trying to 

reject disturbance. Lastly, the result showed that while the improved GA was 

better than the PID, with a recorded slight overshoot due to the uncertainties 

of the thermodynamic process, the ANN achieved better control performance 

in terms of system stability than the other counterpart algorithms. 
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1. INTRODUCTION 

All over the world, programmable logic controllers (PLCs) have dominated process design and basic 

process control systems [1]. The idea is to minimize the risk of accidents during the technical process, as 

research [2] revealed that there is no plant all over the world that is 100% risk-free. The process design has to 

do with the correct specification of engineering components such as valves, pressure transmitters, actuators, 

sensors, alarms, etc. in line with the standards of industrial automation [3], while the process control system 

is the application of PLCs or other control systems for the monitoring and adjustment of process inputs to 

give the desired output [4] and [5]. Recently, PLCs have gained more attention due to recent advancements in 

their features, such as wireless control access, larger memory, better processing speed, and programming 

flexibility [6]. In addition, it has been applied for real-time control operations, which according to Ulagwu-

Echefu et al. [7], are in great demand in today’s industrial settings. However, while the PLC has continued to 
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offer promising solutions to optimize industrial automation, there is still a need for it to offer optimal control, 

especially in complex nonlinear situations [8]. Process control has become heterogeneous in nature, with 

multiple parameters, time-invariant constraints, set-points, multi-logic sequences, and all requiring 

approximation in a short time [9], thus presenting complex control issues for the conventional PLC and hence 

presenting the need for advanced control system (ACS). 

Airikka [10] defines ACS as the application of classical control techniques with the ability to 

perform complex computations from process modeling, parameter estimation, performance criterion 

optimization, multivariable, and back-propagation-based control characteristics into the basic process control 

system to enhance performance. In the context of PLC, these ACS can be applied to optimize the 

performance through automatic parameter tuning [11], which can be done using external computing 

machines (ECM) or the application of advanced process control algorithms (APCA) [12]. While these two 

methods can improve PLC, Tarnawski et al. [12] identified APCA as offering better results for safety 

integrity, quality assurance, and economy when compared to ECM. 

Many works of literature on APCA have been presented, recommending various APCA techniques 

to improve constraint approximation for nonlinear systems. For instance, a study [13] applied the Ziegler 

Nicholas tuning technique or constraint approximation of a nonlinear system, while a study [14] compared 

the Ziegler Nicholas, internal model control (IMC), and Shams-IMC techniques, respectively, and reported 

Shams-IMC as more consistent than the others. However, a study [15] revealed the PID cannot be reliable for 

the control of multiple variables, which are time-invariant, and suggested an adaptive solution in a bounded 

least square optimizer solver [16] to address integration issues such as compatibility and function overhead. 

Study [17] applied fuzzy logic for improved servo motor control, while [18] improved fuzzy logic with 

Takagi-Sugeono and applied it to optimize the S7-300/400 PLC system. In the same vein, the study [19] 

applied normalization acceleration-based fuzzy inference engine adjustment to control the scaling input and 

output coefficients of the PLC, while the study [20] improved the fuzzy control system using a particle 

swarm algorithm and achieved a better control solution when compared with the results obtained in [19]. 

The data-driven approach (DDA) [21] was also used for the optimization of PLC performance. DDA 

can be classified into two approaches, which are statistical and artificial intelligence (AI). The statistical 

approach used a mathematically inspired heuristic model to solve the optimization problems of the plant, while 

the AI employed smart optimization approaches and machine learning (ML) algorithms to learn the behavior 

of the plant and perform control operations. Literature has focused recently on AI. approach for optimization 

of PLCs, using mostly ML algorithms. For example, Bayesian optimization was used by Mohamed et al. [22] 

to tune the parameters of the cascade controller and achieve robustness to disturbance and optimal tracking 

performance, while Bhargav [23] applied a back-propagation-based neural network for error detection, fault 

tolerance, and optimization of PLC. While these studies recorded significant control success, they were not 

tested considering very complex nonlinear chemical processes with multiple control constraints, which leaves 

a gap. In [24], a predictive control algorithm developed with a model predictive controller (MPC) was used to 

optimize the function of SCL500-PLC. The MPC was improved with Nesterov’s forest gradient [25] and then 

embedded into the PLC using structured test programming and tested experimentally on multiple connected 

tank systems. The MPC was compared with the PID, and the results showed that the MPC has better constraint 

approximation features. In the study [26], a gradient algorithm was applied to optimize MPC and then 

integrated into Festo-programmable logic controllers (PLC). An experimental result was performed on a 

nonlinear process. The results were compared against standard PLC, and it was observed that the improved 

MPC-based PLC was better. Despite the success, it is still not clear whether the system is effective when tested 

in a complex nonlinear system with multiple constraints. 

