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 This paper proposes the design and implementation of predictive controllers 
for synchronous reluctance motor drive systems to enhance their dynamic 

responses. The predictive speed and current controllers in this paper are 

designed in systematic procedures. The predictive speed controller is 

implemented by using Laguerre function procedure. The Laguerre function 

is used to simplify the algorithm and to minimize the execution time of the 

digital signal processor. For predictive current controller, a finite control set 

method improves the current tracking ability. The measured currents are 

used to predict the future phase-current based on the motor model. The 

optimal control inputs of both predictive controllers are determined by using 

a cost function minimization method. Experimental results show the 

proposed drive system provides a wide adjustable speed range, from 2 r/min 

to 1800 r/min. It has better performance than a proportional-integral (PI) 

controller including fast rise time, which is 0.9 second, small steady state 

error, which is 0.32 r/min, and small current ripples. A 32-bit floating-point 

digital signal processor, TMS-320-F-28335 DSP, is employed to implement 

the control algorithms. 
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1. INTRODUCTION 

Nowadays, the using of power electronics technology and control technology for AC motors has 

improved the performance of AC drive systems [1], [2]. AC motors are classified into three types: i) the 

induction motor, ii) the permanent magnet synchronous motor (PMSM), and iii) the synchronous reluctance 

motor (SynRM). The induction motor was commonly used in industry due to its low maintenance and simple 

structure. However, the PMSM has slighter size and higher performance than the induction motor does. The 

permanent magnet material used in PMSMs, however, is very expensive.  To solve this problem, an emerging 

trend in the industry is to replace the PMSM with the SynRM, in which no permanent magnet material is 

required. 

The SynRM has become more and more widespread due to its simple structure and no  

permanent magnet material is required [3]–[5]. The SynRM drive system is also very attracted compared to 

induction motor drive systems because its control strategies are more straightforward [6]. Additionally, the 

SynRM is free from rotor loss and slip, which provides higher efficiency and easier control than the induction 

motor. 

https://creativecommons.org/licenses/by-sa/4.0/
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The controller is an essential part for a motor drive system. There are various types of controllers 

that usually applied for SynRM drives. The simple way is using proportional-integral (PI) controller which 

the implementation is relatively straightforward. However, the tuning of PI parameter is more challenging for 

wide speed range [7]. Some advanced control of SynRM drive system have been examined by some 

researchers. Shyu and Lai [8] proposed multisegment sliding mode control for SynRM. The multisegment 

sliding mode controller was implemented for speed controller and the current loop used hysteresis controller. 

The method showed robust speed response but the ripple is huge. Lin et al. [9] proposed adaptive 

backstepping control for SynRM to improve speed tracking response. However, the result showed that the 

performance was good in middle to high speed. Senjyu et al. [10] proposed PI-based speed controller for 

SynRM with extended Kalman filter to achieve high efficiency control against parameter variation. 

Nevertheless, the method was too complicated when implemented in digital signal processor. 

Mahfoud et al. [11] proposed direct torque control strategy motor drives using model reference adaptive 

system. The method is used for sensorless speed control that is independent to the stator resistor. 

Accordingly, the dynamic response is quick. 

Among the advanced control technique, the predictive controller has been successfully applied to 

industrial applications [12]. Generally, a model-based predictive controller (MBPC) requires a precise 

mathematical model of the motor [13]–[15]. Then, the future control signal trajectory should be predefined, 

and the output variable's future behaviors should also be optimized. A cost function minimization technique 

is added to calculate the optimal control input. As a result, the space-vector pulse width modulation 

(SVPWM) technique is not required here. The applications of the MPC include power converters [16]–[19] 

and motor drives [20]–[22]. Many previous papers have investigated the MBPC in either the current-loop 

control or the speed-loop control [23] but not including both of them in SynRM drive system.  

