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 The booming electric vehicle industry seeks fast charging solutions to 

address the safety risks posed by high-power charging, including thermal 

runaway and other safety issues. This study investigates the impact of 

combining liquid with thermoelectric cooling on battery thermal 

management. A series of experiments were conducted using various thermal 

batteries, liquid flow rates and batteries temperature thermoelectric. The 

experimental results compared air cooling (AC), water cooling (WC) and 

thermoelectric cooling (TEC) with different water flow (WF) rate in system 

and revealed that TEC with WF at 4.0 l/min was the best cooling system. 

This system can decrease the temperature by about 41-52% from the 

maximum temperature at discharge rates of 1.0, 1.5, 2.0, 2.5, and 3.0 °C. 

However, TEC with WF 1.0 and 2.0 l/min can effectively lower the 

temperature and reduce energy consumption compared to other cooling 

systems, while still maintaining the battery temperature within appropriate 

ranges. 

Keywords: 

Air cooling 

BTMS 

Thermoelectric cooling 

Water cooling  

Water flow rate 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Chaiyong Soemphol 

Research Unit for Computational Electromagnetics and Optical Systems (CEMOS) 

Department of Electrical Engineering, Faculty of Engineering, Mahasarakham University 

Kantarawichai, Maha Sarakham, 44150, Thailand 

Email: chaiyong.s@msu.ac.th 

 

 

1. INTRODUCTION 

Global energy trends need push using renewable options instead of fossil fuels [1]–[3]. 

Environmental effects speed up this change, expecting a rise in renewable electricity [4]. Renewable 

applications such as electronics, vehicles, and buildings are increasing [5]. Electric and hybrid technologies 

are gaining global attention as eco-friendly alternatives to traditional cars. Therefore, energy storage from 

renewables, particularly batteries, is crucial [6], [7]. To address these issues, efficient energy storage 

solutions are of optimum importance, and lithium-ion (Li-ion) batteries currently dominate the market due to 

their high energy density. 

Lithium ion (Li-ion)  batteries have the largest share of the market, accounting for about 45.3%  of 

the cost an electric vehicle (EV)  [8], [9].  Li-on batteries offer numerous advantages, including high power 

density, high energy density, small size, low self-discharge, and long lifespan [10]–[12].  However, 

overheating during operation is a significant issue for Li-ion batteries, particularly in the context of electric 
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vehicle (EV) applications [13]–[15]. Maintaining a suitable operating temperature range poses a challenge for 

battery thermal management systems (BTMS) for Li-ion batteries [16].  BTMS is required for maintain the 

battery temperature between 20 °C and 40 °C [17], [18]. Therefore, effective BTMS are essential to maintain 

optimal operating temperatures and ensure extended battery life and performance. 

BTMS refer to the technologies and strategies used to regulate and control the temperature of 

batteries in various applications, such as electric vehicles (EVs), hybrid vehicles, renewable energy storage 

systems, and portable electronics. BTMS technology is categorized into five main types: i) air cooling (AC), 

ii) liquid cooling (LC), iii) heat pipe cooling (HPC), iv) phase change material (PCM), and v) thermoelectric 

cooling (TEC), often combined in various configurations [19], [20]. In related research, in their study, 

Xu and He [21] introduced a dual U-shaped duct for forced air cooling during a 1C discharge test. The 

findings demonstrated a notable cooling effect, reducing the maximum temperature by 3.29 °C. 

Park and Jung [22], a comparison was made between the power consumption of air cooling and liquid 

cooling types in BTMS. The outcomes indicated significantly higher power usage for air cooling compared to 

liquid cooling. Karimi et al. [23] studied natural convection, forced convection, and liquid-based BTMS 

scenarios. Tuning inlet coolant temperature improved liquid-based BTMS by about 11.5% (23 °C to 30 °C) 

at 100 ml per minute flow rate. Behi et al. [24] introduced liquid cooling (LC) and liquid cooling with heat 

pipe (LCHP) BTMS designs for high-current discharges of Li-ion batteries. The findings highlighted 

improved performance of LC and LCHP compared to natural air-cooling, resulting in temperature reductions 

of 29.9% and 32.6% respectively within the battery module. Chen et al. [25] explored PCM in Li-ion battery 