In another approach, Zhao et al. [27] adopt the Koopman subspace model and a multi-parameter 

quadratic programming approach to solve the constraints optimization problem in a chilled water plant control. 

In addition, piecewise-affine control laws and active constraints sets were determined using data-driven 

partition of disturbance space to reduce power consumption in the chiller plant, while achieving optimal 

operation irrespective of constraints violations, while Arturo et al. [28] applied artificial neural network 

(ANN) to improve the performance of Allen-Bradley PLC operations during water level control. The study 

trained a feed-forward neural network algorithm with data from the plant to generate a control model, which 

was integrated into the PLC using RSLogix 5000. The performance showed the ANN was able to improve the 

constraint approximation efficiency of PLC when compared with traditional PLC. ML-inspired discrete-time 

controller was proposed in [29], using PID and neural networks to develop an advanced control algorithm for 

the approximations of single input and output discrete-time nonlinear systems. In the study, the neural network 

was trained with the data from the plant. The error between the input and output was minimized using 

adaptation rules of the PID, with three neurons used as the P-I-D inputs.  

The model generated after evaluation and justifying the success was recommended for nonlinear 

control systems. In the same vein, Lee and Jang [30] trained 1000 data points for the mass spring damper 

system (MSDS) using a neural network and long short-term memory (LSTM). The models were respectively 
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applied for the self-tuning of PID and control of MSDS. The result showed that both models achieved good 

performance, but the LSTM was recommended due to its predictive characteristics. In [31], DDA was used 

for control performance assessment of PID performance. Comparative ML algorithms such as decision tree, 

extra trees, Adaboast, support vector machine (SVM), among others, were trained with data collected from 

signal-based closed-looped process systems. The result showed that the SVM achieved better performance 

efficiency after comparative analysis with other models. [32] used black box multi objective optimization 

(BBMA) and reinforcement learning (RL) to tune PID. The RL was used to minimize multi-step convergence 

and facilitate the tuning of the PID, while the BBMA developed with particle swarm (PS) [33] and genetic 

algorithm (GA) [34] was used to tune the PID, respectively, and comparatively analyzed through simulation 

experiments. The result showed that the RL achieved faster self-tune when compared to the rest. 

Overall, the literature has shown that several approaches have been applied over the years for the 

optimization of PLC and have all had significant success in the approximation of nonlinear systems; 

however, it is still not clear which algorithm achieved the best performance. Secondly, majority of the results 

were not tested considering complex nonlinear process with multiple constraints requiring approximation 

within a short time, while some of the results, despite their success, require validation through the real-world 

testbed method. Based on these gaps, the following contribution will be made in this paper. Based on these 

gaps, the following contribution will be made in this paper: i) A mathematical formulation of the nonlinear 

problem in a thermodynamic process will be presented; ii) Three notable control algorithms (ANN, PID and 

GA) will be developed using and integrated to optimize plc respectively. The effectiveness of each algorithm 

will be accessed experimentally under the considered nonlinear problem; iii) An improved ga will be applied 

to address issues of pre-mature convergence which has continuously hindered success performance of ga 

using counter premature algorithm (CPA); and iv) Recommendation will be made of engineers on the choice 

of the best control algorithm for approximation of complex nonlinear constraints in technical process. 

 

 

2. METHOD 

The methodology used for the study began with the mathematical modeling of a nonlinear 

thermodynamic process of two connected reactor tanks during an irreversible exothermic reaction. To 

improve the PLC applied for the system approximation, three control algorithms which are PID, ANN and 

GA were developed and each integrated separately on the PLC. The GA was also improved with CPA to 

address issues of pre-mature covariance and improve the approximation process. The three models were 

integrated into PLC and then experimentally validated under nonlinear conditions. Results obtained from 

each test are comparative analyzed to identify the most suitable control solution to optimize PLC and 

maintain stability of the thermodynamic process in real time.  

 

2.1. The nonlinear thermodynamic process 

A complex chemical process was described by Li [35] as a dynamic behavior of two connected 

reactor tank during an irreversible exothermic reaction, which is controlled with water coolant. The flow rate 

for both reactors are given as 𝐹𝑗1 and 𝐹𝑗2while temperatures of the two reactors are 𝑇𝑗1 and 𝑇𝑗2. The chemical 

process is modeled with the assumption according to Li [35] that 𝑉𝑗1 =  𝑉𝑗2 =  𝑉𝑗 , 𝑉1 =  𝑉2 =  𝑉, 𝐹𝑜 =  𝐹2 =

 𝐹 and 𝐹1 =  𝐹 +  𝐹𝑅 as the differential equation which presents the rate of concentration in (1) and (2) 

respectively for the two reactors and temperatures changes in (3) and (4)and the volumetric flow rate of the 

chemical process presented in the (5) and (6) respectively. 

