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 This research paper proposes the integration of power electronics and 

internet of things (IoT) technologies to apply in shrimp farms. By focusing 

on the design of a front-end converter, a three-level half-bridge (3L-HB) 

DC-DC converter with the zero voltage and zero current switching (ZVZCS) 

technique is chosen to be the front-end power converter to supply the DC 

bus voltage for the variable frequency drive (VFD) inverter for the paddle 

wheel machine in the shrimp pond. To confirm the effectiveness and 

possibility of the proposed concept, the circuit was theoretically designed 

and tested at 540 Vdc of the input voltage, 700 Vdc of the DC bus voltage 

and 3 kW of rated power. It is found that, the front-end converter can step up 

the DC bus to be 700 Vdc which is enough for operating the VFD inverter. 

All switches can achieve the soft switching condition ZVZCS resulting in 

decreasing the switching loss and increasing the reliability of the circuit. The 

maximum experimental efficiency of the front-end converter is 94.9% at 

75% of a full load. In addition, the introductory concept of using the IoT 

system also presents to improve the shrimp farming method. 
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1. INTRODUCTION 

- Motivation and incitement 

Nowadays, shrimp farming could be considered as one of the main agricultural industry in Thailand. 

From the report of department of trade negotiations Thailand in 2022, Thailand is the 6th fresh shrimp 

exporter of the world with 1,577.6 million US dollars of total export value. From the fact that, Thailand used 

to be the 1st fresh shrimp exporter of the world during the period from 2007 to 2012. However, the lack of the 

competitive ability of Thailand in the last few years are the results of the inefficient management and the 

higher production cost comparing to the other country. Due to most shrimp farms in Thailand are small and 

medium farms, they still use traditional methods without any new technology because of the shortage of 

capital and they do not understand the problems from the past round. 
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- Literature review 

From the climate change issue, many shrimp farms have changed the type of energy sources from 

the diesel fuel to electric energy for controlling paddle wheel machines which are used in shrimp ponds to 

maintain the quality of water dissolved oxygen (DO) and temperature in the pond to be appropriate for 

shrimp growth. Most of the farms use the classical motor control method such as on-off control and direct 

online starting (DOL) technique to control the induction motor of the paddle wheel machine because these 

techniques are simple and economical whereas they still have found some problems that waste their capital. 

For instance, the classical motor control method is not able to directly adjust the speed of the motor. They 

have to use the gearbox for changing the paddle wheel speed. This results in increasing the mechanical loss 

and decreasing the total efficiency of the system. Furthermore, the main drawback of DOL technique is the 

high starting current (about 5-7 times of the rated current) [1], which is the cause of the voltage dip in power 

line [2]–[6] resulting in the failure of other electric devices. To overcome the mentioned problems, a variable 

frequency drive (VFD) [7]–[10] inverter has been chosen to apply with the paddle wheel machine because it 

can easily adjust the speed of the induction motor. However, one of the major problems of using the VFD 

inverter is the under-voltage condition at the DC bus resulting in the overcurrent situation in the coils of the 

induction motor. The conventional VFD inverter uses boost DC-DC converter [11]–[17] to step up the DC 

bus to be appropriate with the requirement of the VFD inverter (about 600–700 V). Although boost converter 

can provide the desirable DC bus voltage, the main switch has to endure high power, high voltage, and high 

current stresses that can cause the failure of the VFD inverter. 

In order to deal with this important problem, many power DC-DC converters with soft switching 

techniques have been proposed in [18]–[20] which presents the zero-voltage switching technique (ZVS) to 

reduce the switching losses of switching devices at the turning on time. However, the ZVS technique cannot 

eliminate all switching losses. It still has switching losses at turning off time. To overcome this critical 

problem, the zero-voltage and zero-current switching technique (ZVZCS) has been suggested in the past 

researches [21]–[27] that can decrease the voltage stress and current stress on main switches resulting in 

directly decreasing switching losses of DC-DC converters. From literature reviews, this research will choose 

the three-level ZVZCS topology [28]–[32] to apply with the VFD inverter for the paddle wheel machine as 

the front-end converter because of some advantages such as high stability and high efficiency due to lower 

voltage and current stress on main switching devices, and high safety for the user due to the isolation of the 

high frequency transformer. 

- Contribution and paper organization 

Furthermore, another objective of this research is to motivate shrimp farmers in Thailand to 

emphasize how important is it for the new technology to improve their shrimp farming. Internet of things 

(IoT) [33]–[36] will be also applied in this research because it can provide data from electronic devices such 

as sensors, microcontrollers to users via the internet. This advantage can improve the management of shrimp 

farming and help farmers to decide in controlling of the paddle wheel machine by using the data from the IoT 

system. Based on the above information, this research will propose the concept to integrate the application of 

power electronics, IoT systems, and agriculture for improving the method of shrimp farming [37], [38]. 