In this paper, predictive controllers are proposed for SynRM drive in current loop and speed loop 

control system. A systematic design of MBPC improves the dynamics performances for SynRM. The control 

algorithm proposed in this paper is executed by using digital signal processor (DSP). Therefore, the hardware 

circuit is easy to design. Compared to previous research [1]-[23], the ideas in this paper, which include 

investigation of the speed-loop and current-loop predictive controllers for a SynRM drive systems, are 

original ideas. 

 

 

2. PREDICTIVE SPEED CONTROLLER DESIGN 

In this paper, the speed loop of the SynRM drive system uses model predictive speed controller in 

which the Laguerre function procedure is employed. The predictive speed controller is designed based on the 

mechanical model of SynRM. The detailed model predictive speed controller design is explained in the 

following subsection. 

 

2.1.  Discrete model of SynRMs 

The MBPC is a discrete-time controller. Therefore, the uncontrolled plant should also be presented 

in the discrete form as well. The discrete transfer function of the mechanical model of a SynRM can be 

represented as (1)-(3) [8]. 

 

𝐺𝑝(𝑧) =
𝜔𝑟𝑚(𝑧)

𝑖𝑞(𝑧)
= (1 − 𝑧−1)ℤ (

𝐾𝑇/𝐽𝑚0

𝑠+(𝐵𝑚0/𝐽𝑚0)
) =

ℎ

𝑧−𝑔
 (1) 

 

According to (1): 

 

ℎ =
𝐾𝑇

𝐵𝑚0
[1 − 𝑒

−𝐵𝑚0
𝐽𝑚0

𝑇𝑠] (2) 

 

𝑔 = 𝑒
−𝐵𝑚0

𝐽𝑚0
𝑇𝑠

 (3) 

 

where 𝐽𝑚0 is the inertia of the SynRM, 𝐵𝑚0 is the friction coefficient of the SynRM, 𝐾𝑇 is the constant 

torque, 𝑇𝑠 is the sampling interval, and Z is the z-transformation. Then, by using the inverse z-transform of 

(1), it is not difficult to obtain as (4),  

 

(n 1) (n) (n)rm rm qg hi + = +  (4) 

 

where 𝜔𝑟𝑚(𝑛 + 1) is the predicted speed; 𝜔𝑟𝑚(𝑛) is the measured speed; and 𝑖𝑞(𝑛) is the q-axis current. 
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2.2.  Augmented model of SynRMs 

According to (4) and taking into account the different operations on both sides [24], one can derive. 

 

𝛥𝜔𝑟𝑚(𝑛 + 1) = 𝑔𝛥𝜔𝑟𝑚(𝑛) + ℎ𝛥𝑖𝑞(𝑛) (5) 

 

Where 𝛥𝜔𝑚(𝑛 + 1) is the difference of predicted speed; 𝛥𝜔𝑚(𝑛) is the difference of present speed; and 

𝛥𝑖𝑞(𝑛) is the difference of q-axis current. From (5) is expressed as (6). 

 

𝜔𝑟𝑚(𝑛 + 1) = 𝑔𝛥𝜔𝑟𝑚(𝑛) + ℎ𝛥𝑖𝑞(𝑛) + 𝜔𝑟𝑚(𝑛)

 

(6) 

 

By subtracting
* (n)rm of (6) on both sides, is defined as (7), 

 

𝑒𝜔𝑟𝑚
(𝑛 + 1) = 𝑔𝛥𝜔𝑟𝑚(𝑛) + ℎ𝛥𝑖𝑞(𝑛) + 𝑒𝜔𝑟𝑚

(𝑛)

 

(7) 

 

where (n 1)
rm

e + and (n)
rm

e are the speed errors, and (n)
rm

e is expressed as (8). 

 

𝑒𝜔𝑟𝑚
(𝑛) = 𝜔𝑟𝑚(𝑛) − 𝜔𝑟𝑚

∗ (𝑛)

 

(8) 

 

Then the new state variable vector is selected as (9) [24]. 