 
𝑑𝐶𝐴1

𝑑𝑡
=  

𝐹0

𝑉
𝐶𝐴0 −

𝐹+ 𝐹𝑅

𝑉
𝐶𝐴1 + 

𝐹𝑅

𝑉
𝐶𝐴2 − 𝑎𝐶

𝐴1𝑒−𝐸/𝑅𝑇1  (1) 

 
𝑑𝐶𝐴2
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𝑉
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𝑉
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𝑝𝑐𝑝𝑉
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From the model of the thermodynamic behavior considering the three key attributes which are 

temperature, concentration, and volume of mixture in the reactors, the ideas are to control 𝐶𝐴𝑁, 𝑇𝑁1 𝑎𝑛𝑑 𝑇𝑁2 

through the variation of 𝐶𝐴𝐹, 𝑇𝑗10 and 𝑇𝑗20. The variation between the input temperature𝑇𝐹  and the controlled 

temperature values 𝑇𝐹
𝑑 is the error as 𝑇𝐹 − 𝑇𝐹

𝑑. Let the variation between the input and control concentrations be 

given as 𝑥11𝐶𝐴2 − 𝐶𝐴2,
𝑑 𝑥12𝑓2 ,

𝑎𝑛𝑑 𝑡ℎ𝑎𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑏𝑒 𝑔𝑖𝑣𝑒𝑛 𝑎𝑠 𝑥

21

=  𝑇2 − 𝑇2
𝑑  , 𝑥22 =  𝑇𝐽2 − 𝑇𝐽2

𝑑  , 𝑥31 =  𝑇1 −

𝑇1
𝑑  , 𝑥32 =  𝑇𝐽1 − 𝑇𝐽1

𝑑 . The change in the two reactors in (1)-(6) can be presented as in (7). 

 

𝑥11 =  𝑏11𝑥12 , 𝑥12 =  𝑏12𝑢1 , 𝑦1  =  𝑥11 

𝑥21 =  𝑏21𝑥22 , 𝜙21 +  𝜙𝑥31. 
𝑥22 = 𝑏22𝑢2 +  𝜙22 (7) 

𝑦2 = 𝑥21 
 

Where 𝑥21 =  𝑏31𝑥32 , 𝜙31 + 𝜓𝑤, 𝑥32. 𝑥32 = 𝑏32𝑢3 + 𝜙32; 𝑦2 =; 𝑏11 = 1, 𝑏12 = 1; 𝑏21 =
𝑈𝐴

𝑝𝑐𝑝𝑉
, 𝑏22= 

𝐹𝐽2

𝑉𝑗
 ;  

𝑏31 =  
𝑈𝐴

𝑝𝑐𝑝𝑉
, 𝑏32 =  

𝐹𝑗𝑖

𝑉𝑗
;𝜓 =  

𝐹𝑜

𝑉
, ∅ =  

𝐹+ 𝐹𝑅

𝑉
, 𝑤 =  𝑇𝑜 − 𝑇𝑜

𝑑 and 𝑢1 =  
𝐹+ 𝐹𝑅

𝑉2 𝑐𝐴0 − 𝑓4; 𝑢2 =  𝑇𝑗20 − 𝑇𝑗20
𝑑 ; 𝑢3 =

 𝑇𝑗10 − 𝑇𝑗10
𝑑 ; 𝐶𝐴1 =  

𝑉

𝐹+𝐹𝑅
 (𝑥12 +  

𝐹+ 𝐹𝑅

𝑉
(𝑥11 +  𝑐𝐴2

𝑑 ) +  𝑎(𝑥11 +  𝐶𝐴2
𝑑 )𝑒−(𝐸 𝑅(𝑥21+ 𝑇2

𝑑))⁄  

∅21 =  
𝐹 + 𝐹𝑅

𝑉
𝑇1

𝑑 +  
𝐹 +  𝐹𝑅

𝑉
(𝑥21 + 𝑇2

𝑑) −
𝑎𝑛

𝑝𝑐𝑝

 ; ((𝑥11 + 𝐶𝐴2
𝑑 )𝑒−(𝐸 𝑅(𝑥21+ 𝑇2

𝑑))⁄ −
𝑈𝐴

𝑝𝑐𝑝𝑉
 (𝑥21  + 𝑇2

𝑑 − 𝑇𝑗2
𝑑) 

∅22 =  
𝐹𝐽2

𝑉
(𝑇20

𝑑 − 𝑥22 − 𝑇𝑗2
𝑑) +  

𝑈𝐴

𝑝𝑗𝑐𝑗𝑉𝑗

 (𝑥21  + 𝑇2
𝑑 − 𝑥22 − 𝑇𝑗2

𝑑)  