BTMS through experiments. PCM absorbed heat during cycles, reducing peak temperature to around 54.4 °C 

to 12.3 °C lower than natural convection. Zhang et al. [10] introduced a dual method employing heat pipes 

and thermoelectric coolers in a Li-ion BTMS. Results showed heat pipes managed 1 C to 2 C discharge rates, 

while additional thermoelectric cooling was needed for higher rates. Liu et al.  [17] investigated BTMS 

employing TEC through simulations and experiments. The findings indicated TEC's efficacy in cooling 

batteries during elevated ambient temperatures, both in simulation and actual testing. However, initially, the 

simulated temperature slightly exceeded the experimental result at the end of discharge, with a maximum 

temperature difference of 2.6 °C after 10 minutes of testing. Li et al. [8] compared forced convection with a 

combination of TEC and forced convection in BTMS. They demonstrated that the latter, TEC coupled with 

forced convection, achieved the most effective cooling, reducing battery temperature by 16.44% during a  

3.0 C discharge. Lyu et al.  [26], evaluated thermoelectric cooling (TEC), forced air cooling, and liquid 

cooling methods for electric vehicle BTMS. The experiments revealed that the combination of TEC and 

liquid cooling achieved a significant surface temperature reduction of approximately 43 °C (from 55 °C 

to 12 °C). Behi et al. [27] studied fast discharging of lithium titanate oxide EV batteries using air cooling and 

heat pipes. Results showed temperatures of 56 °C, 46.3 °C, and 38.3 °C with natural convection, heat pipe, 

and combined cooling, respectively—reducing temperatures by about 17.3% (heat pipe) and 31% (combined) 

compared to natural convection. Alaoui et al.  [28] presented a solid-state hybrid BTMS with Peltier heat 

pumps, sinks, spreaders, and fans. Tests across -20 °C to 40 °C showed it effectively maintained 0 to 25 °C 

ambient temperatures. Zhang et al. [29] explored liquid effects on heat dissipation in lithium-ion BTMS via 

simulations varying inlet size, flow rate, and temperature. Ideal conditions were identified as 10 mm 

diameter, 0.02 m/s flow, and 298 K temperature. 

However, the previously discussed methods have distinct limitations. For example, techniques like 

air-cooling, while straightforward, fall short of meeting cooling demands due to limited heat dissipation 

efficiency. HPC technology is still in research stages due to its complexity and higher costs than other 

cooling methods. PCM, renowned for energy efficiency, entail intricate structures and demanding 

manufacturing. In contrast, liquid cooling utilizes water to lower battery temperatures. The strategic fusion of 

liquid cooling and thermoelectric cooling, commonly used in air conditioning [30], [31], electronic 

device [32], medical science [33], as well as agricultural applications [34]. Moreover, Abirami et al. [35] 

proposed to create a solar-powered device converting atmospheric moisture into drinkable water, with 

potential large-scale use and the idea of revolutionizing cooling engineering using low-power thermoelectric 

cooling devices.  

This study presents an experiment investigating a BTMS that combines water cooling and 

thermoelectric cooling techniques to address Li-ion battery overheating during high discharge rates (1.0 C to 

3.0 C). The BTMS utilizes a DC pump for variable water flow rates, ensuring precise temperature control. 

The study's primary goals are to assess the performance of this cooling system in maintaining batteries within 

the optimal operating temperature range and to evaluate its efficiency across different discharge rates. The 

outcomes will provide valuable insights for developing practical BTMS solutions in electric vehicle 

applications. 

The rest of this paper is organized as: i) Section 2 provides a comprehensive review of related 

literature and state-of-the-art BTMS technologies; ii) Section 3 details the experimental setup and test 
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scenarios used in the investigation, iii) Section 4 presents the results and discussion, offering a critical 

analysis of the cooling system's performance; and iv) Section 5 presents the conclusions drawn from this 

study and outlines potential future research directions for battery thermal management in electric vehicles.

 

 

2. METHODOLOGY AND TEST SCENARIOS 

2.1.  Battery thermal management system (BTMS) 

BTMS is the device responsible for managing/dissipating the heat generated during battery's 

chemical processes occurring in cells, allowing the battery to operate safely and efficiently. The BTMS aims 

to maintain ideal temperature conditions, preventing rapid battery degradation caused by excess heat from its 

components. This ensures continuous and optimal battery performance. 