 

𝑋(𝑛) = [𝛥𝜔𝑟𝑚(𝑛) 𝛥𝜔𝑟𝑚(𝑛 − 1) 𝛥𝑖𝑞(𝑛 − 1) 𝑒𝜔𝑟𝑚
(𝑛)]𝑇

 

(9) 

 

By combining (5) and (7), yields. 

 

[
𝛥𝜔𝑟𝑚(𝑛 + 1)

𝑒𝜔𝑟𝑚
(𝑛 + 1)

] = [
𝑔 0
𝑔 1

] [
𝛥𝜔𝑟𝑚(𝑛)

𝑒𝜔𝑟𝑚
(𝑛)

] + [
ℎ

ℎ
] 𝛥𝑖𝑞(𝑘) (10) 

 

A new augmented state variable is defined as (11). 

 

𝑋(𝑛 + 1) = [
𝛥𝜔𝑚(𝑛 + 1)

𝑒𝜔𝑟𝑚
(𝑛 + 1)

]
 (11) 

 

And a new matrix and vector are expressed as (12) and (13). 

 

𝐴 = [
𝑔 0
𝑔 1

] 
(12) 

 

𝐵 = [
ℎ

ℎ
] 

(13) 

 

Substituting (11)-(13) into (10), one can define (14) [24]. 

 

𝑋(𝑛 + 1) = 𝐴𝑋(𝑛) + 𝐵𝛥𝑖𝑞(𝑛)
 
  (14) 

 

According to (14), the output is defined as (15) and (16). 

 

𝑦(𝑛) = 𝐶𝑋(𝑛) + 𝜔𝑟𝑚
∗(𝑛) = 𝜔𝑟𝑚(𝑛)

 

(15) 

 

𝐶 = [0 1] (16) 

 

2.3.  Using Laguerre function for predictive controllers 

A long control horizon can cause high computational numbers of the control signal 𝛥𝑖𝑞(𝑛). In this 

paper, the control horizon is used to capture the future control trajectory. As a result, the Laguerre function is 

applied here. First, 𝛥𝑖𝑞(𝑛) is represented as (17) [24]. 

 

𝛥𝑖𝑞(𝑛 + 𝑝| 𝑛) = 𝐿(𝑝) 𝜂(𝑚) (17) 
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Where 𝑝 is the predictive step, 𝜂(𝑛) is the coefficient of Laguerre, and 𝐿(𝑝) is the Laguerre function vector. 

The predicted state variable vector is obtained as (18) and (19) [24]. 

 

𝑋(𝑛 + 𝑝| 𝑛) = 𝐴𝑝𝑋(𝑘) + 𝜑(𝑝)𝑇 𝜂(𝑛)

 

(18) 

 

𝜑(𝑝)𝑇 = ∑ 𝐴𝑝−𝑑−1𝐵𝐿(𝑑)
𝑝−1
𝑑=0

 

(19) 

 

Where 𝜑(𝑝)𝑇 is the transition matrix. Then by replacing (18) into (15), is defined as (20). 

 

𝜔𝑟𝑚(𝑛 + 𝑝| 𝑛) = 𝐶𝐴𝑝𝑋(𝑛) + 𝐶𝜑(𝑝)𝑇 𝜂 + 𝜔𝑟𝑚
∗ (𝑛 + 𝑝) (20) 

 

Then, the optimal actuation can then be determined by minimizing the cost function. The cost function is 

expressed as (21) [24]. 

 

𝐽 = ∑ 𝑋(𝑛 + 𝑝| 𝑛)
𝑁𝑝

𝑝=1

𝑇
𝑄𝑋(𝑛 + 𝑝| 𝑛) + ∑ 𝛥𝑖𝑞(𝑛 + 𝑝)𝑇 𝑀𝐿

𝐿(𝑝)2 𝛥𝑖𝑞(𝑛 + 𝑝)
𝑁𝑝−1
𝑝=0  (21) 

 

Where 𝑁𝑝 is the prediction horizon, 𝑀𝐿 is constant and 𝑄 = 𝐶𝑇𝐶 is the weighting matrix. Taking the partial 

derivative of (21), we can obtain the minimum cost function is defined as (22). 