∅31 =  
𝐹𝑜

𝑉
𝑇𝑜

𝑑 −
𝐹+𝐹𝑅

𝑉
(𝑥31 + 𝑇1

𝑑) −
𝑎𝑛

𝑝𝑐𝑝
𝐶

𝐴1𝑒−(𝐸 𝑅(𝑥21+ 𝑇1
𝑑))⁄ − 𝐹𝑅

𝑉
 (𝑥21+𝑇2

𝑑) - 
𝑈𝐴

𝑝𝑐𝑝𝑉
 (𝑥

31+ 𝑇1
𝑑−𝑇𝑗1

𝑑 ) 

∅32= 

𝐹𝑗1

𝑉𝑗

(𝑇𝑗10
𝑑 − 𝑥32 − 𝑇𝑗1

𝑑) +  
𝑈𝐴

𝑝𝑗𝑐𝑗𝑉𝑗

 (𝑥31 +  𝑇1
𝑑 − 𝑥32 − 𝑇𝑗1

𝑑) 

𝑓1  =  
𝐹+𝐹𝑅

𝑉
𝐶𝐴1 + 

𝐹𝑅

𝑉
𝐶𝐴2 − 𝑎𝐶

𝐴1𝑒−(𝐸 𝑅𝑇1))⁄ ; 𝑓2  =  
𝐹+𝐹𝑅

𝑉
𝐶𝐴1 + 

𝐹𝑅

𝑉
𝐶𝐴2 − 𝑎𝐶

𝐴2𝑒−(𝐸 𝑅𝑇2))⁄ ; 𝑓3  =  
𝐹+𝐹𝑅

𝑉
𝑇1 +

 
𝐹𝑅

𝑉
𝑇2 − 𝑎𝐶

𝐴1𝑒−(𝐸 𝑅𝑇1))⁄ −
𝑈𝐴

𝑝𝑐𝑝𝑉
 (𝑇2 − 𝑇𝑗2);𝑓4  =  

𝐹+𝐹𝑅

𝑉
𝑓1 −

𝐹+ 𝐹𝑅

𝑉
+ 𝑎𝑒–(𝐸 𝑅𝑇1))⁄ ∗ 𝑓2 − 𝑎

𝐸

𝑅𝑇2
2 𝐶

𝐴2𝑒−(𝐸 𝑅𝑇2))⁄ 𝑓3 

 

The (1) to (7) were presented with the objective of covering the system output to zero. This was 

achieved using the uncertain parameters in (4) and (5) to develop control algorithms that will be programmed 

in the PLC to control the complex reactors. The objective function is to use the flow rate (𝐹𝑗) of coolant as 

input to stability of the reactor as the controlled concentration in (8); controlled temperature in (9) and the 

control temperature change of the coolant as a result of thermodynamics within the reactor and then the 

difference between the coolant and its initial temperature presented in the (10). 
 

(𝑑𝐶𝐴)/𝑑𝑡 =  𝐹/𝑉 ∗  (𝐶𝐴0  −  𝐶𝐴)  −  𝑎 ∗  𝐶𝐴
𝑒

−
𝐸

𝑅𝑇
 (8) 

 

(𝑑𝑇)/𝑑𝑡 =  𝐹/𝑉 ∗  (𝑇0  −  𝑇)  −  𝑎𝑛/(𝑝𝑐_𝑝)  ∗  𝐶𝐴
𝑒

−
𝐸

𝑅𝑇  −  𝑈𝐴/(𝑝𝑐𝑝𝑉)  ∗  (𝑇 − 𝑇𝑗)  (9) 
 

(𝑑𝑇𝑗)/𝑑𝑡 =  𝐹𝑗/𝑉𝑗  ∗  (𝑇𝑗0  −  𝑇𝑗)  +  𝑈𝐴/(𝑝𝑗  ∗  𝑐𝑗  ∗  𝑉𝑗)  ∗  (𝑇 − 𝑇𝑗)  (10) 
 

2.2. Basics of the PLC  

The PLC operated based on the cyclic scanning method in which its operating system monitors the 

timer and the collected data from the input module to check the status of all input devices. The processor 

used the application software based on the workflow of the ACS algorithm programmed using the ladder 

logic method, to instruct and adjust the PLC control parameters to match the desired output, based on internal 

computations and then write the data into the output module, and the scan cycle continues. The power supply 

ensures the regulated power low into the entire system, via the conversion of the incoming alternating current 

into direct current. The input module connects the sensors and transmitters to the central processing which 

use the optimization algorithm programmed using ladder logic, structured text, or function block method to 

adjust the PLC control parameters to match the desired output and then used to control other output devices. 