However, this paper will only focus on designing the front-end ZVZCS DC-DC converter for applying to an 

IoT VFD Inverter system in the shrimp pond. 

 

 

2. THEORETICAL BASIS AND METHOD  

2.1.  The structure of this research 

Figure 1 illustrates the structure of the IoT VFD inverter system which composes of many parts as 

follows. Firstly, a VFD inverter generates the suitable three-phase voltage waveforms and supplies them to 

the induction motor of the paddle wheel machine in shrimp ponds. At the front side of the VFD inverter, the 

front-end ZVZCS DC-DC converter [39] is used to regulate the DC bus voltage to be appropriate with the 

input voltage specification of the VFD inverter. The related data and some parameters are detected and 

measured by sensors that can be divided into 2 parts: i) the quality of water and ii) electrical data. The quality 

of water consists of pH, temperature, and dissolved oxygen (DO). The electrical data are the DC bus voltage, 

the measured voltage, current and frequency values of the induction motor, respectively. These data will be 

transmitted to the IoT system via the microcontroller and then the data will be sent to the host server via the 

internet. The host server will collect all data and monitor it to users or farmers via the web application 

system. Farmers can easily access the data of the shrimp pond by electronic devices such as the laptop or the 

smart phone. From the data, farmers can decide to control the paddle wheel machine to maintain the quality 

of water for shrimp growth. 
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Figure 1. The structure of the proposed IoT VFD inverter system 
 
 

2.2. The front-end ZVZCS DC-DC converter  

Figure 2 illustrates the power conversion circuit of the IoT VFD inverter system that consists of 2 

parts (the front-end and the VFD inverter). The front-end converter is the three-level half-bridge ZVZCS DC-

DC converter and the VFD inverter is the conventional insulated-gate bipolar transistor (IGBT) inverter 

which are not mentioned in detail in this paper. The front-end converter receives the DC input voltage (Vdc,in) 

from the 3-phase rectifier circuit which is connected to the grid voltage source. The DC input voltage (Vdc,in) 

is divided to be 3-level voltage (0, Vdc/2 and Vdc) by both dividing capacitors (Cdc1 and Cdc2) before directly 

supplied to the 3L-HB inverter. The 3L-HB inverter consists of 4 MOSFETs (S1 – S4) that generate the high 

frequency voltage. At the output side of the inverter, the step-up high frequency transformer (Tr) with the 

leakage inductor (Llk) is used for stepping up the high frequency voltage, and the output bridge rectifier (Drec1 

– Drec4) is used for converting the secondary voltage waveform to be the DC voltage waveform. At the output 

of the front-end converter, there is the auxiliary circuit (Daux1, Daux2 and Caux) for completely achieving the 

ZCS condition for main switching devices. The output capacitor (Co) is used for filtering the DC output 

voltage before supplied to the VFD inverter. Finally, the conventional IGBT inverter (Q1 – Q6) is chosen to 

be the VFD inverter for driving the induction motor of the paddle wheel machine. 

At the DC bus, the dynamic braking circuit (IGBT, Qb and braking resistor, Rb) is used for 

protecting the capacitor Co from the failure in case of the DC bus voltage exceeds the limitation of rated 

voltage while the induction motor decreases the speed or brakes. Figure 3 shows some waveforms of the 

front-end converter which consists of PWM signals (G1 – G4) for all MOSFETs, the primary voltage (Vab) 

and the primary current (ia) waveforms of the high frequency transformer, the voltage, and the current 

waveforms of MOSFETs (S1 and S2).  It is found that, the phase-shift pulse width modulation scheme 

(PSPWM) is used for controlling the output voltage of the front-end converter. In addition, the ZVS and ZCS 

patterns can be observed on the waveforms of MOSFETs (S1 and S2). Due to this paper aims to apply the 

ZVZCS DC-DC converter to the VFD inverter, the operation mode will not be mentioned in details. 

However, the operation mode of the circuit has been described in [26], [27].  
 

2.3.  Design consideration of the front-end ZVZCS DC-DC converter 

 To design all parameters of the proposed front-end converter for the VFD inverter, the specifications 

of the circuit can be defined as follows: i) The rated power Pfront-end = 3 kW, the DC input voltage 

Vdc,in = 540 V; ii) The DC bus voltage at the output side of the front-end converter (DC Bus) Vdc,bus = 700 V; 

and iii) The switching frequency fsw = 65 kHz (the period Ts = 15.4 μs). Due to the use of PSPWM scheme in 

the front-end converter at any phase-shift angle time (θ), the ideal rectified voltage waveform at the front of 

the DC bus can be considered as shown in Figure 4(a) and calculated by (1). 
 