There are numerous battery thermal models, and most research [10], [17], [23], [27], the temperature 

behavior of batteries is described within the discharge range of 1.0 C to 3.0 C, which is suitable for 

investigation. This range indicates a relatively low discharge rate where the heat generated and exchanged is 

not excessively high, making it suitable for in-depth investigation and analysis. In the experiments, the 

cartridge heater was used as a model for the battery heat generation, as it potentially exhibited similar 

behavior to thermal batteries.  The heater was prepared to cover the thermal behavior of a real battery, 

specifically the 18650 Li-ion battery. 

 

2.2.  Experimental set up 

A schematic diagram of the battery thermal cooling system, utilizing water cooling and 

thermoelectric cooling with different water flow rates techniques, is shown in Figure 1(a). The system can be 

divided into four parts: i) An adjustable heater, serving as a substitute for a thermal battery (heating element 

single-ended 1×12.6 cm2 cartridge heater AC 220 V 300 W electricity generation), ii) The water cooling 

system (25 °C, with flow rates of 0.2, 0.4, 0.6, 1.0, 2.0 and 4.0 l/min), iii) The thermoelectric cooling system 

(TEC) model type TEC1-12715, size 50×50 mm2 with internal resistance ranging from 0.72 to 0.98 ohms, 

and iv) a thermocouple (type K, with an accuracy of ± 1.5 °C) used for temperature measurement. The 

experimental devices and instruments were set up in the laboratory as shown in Figure 1(b), with the ambient 

temperature maintained at 25 ± 2 °C. The cooling systems, including air cooling, water cooling, and 

thermoelectric cooling with different water flow rates, were compared. All particular tests were conducted 

under various charge and discharge rates conditions. 
 

 

 
(a) 

 
(b) 

 

Figure 1. Shows elements used for experiment test set-ups (a) schematic of experiment setup and  

(b) photograph of setup 
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2.3.  Cooling system mode 

Cooling systems used as heat exchangers were categorized into three types: air cooling (AC), water 

cooling (WC), and thermoelectric cooling combined with a water flow rate system (TEC+WF): 

a) Air cooling (AC): In this system, the air directly sourced from the atmosphere was utilized for dissipating 

heat from the battery. 

b) Water cooling (WC): Water, chosen for its safety and low cost, was employed as the medium for heat 

exchange between the heater and cooling system. Water was at 20 °C ± 2 °C for each testing. 

c) Thermoelectric cooling TEC and water flow rate system (WF): This system involved the use of 

thermoelectric cooling in combination with a water flow rate system. 

Thermoelectric cooling (TEC) utilizes the Peltier effect as its main working principle. 

When an electric current is applied, it generates a temperature difference between the hot and cold sides of 

the device. The cold ends of a thermoelectric module in this study provided a temperature of 20  °C ± 2 °C 

(they should be stored between 20 °C and 25 °C to avoid dramatic reduction in operating lifetime) [36], [37] 

and water was circulated through the system. 

Water flow ( WF)  was facilitated by a brushless DC pump.  The pump ( model TL-B03, 5.16 W  

12 VDC, Max flow 6.5 l/min) was installed within the cooling system’s flow loop. It enabled the generation of 

water flow rates ranging from 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, and 4.0 l/min. 

 

2.4.  Experimental test scenarios 

The experimental test rig was set up and tested to obtain results for comparing the temperature of 

heater at discharge C rates of 1.0, 1.5, 2.0, 2.5, and 3.0 C. The test scenarios are divided in to three parts as: 

a) Temperature characteristic curve of the heater for each particular testing cooling mode under different C 

rates testing conditions. 

b) Average temperature characteristic curves of the heater for each particular testing cooling mode under 

different discharge C rates testing conditions. 

c) Normalized values of the heater temperature with each particular cooling modes (AC, WC, and TEC with 

WF) under different discharge C rates testing conditions. 

 

 
3. RESULTS AND DISCUSSION  

The results are organized as follow: the measured temperature surface is reported for each cartridge 

heater under each particular testing C rate level and different cooling modes.  The average surface 

temperature (Ts) of each heater surface is recorded for different testing C rate conditions. Additionally, the 

normalized values of the temperature surface for particular testing mode condition are also documented. 