The ethernet is the communication section of the PLC which is used to interface other computers for the 

monitoring and analysis of the technical process. The PLC programming specifications are in Table 1. 
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Table 1. The PLC specifications 
Parameters Values Parameters Values 

Current  4-20 mA Input port 3 
Program memory with run mode 12289 bytes Output port 3 

Program memory without run mode 16384 bytes Communication interface  RS485 

Data memory 10241 bytes Power supply  220-24 V/DC 
Backup memory  100 hrs Analogue adjustment  2 

Speed of computation  2 at 200 MHz Floating point  Yes 

 

 

2.3. Advance control algorithm 

In this section, AI-inspired control algorithms are proposed and presented to optimize control 

performance of PLC. Popular algorithms such as proportional integral derivate, genetic algorithm, and neural 

network algorithms are proposed respectively to facilitate tuning of the PLC control system. This performance 

will be comparatively analyzed the best selected for system integrated to optimize technical processes.  

 

2.3.1. Genetic algorithm 

Genetic algorithm (GA) is a random search used in solving complex optimization problems [36] like 

nonlinear parameter approximation in chemical processes. Jayachitra and Vinodha [37] added that the GA 

employed the rules of probability transition to handle generalized population of chromosomes which evolved 

through a series of iterations generations, pioneered by fitness tests, cross over, and mutation. GA takes four 

simple steps which are the population generalization, fitness selection, crossover, and mutation approach 

respectively to arrive at the optimum solution, and when the result does not converge, the output is feedback 

for another fitness test. Parameters used for the GA updates and computations are in Table 2; while the 

pseudocode is in Algorithm 1.  

The GA in Algorithm1, presents the traditional GA [38] for the optimization of PLC, however, this 

algorithm suffers among many limitations the issues of pre-mature convergence. This usually occurs when 

there is not enough search space for the algorithm to explore. It can also happen when there is not enough 

diverse between the mutation and crossover operation of the chromosomes or if the size of the chromosomes 

is very small [39]. To address this issue, the study proposed a novel counter-premature algorithm. 
 

 

Table 2. Parameters of the GA 
Parameter Values Parameter Values 

Population size  8000 Cross over operator  Due point with probability (P = 0.8) 
Representation  Mixed binary real Mutation operator  uniform  

Initialization  Random  Probability  0.01 

Scale factor  (5, 20) Proportional coeff.  0, 10 xmax (|umin|,|umax|) 
 

 

Algorithm 1. GA pseudocode  

1) Start  

2) Initiate the random population size of the variables in the exothermic reaction = 8000 

3) Set a reference standard for temperature and concentration 

4) Perform computation test with reference standards using the fitness model 

5) Get new offspring  

6) Generate new population  

7) Crossover sample 

8) Mutation  

9) Do until 

10) Best offspring is determined  

11) Generate best PLC control functions  

12) Return 

13) End 
 

This CPA is tailored towards optimizing the traditional GA (in Algorithm1) to address issues of pre-

mature convergence associated with GA, which might impact its reliability as a PLC optimizer. The 

algorithm begins by optimizing the population size of the chromosomes using a multiple population 

algorithm, as referenced in [40]. Initially, the population size is denoted as P, and the desired increase in 

population is represented as ΔP. The new population size is determined by adding ΔP to the initial 

population, resulting in P+ΔP. Next, the technique adjusts the crossover and mutation operations using a 

probability function that generates values between 0 and 1. The output of this probability function is utilized 
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to adapt the crossover and mutation rates, enabling the control of population diversity. To select the best 

outcome, the least square algorithm (LSA) referenced as [41] was applied.  

LSA evaluates the probability function's output and identifies the best outcome, designated as N. This 

best outcome is recommended as the foundation for the next generation. To determine the Pareto-optimal 

solutions, a multi-objective evolution algorithm referenced as [42] was adopted to facilitate the discovery of 

solutions that simultaneously optimize multiple objectives while maintaining diversity. Furthermore, a local 

search operator was used to refine the best outcome obtained thus far. Through fine-tuning the algorithm's 

parameters, this local search operation aims to enhance the quality of the solution. Lastly, the refined best 

outcome serves as a basis for generating new offspring in the subsequent generation, thereby continuing the 

optimization process. In summary, the technique optimizes the population size, adjusts crossover and mutation 

rates using a probability function, selects the best outcome using LSA, applies multi-objective evolution to 

determine Pareto-optimal solutions, refines the best outcome through a local search operator, and generates new 

offspring. These steps collectively aim to improve the algorithm's performance and facilitate the discovery of 

optimal solutions for the traditional GA in Algorithm 1. The proposed CPA was presented as Algorithm 2. 

Algorithm 1 presents the traditional GA, while Algorithm 2 presents the proposed CPA. Collectively other 

algorithms were integrated as an improved GA for the optimization PLC for enhanced control of nonlinear in 

continuous stir tank reactor (CSTR) plant. The proposed GA was reported as Algorithm 3. 
 

