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 One of the critical factors influencing the overall development of modern 

power systems is the control of active and reactive power flows in distribution 

power systems. The static synchronous compensator (STATCOM) with 

storage energy is a powerful device that can control active and reactive power 

flow in a distribution system. A simulation model of power management using 

STATCOM with energy storage is presented in this paper. A fuzzy logic 

controller is proposed to manage the powers. The simulation results 

demonstrate STATCOM's ability to manage the active and reactive power 

flow in a controlled distribution line, and thus the powers regulated between 

feeders, by utilizing storage energy. 
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1. INTRODUCTION 

Devices for the flexible AC transmission system (FACTS) are commonly split into two categories: 

controllers based on voltage source converters and controllers based on other types of voltage source 

converters. Non-converter-based FACTS controllers, such as thyristor-controlled series capacitors and static 

volt-ampere reactive (VAR) compensators, have the advantage of being able to produce or absorb reactive 

power MVAR without the usage of AC reactors and capacitors. Converter types based on FACTs devices and 

controllers include SSSC and STATCOM and two converter types unified power flow controller (UPFC) and 

IPFC that have the ability to independently control the parameters voltage, current, and reactive and active 

power flow on transmission or distribution lines [1]. 

The power flow through an alternating current distribution line is affected by the line's impedance, 

the amplitude of the voltages at the sending and receiving ends, and the phase angle between these voltages. 

The distributed power between the feeders is dependent on the impedance and reactance of the network's 

transmission or distribution [2]. The static synchronous compensator (STATCOM) is the second-generation 

member of FACTS devices that utilizes the synchronous voltage source (SVS) concept to provide a 

comprehensive control capability for distribution systems. Under the scope of standard power distribution 

system principles, the STATCOM with energy storage (ES) may control all parameters impacting power flow 

in distribution lines simultaneously or selectively. Alternatively, it can give the exceptional functional capacity 

of independently managing both active and reactive power flows in the distribution system [3]. 

https://creativecommons.org/licenses/by-sa/4.0/
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The STATCOM is connected in parallel with a distribution line and primarily consists of a 3-phase 6-

pulses bridge inverter that is controlled by the STATCOM controller to inject 3-phase synchronous  

currents [4]. A STATCOM without ES can regulate reactive-power as a source. It provides the desired amount 

of reactive-power that can be generated or absorbed solely through power electronic processing of the reference 

signal of voltage or current waveforms in a voltage-source converter (VSC). Figure 1 shows the schematic 

diagram of STATCOM where, Figure 1(a) depicts a STATCOM single-line diagram in which a VSC is coupled 

to a controlled bus via a magnetic coupling reactor and Figure 1(b)depicts a STATCOM as an adjustable 

voltage converter (ESTATCOM or Es) back of a reactance, implying that no capacitor banks or shunt reactors are 

required for reactive-power production and absorbing, resulting in a simple package, compact size, low noise, 

and minimal magnetic impact. The current injected at the utility bus is where the voltage Eutlity (Et) and the 

current at DC side Idc and the voltage is Vdc also the injected current ISTATCOM (Iq): 
 

𝐼𝑆𝑇𝐴𝑇𝐶𝑂𝑀 =
𝐸𝑆𝑇𝐴𝑇𝐶𝑂𝑀−𝐸𝑢𝑡𝑖𝑙

𝑋𝑠
 (1) 

 

where ISTATCOM delivered or absorbed power to/from the grid. 
 
 

 

 

(a) (b) 

 

Figure 1. Schematic diagram of STATCOM (a) power circuit and (b) an equivalent circuit 
 
 

Figure 2 depicts a typical voltage-current STATCOM characteristic. As shown in Figure 2, the 

STATCOM is able to provide compensation in both capacitive and inductive directions, and it is also capable 

of independently controlling the injected current to the network's common point through its rated range 

maximum inductive side or capacitive side, regardless of the network side's current or voltage. STATCOM is 

able to provide reactive power for capacitive/inductive compensation at any voltage level, including for less 

than 0.2 pu. Another advantage of STATCOM's technology is its capable to generate full capacitive/inductive 

current regardless of the grid's voltage. This means that STATCOM is able to provide a constant current to the 

grid. This feature is especially beneficial when the STATCOM is required to support the power system's 

voltage during and after disturbances, when system voltage collapse would be a limiting issue [5]. 