 

3.1.  Experimental results of the AC, WC, and TEC with different water flow rates under different C 

rate of a battery conditions 

Table 1 shows the temperature readings of six heaters under different cooling modes: AC, WC, and 

TEC with water flow rates of 0.2 l/min. Table 2 shows TEC with water flow rates 0.4, 0.6, 0.8 l/min. Table 3 

shows TEC with water flow rates 1.0, 2.0 and 4.0 l/min. It can be observed each TEC with water flow that 

the temperature of the first row, which received cooling water at 20 °C as shown in Figure 1, was slightly 

lower than the temperatures of the other rows. In the TEC cooling mode, with a water flow rate of 4.0 l/min, 

the temperature of each heater increased at a slower rate compared to the AC and WC cooling modes. This 

was attributed to the accelerated water flow rates facilitated by TEC, which improved the heat dissipation 

capacity for all the heaters. However, TEC combined with water flow rates of 1.0, 2.0, and 4.0 l/min 

demonstrated the ability to effectively dissipate heat for all battery discharge rate conditions, as depicted in 

Table 1. Similarly, Table 2 shows the temperature readings for TEC combined with water flow rates of 0.4, 

0.6, and 0.8 l/min, and 1.0, 2.0, and 4.0 l/min in Table 3. 

 

3.2.  The measured average of each surface temperature Tavg of heater under different testing C rate 

conditions 

Previously in 3.1 presents the surface temperature for 6 cartridge heaters. For this part presents the 

average of each surface temperature. Figure 2 displays the measured average surface temperature Tavg of the 

heater under different discharge rate conditions: 1.0, 1.5, 2.0, 2.5, and 3.0 C respectively. The cooling models 

AC, WC, and TEC with water flow rates of 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, and 4.0 l/min were applied.  

Figures 2(a)-(e) correspond to the respective discharge rates mentioned above. The results demonstrate that 

both WC and TEC, at all water flow rates, achieved lower Ts values compared to AC.  WC consistently 

provide approximately 14 ºC lower Ts compared to AC across all tested discharge rates. TEC with a water 
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flow WF rate of 4 l/ min exhibited the lowest Ts among all tested discharge C rate levels, reducing Ts by 

approximately 35.25 ºC at the maximum temperature point. 
 
 

Table 1. The temperature of 6 heaters with different cooling modes: AC WC and TEC with  

various water flow rates (WF) at 0.2 l/min 
C AC WC TEC + WF 0.2 l/min 
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Table 2. The temperature of 6 heaters under TEC+WF at 0.4 0.6 and 0.8 l/min at different testing C rate 
C TEC + WF 0.4 l/min TEC + WF 0.6 l/min TEC + WF 0.8 l/min 
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Table 3. The temperature of 6 heaters under TEC+WF at 1 2 and 4 l/min at different testing C rate 
C TEC + WF 1 l/min TEC + WF 2 l/min TEC + FR 4 l/min 
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(a) (b) 

  
(c) (d) 

  
(e)  

 

Figure 2. Average temperature of 6 heater at different rates of battery (a) 1.0 C, (b) 1.5 C, (c) 2.0 C, 

(d) 2.5 C, and (e) 3.0 C. Case: AC, WC, and TEC +WF at 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, and 4.0 l/min 
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(a) (b) 

  
(c) (d) 

  
(e)  

 

Figure 3. Normalized average temperature value at different rate of battery (a.)1.0 C, (b.) 1.5 C, (c.) 2.0 C          

(d.) 2.5 C and (e.) 3.0 C. Case: AC, WC, and TEC +WF at 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, and 4.0 l/min 
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The overall testing of the proposed BTMS. Air, water and different water flow rates techniques were 

compared under different testing discharge C rate condition. TEC keep constant inlet water temperature. For 

case TEC + WF at 2 l/min could maximum reduce surface of heater. However, it adds significant weight and 

complexity to the cooling system. 

 

 

4. CONCLUSION  

In this study, the BTMS of an 18650-type battery was simulated using six temperature heaters. The 

dissipation rates of batteries were compared among AC, WC, and TEC with different water flow rate (WF) in 

the cooling system. The temperature behavior and distribution in the different battery modules at various 

discharge rates were investigated through experiments. The experimental results showed that BTMS with, 

especially with the highest WF rates, provided the most significant dissipation effect. The dissipation rates 

reached, 49%, 52%, 51%, 47%, and 41% at the 1.0 C, 1.5 C, 2.0 C, 2.5 C, and 3.0 C discharge rate 

respectively, effectively maintaining the temperature of the heater. This positive effect on battery temperature 

contributed to an extended battery life. 
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