2.3.2. Neural network algorithm 

To solve the control system problem of CSTR, feed-forward neural network (FFNN) [43], [44] was 

applied to optimize the PLC. The neural network was adopted from [45] and used to control the PLC. The 

neural network is a branch of ML that is inspired by the behavior of the human brain. The neurons have 

weights, biases, and activation functions. The neurons were configured considering the number of control 

parameters to determine the input and form of the network. The activation function was used to trigger the 

neurons to give output within the desired range based on the activation function type. In this case, the type 

considered is the tangent hyperbolic function, which produces output features within the range of -1 and 1 

and is connected at the hidden layers of the neurons, and then the purelin activation function, which is 

connected at the output of the neurons. The reason for the multiple activation functions is to ensure variation 

of nonlinearities, which helps improve the training process. The neural network was trained with data 

collected from the CSTR model at a steady state using Table 3. The data contain CSTR behavior parameters 

such as inlet flow rate of reactants A and B, concentration rate of products A and B, coolant temperature, 

inflow temperature, and coolant flow rate. The output target value is concentration of B which is the outlet. 

The training process was done with gradient descent-based training algorithm [46].  

During the training of the neural network with parameters in Table 4, mean square error (MSE) and 

Regression (R) were respectively used to measure the performance of the control laws. The MSE was used to 

measure the error that occurred during the training process, with the target value of zero and the R value of 1. 

The performance was validated using tenfold cross-validation technique, and the results are presented in 

Table 5. The result reported an average MSE of 0.03033e-10 and an R of 0.97614. The implications of the 

training result showed that the FFNN correctly learned the plant features and was also able to control 

dynamics correctly. The output produced with the FFNN training is the reference control law in Algorithm 4. 

 

2.3.3. PID control function  

The PID is one of the most used control functions of PLC optimization. The PID is made up of the 

integration of three mathematical functions which are the proportional, integral, and derivative functions 

respectively to form the control law. Each function compensates and helps adjust the gain of the other until a good 

approximation function is achieved for the plant constraints. The proportional function is presented using (11). 
 

𝑃 =  𝐾𝑃.𝑒𝑟𝑟𝑜𝑟 (𝑡) (11) 
 

Where Kp is the proportional gain; the integral term is presented (12). 
 

𝐼 =  𝐾𝑖 ∫ 𝑒𝑟𝑟𝑜𝑟(𝑡)𝑑𝑡
𝑡

0
 (12) 

 

Where 𝐾𝐼 =  
𝐾𝑝

𝑇𝐼
 is the integral gain, 𝑇𝐼  is the integral time constant. The derivative function was presented as (13). 

 

𝐷 =  𝐾𝐷
𝑑𝑒𝑟𝑟𝑜𝑟(𝑡)

𝑑𝑡
 (13) 

 

Where 𝐾𝐷 =  
𝐾𝑝

𝑇𝐷
 is the derivative gain. The relationship between the (8)-(10) was used to develop the PID 

controller as in (14). 
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𝐺 =  𝐾𝑃 (1 +  
1+ 𝑇𝐼.𝑇

𝐷𝑠2

𝑇𝐼
) =  𝐾𝑝 (1 +  

1

𝑇𝐼
+ 𝑇𝐷𝑠) (14) 

 

Algorithm 2. The CPA pseudocode 

1) Start 

2) Optimize chromosomes with multiple population algorithms 

3) Let the initial population size be P, and the desired increase in population size be ΔP 

4) The new population size is determined as P + ΔP 

5) Adjusting crossover and mutation 

6) The algorithm adjusts the crossover and mutation rates using a probability function between 0 and 1 

7) The output of the probability function is used to regulate the crossover and mutation operations 

8) This adjustment aims to influence the population diversity 

9) Selecting the best outcome with LSA as (n) 

10) Determine the pareto-optimal solutions with multi-objective evolution algorithm while maintaining 

diversity 

11) Refining the best outcome with local search operator 

12) Fine tune the algorithm for new offspring generation  

13) Recommend the offspring  

14) Return 
 

Algorithm 3. Proposed GA 

1) Start the control algorithm for the CSTR 

2) Optimize the control parameters using a CPA in algorithm 2 

3) Set the initial population size as P, and determine the desired increase in population size as ΔP 

4) Calculate the new population size as P + ΔP 

5) Adjust the crossover and mutation rates within the GA to enhance the exploration and exploitation 

capabilities of the algorithm 

6) Use a probability function between 0 and 1 to regulate the crossover and mutation operations, aiming to 

influence the population diversity and improve the quality of the solutions 

7) Select the best outcome using the LSA and designate it as N 

8) Utilize a multi-objective evolution algorithm to determine the Pareto-optimal solutions while 

maintaining diversity among the solutions 

9) Employ a local search operator to refine the best outcome obtained so far, aiming to further improve its 

quality and convergence properties 

10) Fine-tune the algorithm's parameters and control settings to enhance the generation of new offspring 