The STATCOM has increased transient rating currents supplies from the inverter in both inductive 

(ESTATCOM < Eutlity) and capacitive operating regions (ESTATCOM > Eutlity), as shown in Figure 2. The highest 

permissible transient overcurrent with in capacitive area is determined by the maximum current turn-off 

converter switch's capabilities. The switches of the converter are naturally commutated in the transient 

inductive area; thus, the STATCOM transient-current rating is constrained by the maximum junction 

temperature of the switch's converting [6]. In actuality, semiconductor converter switches include internal 

losses; as a result, the amount of energy stored in the capacitor as dc power is eventually used to offset the 

internal losses of the switches converter, and the dc energy stored as voltage declines. When the static 

synchronous compensator is used to generate reactive power, the converter can keep the capacitor voltage 

constant [7]. This is achieved by permitting the output converter voltages to lag behind the AC-grid voltages 

at common connection by a modest angle (typically within the range of 0.2–0.3). Within that technique, the 

switches converter takes a little amount of active power from the grid system to compensate for the switches' 

internal losses and maintain the desired voltage of the capacitor [8]. This identical mechanism controls the 

voltage used to decrease or increase the capacitor voltage and, consequently, the magnitude of the converter-

output voltage as well as the phase shift used to regulate the reactive power (VAR) that is absorbed or  
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generated [9]. As a result, the megawatts (MW) and MVAR (active and reactive-power) can exchange between 

STATCOM and the grid via a single connection that can be adjusted independently as shown in Figure 3 for 

various power combinations active and reactive power generating or absorbing depending on magnitude of 

ESTATCOM and phase shift between ESTATCOM and Eutlity  [10]. 
 

 

 
 
 

Figure 2. The voltage vs current characteristic of STATCOM 
 

 

 
 

Figure 3. The power exchange 
 

 

2. ACTIVE POWER MANAGEMENT 

STATCOM with connection of battery as an energy storage, connected in shunt to the grid 

arrangement as shown in Figure 1 at the point of common coupling (PCC). It is able to compensate Active 

and/or Reactive power independent of the grid parameters voltages and currents control ability. Energy storage 

(ES) battery, DC-to-DC converter in bidirectional process, a three phase-inverter with controlled switches and 

injected reactor as output connected to the grid at PCC without the need for an intermittently efficient huge 

transformer are the primary sections [11]. A reactive power compensator-based STATCOM with an inverter 

requires an interrupted transformer with step-up to its output level to work on an AC grid [12]. DC load with 

a low power factor (PF) result in a penalty for the DC load's operator from the utility. Similarly, the use of 

energy storage batteries to generate active power in MW at a common coupling point in order to meet the 

intermittently large power demand from the grid utility can avoid the hefty penalties imposed by the use 

supplier to the DC operator due to the infrequently large load demand from the grid utility [13]. STATCOM 

can compensate based on energy storage (ES) likely used to provide uninterruptible power supply (UPS) supply 

at utility of grid level in the absence of a power utility [14]. Consequently, it is necessary to maintain operating 

costs by avoiding penalties and increasing electrical efficiency through the power compensation benefits for 

both active and reactive loads connected [15], [16]. The following equations illustrate the simultaneous 

independent compensation of reactive (q) and active power (p) using STATCOM, which can be achieved by 

controlling magnitude and also δ (phase shift between VS, the STATCOM output voltage, and VGRID, the grid 

voltage at PCC parameters: 

 

𝑝 =
3𝑉𝐺𝑅𝐼𝐷𝑉𝑆 sin 𝛿

𝜔𝐿
  (2) 
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𝑞 =
3𝑉𝐺𝑅𝐼𝐷(𝑉𝑆 cos 𝛿−𝑉𝐺𝑅𝐼𝐷)

𝜔𝐿
  (3) 

 

Where VGRID is the grid voltage, VS is the output of STATCOM, L smoothing reactor and ω=2πf line frequency. 

Referring to Figure 1(b). During normal DC operation, the load is supplied by the AC power grid. Real power 

from the network is also absorbed to charge the storage battery [17] when VGRID leads VS with phase δ<0. 

Similarly, real power is delivered to the network when the voltages VGRID lag behind VS with a phase shift of 

( δ> 0) [18]. This is accomplished by discharging energy stored in batteries due to abnormal conditions in 

network power losses to DC or unusually high DC load demand [19]. Real power flow to the network is zero 

when there is no phase shift between VGRID and VS, or when δ = 0 [20]. Utilizing a reactive power VAR 

compensator to supply VAR at the network's PCC so that the displacement factor of line in PCC is unity [16]. 