𝑉𝑑𝑐,𝑏𝑢𝑠 =
𝑣𝑠𝑒𝑐,𝑚𝑎𝑥×(0.5𝑇𝑠−𝜃)

0.5𝑇𝑠
 (1) 

 

According to (1), the maximum secondary voltage of Tr can be rearranged as (2). 
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𝑉𝑠𝑒𝑐,𝑚𝑎𝑥 =
𝑉𝑑𝑐,𝑏𝑢𝑠×0.5𝑇𝑠

0.5𝑇𝑠−𝜃
 (2) 

 

The maximum primary voltage of Tr can be given by (3). 

 

𝑉𝑝𝑟𝑖,𝑚𝑎𝑥 =
𝑉𝑑𝑐,𝑖𝑛

2
 (3) 

 

According to (2) and (3), the turn ratio of Tr can be given by (4). 

 

𝑛 =
𝑉𝑑𝑐,𝑖𝑛(1−

2𝜃

𝑇𝑠
 )

2𝑉𝑑𝑐,𝑏𝑢𝑠
 (4) 

 

Let θ = 5.12 μs (about 60 degree of phase-shifted angle) which can provide the maximum DC bus voltage at 

700 V, thus the turn ratio of the high frequency transformer (Tr) can be calculated by (5). 

 

𝑛 =
540(1−

2(5.12)

15.4
)

2(700)
= 0.13 (5) 

 

According to (5), the high-frequency transformer (Tr) was designed using the area product method 

(AP method).  From the design, a number of turns of primary and secondary coils equal to 5 and 38 turns, 

respectively and then the Tr was measured by the impedance analyzer to find its parameters, the leakage 

inductor (Llk) of Tr equals to 22 μH. On the part of selecting all semiconductor devices in the circuit, the 

rating of them was calculated by considering the safety factors. The IRFP460 (20 A and 500 V) was chosen 

as all MOSFETs (S1 – S4) and the RHRP30120 (30 A and 1200 V) was chosen as diodes (Drec1 – Drec4, Daux1 

and Daux2) by using 2 of RHRP30120 diode connected in series to support the secondary reverse voltage in 

practice. For the design of the auxiliary capacitor (Caux) to achieve the ZCS condition, it can consider in the 

resetting time mode as shown in the Figure 4(b). In this interval, the ZCS condition can be achieved for 

MOSFETs (S2 and S3) if the stored energy in Caux is greater than the stored energy in Llk of the high frequency 

transformer. The condition of ZCS can be given by (6). 

 
1

2
𝑐𝑎𝑢𝑥𝑉𝑐,𝑎𝑢𝑥

2 ≥
1

2

𝐿𝑙𝑘

𝑛2 𝐼𝑜
2 (6) 

 

In the retting time mode, the auxiliary capacitor voltage (Vc,aux) equals to the Vdc,bus. Therefore, the value of 

the auxiliary capacitor (Caux) can be calculated by (7). 

 

𝐶𝑎𝑢𝑥 ≥ 𝐿𝑙𝑘 (
𝐼𝑜

𝑉𝑜𝑛
)

2

= 48.7 𝑛𝐹 (7) 

 

According to (7), the value of the auxiliary capacitor (Caux) should be larger than 48.7 nF. Thus, the value of 

2 μF was chosen to guarantee the ZCS condition. 
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Figure 2. The power conversion circuit in this research 
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Figure 3. Some waveforms of the front-end converter 

 

 

 
 

 

(a) (b) 

 

Figure 4. The analysis of resetting time mode (a) ideal rectified voltage waveform and 

 (b) the retting time mode 

 

 

2.4.  The IoT system in this research 

According to Figure 5, the IoT system for the paddle wheel machine consists of main parts as 

follows: i) Inverter connection port is used to send important signals for operating the VFD inverter to 

control the frequency and speed of the paddle wheel machine; ii) LCD panel is used for monitoring all data in 

this research; iii) Keypad is installed for getting the command from the farmer in the manual mode; and  

iv) Remote communication port is used for communicating via the mobile system of the farmer. In this 

research, Raspberry Pi 4 Model B is selected to be the processor unit for controlling the hardware unit.  

Figure 6 reveals the Node-RED software which is developed for controlling the IoT VFD inverter by using 

the Python V.3 language to send the command to hardware in the IoT system. All measured data such as the 

operation mode, on-off time, and the speed of the paddle wheel machine are collected in the MySQL and 

influx database. In addition, the Node-RED software is used for developing the communication part for the 

farmer via the web application which can be illustrated in Figure 7.  
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Figure 5. IoT system in this research 

 

 

 
 

Figure 6. The development of the Node-RED software 

 

 

 
 

Figure 7. User interface developed by the Node-RED software 
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There are 3 output bits from the IoT system which connected with the inverter for adjusting the 

frequency of the induction motor as illustrated in Table 1. From Figure 7, there are 2 modes for controlling 

the paddle wheel machine which can be chosen by a Mode SW button. The first mode is the normal mode for 

operating and adjusting the speed of the motor by using the inverter at the fieldwork or via the smartphone. 
 