11) Recommend the offspring, which represents the next generation of control actions or set-points for the CSTR 

12) Return to continue the iterations of the GA, iterating through steps 2-11 to further optimize the control 

of the CSTR 
 

Algorithm 4. FFNN control function  

1) Start  

2) Load CSTR data at steady state 

3) Split into training and test (80:20) 

4) System identification as nonlinear auto regressive moving average 

5) Configure neural network architecture  

6) Activate neurons with tanh function at the input layer  

7) Start gradient descent algorithm  

8) Set MSE target ≈ 0 

9) Start training neurons  

10) Activate neurons with purelin activation function at the output layer  

11) If MSE ≈ 0 

12) Stop training  

13) Generate reference neuro control function  

14) Else  

15) Adjust neurons  

16) Do until 

17) MSE ≈ 0 

18) Apply step (12) 

19) Stop training 

20) End  
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Table 3. Steady state parameters of the CSTR 
Parameters Unit Value Parameters Unit Value 

Volumetric flow rate m3/h 1.00000 Boltzmann’s ideal gas constant  kcal/kgmol 1.98590 
Reactor Volume  m3 1.00000 Reaction heat  kcal/kgmol -5960 

Pre-exponential non-thermal factor  1/h 3.5562e+08 Capacity of heat density  m3k 470.30 

Activation energy  kcal/kgmol 11851.4 Heat transfer  kcal/k*h 145.101 
Set point (T and C)  K and mol/m3 311 and 11 Boltzmann’s ideal gas constant  kcal/kgmol 1.98590 

 

 

Table 4. FFNN training parameters  
Parameter Values Parameter Values Parameter Values Parameter Values 

Hidden layer 7 Training samples 8000 Delay output 2 Max. interval (s) 20 
Interval (s) 0.2 Max. plant input 3 Max. output 3 Min. interval (s) 5 

Delay input 2 Min. plant input 0 Min. output 3 Training epochs  200 

 

 

Table 5. Training and valid 
S/N MSE Regression 

1 0.002845e-10 0.9729 

2 0.005423e-10 0.9752 

3 0.004535e-10 0.9832 
4 0.024165e-10 0.9539 

5 0.048345e-10 0.9809 
6 0.030245e-10 0.9817 

7 0.04532e-10 0.9811 

8 0.05287e-10 0.9837 
9 0.03412e-10 0.9749 

10 0.05542e-10 0.9739 

Avg 0.03033e-10 0.97614 

 

 

3. RESULTS AND DISCUSSION 

The models of the CSTR and the three ACS algorithms used for the optimization of the PLC were 

tested in an experimental test made of Siemens PLC, laptop installed with Studo500 software, human 

machine interface, somatic manager software. The parameters in Tables 1-3 were used for the programming 

with the reference temperature set-point changes from 311-313(𝐾) and concentration at 10-10.3 (𝑘𝑔𝑚𝑜𝑙/
𝑚3). The performance of the plant was changed via the introduction of step change at various instances of 

the technical process, while the control algorithms were monitored considering overshoot and response time 

as the try to adapt and follow the reference set-point and perform disturbance rejection. The batch reactor 

presents the dynamic behavior of the two connected tanks whose concentration were modelled in the (1) and 

(2), temperature dynamic modeled in (3) and (4), and then volumetric flow rates of the flow modelled in the 

(5) and (6). To control the system, the variations between input and controlled variables are defined as errors 

(𝑥1, 𝑥12, 𝑥21, 𝑥22, 𝑥31, 𝑥32). These errors are related to the input and controlled concentrations (𝐶𝐴𝐹  , 𝐶𝐴2
𝑑 ), 

input and controlled temperatures (𝑇𝐹 , 𝑇𝐹
𝑑 , 𝑇𝐽2, 𝑇𝐽2

𝑑 , 𝑇1, 𝑇1
𝑑, 𝑇𝐽1, 𝑇𝐽1

𝑑 ). The experimental setup used for the data 

monitoring of the batch reactor was presented in Figure 1.  
 
 

 
 

Figure 1. The experimental setup 
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The experimental setup was used to monitor the thermodynamic process of the batch reactor plants. 

The objective was to use its uncertain parameters as in (4) as input to each of the control algorithms and then 

improve the PLC for better control of complex reactors. Table 3 was used for the testing parameters, in two 

different tests, while the result of test 1 comparative response of the algorithms (PID, Improved GA, ANN) 

using error temperature from the reactor as in (7) as input to control the plant and produce the stabilized 

controller output result in Figure 2 which was produced from (8) and also the controlled temperature for the 

three algorithms as modelled in (9) and reported in Figure 3. These control outcomes were achieved from the 

injected coolant in (10) which also produce the result in Figure 4. 