STATCOM acts as a compensator when the current is lagging and as a VAR source when VS is greater than 

VGRID. In the same manner, STATCOM acts as a compensator with current in leading to supply reactive power 

in lagging when VS<VGRID [19]. When both VS and VGRID are equal, reactive power compensator supplies will 

be 0 VAR [21]. Table 1 and Figure 4 show the calculated real and reactive powers p & q at grid voltage (VGRID) 

in per unit with respect to VS, greater than or less than VGRID by using (2) and (3) respectively. The series-

connected reactor (smoothing reactor) is to be set to 5% of the line's impedance. Figure 4 depicts the 

relationship between active and reactive power and phase angle for the two cases VS<VGRID and VS>VGRID. 
 

 

Table 1. Active and reactive vs phase angle 
 VS>VGRID VS<VGRID 
δ Active Power P Reactive Power q Active Power P Reactive Power q 

5 1.00301 0.948571 1.01011 -1.00697 

4 0.801354 0.964286 0.808824 -0.99024 
3 0.48909 0.978571 0.413603 -0.9205 

2 0.300978 0.985714 0.367647 -0.90656 

1 0.150489 0.992857 0.340074 -0.89261 
0 0 1.015714 0 -0.86471 

-1 -0.15049 0.992857 -0.34007 -0.89261 

-2 -0.30098 0.985714 -0.36765 -0.90656 
-3 -0.48909 0.978571 -0.4136 -0.9205 

-4 -0.80135 0.964286 -0.80882 -0.99024 

-5 -1.00301 0.948571 -1.01011 -1.00697 

 
 

 
 

Figure 4. Active and reactive power vs phase angle 
 

 

3. POWERS MEASURING 

Instantaneous power theory was utilized for rapid response to any change in the grid's real and reactive 

powers. Watanabe et al. [16] developed the instantaneous power theory, also known as the p-q theory, in 1983 

with the goal of applying and controlling active power filter (APF). The pq theory is based on Time-Domain 

analysis, which is relevant and valid for both transient and steady-state analysis, and is able to be applied to 

the general form of current and voltage in the power system's waveforms, allowing real-time control of active 

power filters (APFs) [22]. Another advantage of pq theory is its simplicity in calculations, which includes an 

exception to the separation requirement between the alternated value and mean value in the calculated 
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components of power [23] for algebraic calculations. The "Clarke Transformation" is used by the pq theory to 

change a reference frame system of abc coordinates to α-β-0 coordinates [24]. 
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The active and reactive power compensation is then computed as (6), 

 

[
𝑝
𝑞] = [

𝑣𝛼 𝑣𝛽

𝑣𝛽 −𝑣𝛼
] [

𝑖𝛼
𝑖𝛽

]  (6) 

 

from the matrix above the active and reactive power are: 

 

𝑝 = 𝑣𝛼𝑖𝛼 + 𝑣𝛽𝑖𝛽 (7) 

 

𝑞 = 𝑣𝛽𝑖𝛼 − 𝑣𝛼𝑖𝛽 (8) 

 

where iα and iβ are the two-orthogonal components of the line currents ia, ib and ic and vα and vβ are the two-

orthogonal voltage components of the voltage and va, vb and vc are the phase voltage.  

The desired reactive and real power values, pref and qref, are compared to the measured values, p and 

q, to generate error signs Δp and Δq. These signs are processed in the controller, which does the (9) and (10). 

 

𝛥𝑃 = 𝑝𝑟𝑒𝑓 − 𝑝 (9) 

 

𝛥𝑞 = 𝑞𝑟𝑒𝑓 − 𝑞 (10) 

 

The injected currents after modify the active and reactive power in pq theory: 
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] (11) 

  

where i'α and i'β the injected orthogonal currents, the inverse Clarke transformation to get the injected three 

phase current: 
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where i'a, i'b, and i'c are the injected currents in three phase form. 

The control system of power management is shown in Figure 5. It consists of inputs of two signal 

three phase voltages and currents are convert to two pair of orthogonal signals iα and iβ, vα and vβ. Clarke 

transforms are used to determine the measurement real power p and reactive power q based on the line voltage 

and current. Such signals are used to provide feedback to the control system with a closed loop. The desired 

real and reactive power pref and qref are then evaluated to the measured p and q to generate error signals Δp and 

Δq, which are sent to the controller. These fault signals are processed in the controller, which does the 

following: Then the currents that compensated are determined by (12). The compensated currents are i'α and i'β 

convert to three phase for injection to compensate the active and reactive power respectively. 
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Figure 5. Block diagram of power management 
 

 

4. CONTROL SCHEME 

The selected controller was fuzzy control (FC). It is suitable for approximate reasoning systems or 

uncertain systems, particularly those that are difficult to model mathematically [25]. In this paper, FC is 

employed as a PI controller: 

 

𝑖𝑠(𝑡) = 𝐾𝑃  𝐸𝑟𝑟𝑜𝑟𝑝 + 𝐾𝐼 ∫𝐸𝑟𝑟𝑜𝑟𝑝  𝑑𝑡 (13) 

where: 

is: is the parameter (the current of STATCOM) 

Errorp: is the controller fault signal 

KP and KI are gains of proportional and integral, respectively. 