 

Table 1. The output bits from the IoT system for commanding the VFD inverter 
Case Frequency (Hz) D2 D1 D0 

1 0 0 0 0 

2 30 0 0 1 

3 35 0 1 0 
4 40 0 1 1 

5 45 1 0 0 

6 50 1 0 1 

 

 

3. RESULTS AND DISCUSSION  

In order to confirm the effectiveness of the front-end three-level ZVZCS DC-DC converter while 

operating with the VFD inverter for the paddle wheel machine in the shrimp pond. The prototype of the 

front-end converter was built and tested in the laboratory and the fieldwork. Some experimental results of the 

proposed circuit can be illustrated by using the parameters in Table 2. Figures 8-11 illustrate the voltage and 

the current waveforms of all switches (S1; S2; S3; and S4, respectively) in the front-end ZVZCS DC-DC 

converter. It was found that, switches S1 and S4 can meet the ZVS condition at turning on time of while the 

ZCS condition occurs at turning off time of switches S2 and S3. Thus, the switching loss can be eliminated 

significantly. 
 

 

Table 2. Parameters of the front-end converter 
Parameters Value 

Rated power 3 kW 
Rated DC input voltage (Vdc,in) 540 V 

Rated DC bus voltage (Vdc,bus) 700 V 

Switching frequency (fsw) 65 kHz 
Turn ratio of transformer, Tr (n) 5:38 

Leakage inductor (Llk) 22 μH 

Auxiliary capacitor (Caux) 2 μF 

 

 

Furthermore, the voltage stress on switches equals to Vdc,in/2 because of the use of three-level 

topology as an inverter part of the front-end converter. Figure 12 shows the voltage and the current 

waveforms at the primary side of the high frequency transformer (Tr) at 60 degree of phase-shifted angle and 

100% of the output load. Figures 13 and 14 indicate the DC voltage and the DC current waveforms at the 

input and output sides of the front-end converter at rated voltage and rated power. Figure 15 shows the graph 

of the relationship between the total efficiency of the front-end converter and the percentage of the output 

load at 2 μF of the auxiliary capacitor (Caux). It can be observed that, the maximum efficiency of the front-end 

converter is 94.9% at 75% of a full load. In addition, Figures 16 and 17 show the measured output waveforms 

of the VFD inverter by receiving the DC bus voltage from the front-end converter at 700 V. Finally, the 

power conversion circuit was installed at the fieldwork as shown in Figure 18 to confirm the possibility and 

the effectiveness the system. 
 
 

ZVS at turn ON

Vs1

is1

200 V/div

10 A/div

2 μs/div

 

ZCS at turn OFF

is2 Vs2

200 V/div

10 A/div

2 μs/div

 
  

Figure 8. Voltage and current waveforms of S1 Figure 9. Voltage and current waveforms of S2 
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Figure 10. Voltage and current waveforms of S3 Figure 11. Voltage and current waveforms of S4 
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Figure 12. Primary voltage and current waveforms at 

60 degree of phase-shifted angle (θ) 

 

Figure 13. Input voltage and current waveforms 
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Vdc,bus
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Figure 14. Output voltage and current waveforms 

 

 

 
 

Figure 15. The relationship graph between the total efficiency and the percentage of the output load 
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Figure 16. Output voltage (Vuv, 500 V/div) and current 

of the VFD inverter (Iu, 5A/div) 

Figure 17. Line to line voltage of the VFD inverter 

(Vuv, Vvw and Vwu; 1000 V/div) 

  

  

  
  

Figure 18. The research fieldwork (shrimp farm) 

 

 

4. CONCLUSION  

This research paper has presented the integration of power electronics together with IoT 

technologies for applying in shrimp farming. This paper focuses on the design of the proposed front-end 3L 

ZVZCS DC-DC converter to supply the DC bus voltage to the VFD inverter for the induction motor of the 

paddle wheel machine in the shrimp pond. The proposed circuit was installed and tested as illustrated in the 

experimental results with around 70 days of the runtime. It can be observed that, the front-end converter can 

step up the DC bus voltage to 700 V which is enough for operating the VFD inverter. All switches in the 

circuit can completely achieve the ZVZCS condition resulting in decreasing switching losses and increasing 

the reliability of the circuit. The proposed front-end converter can provide 94.9% of the maximum 

experimental efficiency at 75% of a full load and the cost effectiveness of the front-end converter is about 

8,000 THB per inverter set. 
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