Figures 2-4 present the result of the plant test with the three ACS developed to optimize the 

performance of the PLC. Figure 2 shows the control concentration of the plant which was achieved due to the 

temperature control response in Figure 3, using the coolant in Figure 4. The result showed that the three ACS 

all followed the reference set-point to control the variation in concentration in (1) and temperature variation 

in (2). The PID functions each approximated the control parameters and sum up the three computed outputs 

as the control function as modeled in (14) to approximate the plant. The improved GA in algorithm (3) on the 

other hand collects the population size of the plant using the CPA algorithm to optimize the population and 

address pre-mature convergence problem, then apply fitness test to generate new samples which converge 

and control the plants after series of mutation and crossover.  

 

 

  
 

Figure 2. Controlled concentration 
 

Figure 3. Controlled temperature 

 

 

 
 

Figure 4. Coolant temperature 

 

 

From the result, it was observed that the PID experiences overshot, while that of the GA was slight. 

The reason for the overshot in the GA despite the optimization with the CPA algorithm was due to the 

uncertain characteristics of the thermodynamic process which changes with time and may not be captured by 

the GA. Furthermore, the ANN was able to control the overshoot and achieved a better steady state with the 

plant. Similarly, at the point of step change of the various instances, the PID and G.A overshoots (see Table 6 

for overshoot percentage), while trying to reject disturbance, also the ANN perfectly follows the reference 

set-point and controls the plant with a limited overshoot of 1.12%. Another test 2 was performed, setting the 

initialize temperature and concentration of the plant at 310.5-313.5(𝐾) and concentration at  

10-10.25 (kgmol/m3), while the temperature instances were varying at various steps of the technical 

process, to give room for the evaluation of the ACS algorithm used to optimize the PID. The results were 

presented in Figures 5-7, while more analysis was presented in Table 7. 

From the result of the test result, it was observed that the variation of temperature, in the various 

instances affects the concentration of the plant, while the PID, GA, and ANN algorithms try to reject 

disturbance on the plant. The steady state was achieved via the injection of the coolant into the reactor. From 

the outcome, it was observed that the control algorithms followed a similar trend in the first test, with the PID 

and G.A experiencing overshoot, while ANN overshoot was minimal as in Table 6, also is the comparative 

response of test 2 in Table 7. 
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Tables 6 and 7 present the comparative analysis of the control algorithms tested on the nonlinear 

plant. The result showed that the FFNN-PLC achieved a better control response considering the overshot and 

response time to disturbance rejection when compared with the GA and PID counterparts. The reason was 

due to the intelligence of the neurons which understand the plant behavior and use the reference to track the 

set points. The overshot and delay experienced by the GA was due to the tie it takes to collect the 

chromosomes, perform fitness, and mutation until the desired control response is experienced. These results 

in delays in the plant, likewise the case of the PID where its individual P-I-D mathematical functions act on 

the constraints to reject disturbance and control the plant. 

 

 

  
 

Figure 5. Controlled temperature 
 

Figure 6. Controlled concentration 

 

 

 
 

Figure 7. Coolant temperature 
 

 

Table 6. Test 1 comparative response 
Control laws Overshoot (%)  Settling time (samples) 

PID- PLC 31.25 23.13 

GA- PLC 12.15 35.00 
FFNN-PLC 1.12 8.75 

 

Table 7. Test comparative response 
Control laws Overshoot (%) Settling time (samples) 

PID- PLC 35.17 27.00 

GA- PLC 22.31 41.00 
FFNN-PLC 3.00 10.30 

 

 

 

- Data availability 

The data used for this work is available at kaggle.com/datasets/eddardd/continuous-stirred-tank-

reactor-domain-adaptation.  
 

 

4. CONCLUSION 

This research has successfully evaluated the impact of various control algorithms on the PLC and 

tested during complex technical processes, where multiple constraints are controlled. From the review of 

literatures, it was observed that many works have been presented which optimized PLC performance during 

control of nonlinear system, however this paper focused on extending this PLC functionality to more 

complex nonlinear systems, considering G.A, PID, and ANN respectively as the control algorithms tested 

separately on a complex thermodynamic process. From the result, it was observed that all three algorithms 

tried to follow the reference set-points and control the plant; however, their behavior during this process 

varies considering settling time and overshoot. The PID experiences overshoot and hence not recommended 

for the control of multi-variant dynamic systems, the improved GA recorded good control performance with 

limited overshoot but suffers delay training time The ANN achieved better response to disturbance 

identification and rejection when compared to the PID and the improved GA. Overall, it can be deduced that 

optimizing PLC it neural network control algorithm will provide the needed adaptive control functionality for 

the approximation of complex nonlinear systems. 
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