The derivative for (13) is (14). 

 

𝑖́𝑠 = 𝐾𝑃𝐸𝑟𝑟𝑜𝑟𝑝́ + 𝐾𝐼𝐸𝑟𝑟𝑜𝑟𝑝 (14) 

 

The procedure defined by (13) and (14) is then converted into a set of fuzzy rules [26] to drive a FC that 

functions like a PI controller. The inputs supplied to the controller are vectors of the output from (13) and (14) 

respectively, (Δp) as well as the error signal change (Δerrorp), and the output of the controller controls the 

inverter pulses. Table 2 displays the Errorp/Δerrorp (error and change) values for fuzzy-like PI. In this Fuzzy 

logic controller, the two input variables to the FC were partitioned into five-membership triangle functions 

(NB, NS, Z, PS, PB) whose terms denote the following: (negative big, negative small, zero, positive small, 

positive big). Consequently, there are twenty-five control rules for two input signals. The form type having a 

50 percent overlap. Figure 6 depicts the proposed FC structure. The error between the testing and training 

stages is around 1.75×10-7, and all intended output values are achieved. 
 
 

Table 2. Rules-based values for fuzzy logic controller 
PB PS Z NS NB Errorp/Δerorrp 

1 1/2 0 -1/2 -1 

Z NS NB NB NB 1 NB 
PS Z NS NS NB -1/2 NS 

PB PS Z NS NB 0 Z 
PB PS PS Z NS 1/2 PS 

PB PB PB PS PB 1 PB 

 

 

 
 

Figure 6. Block diagram of fuzzy logic control 
 
 

5. MODELING AND SIMULATION RESULTS 

As shown in Figure 7, the suggested system model comprises of a feeder with two load branches and 

three busbars. The STATCOM system is installed between busbar 1 (B1) and busbar 3 (B3) to compensate the 

power in busbar 1 (B1). The test begins by varying the loads in two branches and measuring the three-phase 

voltages and currents at B1; following a comparison with the reference value, the controller sends a signal to 

start injecting current starts at 1sec, as depicted in Figure 8. The real and reactive powers at B1 change from 

0.84 pu to 1 pu for active power and from -0.82 pu to about -1 pu for reactive power, as depicted in Figures 9 

input1 

input2 

powers 

sugeno 

output1 

f(u) 
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and 10. The voltages in Busbars B1, B2, and B3 are depicted in Figure 11. A voltage drop occurs in Busbar B1 

due to an increase in load from the two branches; the voltage at Busbar B1 was less than 0.8 pu before to 

injection at t=1 sec, when it rose to approximately 1 pu. From the results, it can be shown that the voltage drops 

at the buses grew proportionally with the load; the greatest voltage drop was 0.8 pu within 1 second. Figure 12 

depicts the injection current following the reference value in response to any system change, the power losses 

in all cases not exceed 0.0162 pu. Figure 13 depicts the system's step-change response to active power. The 

figure shows that the new controller design (Fuzzy controller) has a smoother response and reaches the steady 

state faster than without the controller. 
 

 

 
 

Figure 7. The proposed model 
 

 

 
 

Figure 8. The current signal 
 
 

 
 

Figure 9. Active power 
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Figure 10. Reactive power 

 

 

 
 

Figure 11. Busbars voltages 

 

 

 
 

Figure 12. Injection current 
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Figure 13. Active power step change 
 

 

6. CONCLUSION 

In this paper, STATCOM with energy storage is deployed to manage active and reactive power in a 

distribution system. STATCOM with energy storage demonstrated the ability to control active power in 

addition to reactive power. The tuning algorithm is executed off-line using the ANN-fuzzy system concept. 

The tuning procedure is initiated by the rules specified by training the change in error for actual and reactive 

power. Real-time implementation of the controller is possible due to its low processing time. The proposed 

controller has been effectively implemented to regulate the reactive power and then the line voltage at busbars, 

particularly those closest to the STATCOM. The simulation findings indicate that the proposed strategies 

employing a fuzzy logic controller based on STATCOM can give appropriate performance for managing the 

active and reactive power as well as the bus voltage. 
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