 
𝜕𝐽

𝜕𝛥𝑖𝑞(𝑛)
=

1

𝐿(0)2 2𝛥𝑖𝑞(𝑛) (∑ 𝜑(𝑝) 𝑄𝜑(𝑝)𝑇 + 𝑀𝐿
𝑁𝑝

𝑝=1 ) +
1

𝐿(0)
2𝑋(𝑛) (∑ 𝜑(𝑝) 𝑄𝐴𝑝𝑁𝑝

𝑝=1 )
 

(22) 

 

The new variables in (22) can be defined as (23) and (24). 

 

𝛱 = ∑ 𝜑(𝑝) 𝑄𝜑(𝑝)𝑇 + 𝑀𝐿
𝑁𝑝

𝑝=1

 

(23) 

 

𝛬 = ∑ 𝜑(𝑝) 𝑄𝐴𝑝𝑁𝑝

𝑝=1

 

(24) 

 

From (22), we can set  
𝜕𝐽

𝜕𝛥𝑖𝑞(𝑛)
  to be 0, the optimal cost function is defined as (25). 

 
𝛥𝑖𝑞(𝑛)

𝐿(0)
= −𝛱−1𝛬𝑋(𝑛) = 𝜂(𝑛)

 

(25) 

 

Finally, by substituting (25) into (17), the optimal solution of control input is derived as (26) and (27). 

 

𝛥𝑖𝑞(𝑛) = −𝐿(0)𝛱−1𝛬𝑋(𝑛) = −𝑅𝑚𝑝𝑐𝑋(𝑛)

 

(26) 

 

𝑅𝑚𝑝𝑐 = 𝐿(0)𝛱−1𝛬

 

(27) 

 

Where 𝑅𝑚𝑝𝑐 is the state feedback control gain.  

In the real world, the SynRM control system should provide reasonable physical constraints on the 

state variables 𝛥𝑖𝑞(𝑛) and 𝑖𝑞(𝑛) to prevent saturation or damage to the hardware. The analytical solutions are 

required to identify the active constraints, which determine the control input 𝛥𝑖𝑞(𝑛) and 𝑖𝑞(𝑛). As result, the 

mathematical modifications are needed when the constraints are imposed in the system. The constraints of 

𝛥𝑖𝑞(𝑛) and 𝑖𝑞(𝑛) are expressed as (28) [24]. 

 

[
𝛥𝑖𝑞

𝑚𝑖𝑛

𝑖𝑞
𝑚𝑖𝑛

≤ [
𝛥𝑖𝑞(𝑛)

𝑖𝑞(𝑛)
] ≤ [

𝛥𝑖𝑞
𝑚𝑎𝑥

𝑖𝑞
𝑚𝑎𝑥 ]]  (28) 

 

The MBPC for speed-loop is redesigned when the state variables in (28) satisfy the constraints using 

Hildreth’s quadratic programming procedure [24]. In this paper, the constraint of the 𝛥𝑖𝑞(𝑛) is checked first. 

After that, the 𝑖𝑞(𝑛) is checked later to ensure that it is not exceeding the limit of the q-axis current. The 

MBPC for the speed-loop scheme is shown in Figure 1. The computations of the matrix and vector are 

simplified to simple numeric computations, which can be easily executed by a DSP. 
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Figure 1. Predictive speed control scheme of the SynRM drive 

 

 

3. MODEL-BASED PREDICTIVE CURRENT CONTROLLER DESIGN  

In this paper, the focus is on a three phase, balanced, wye-connected SynRM. The three-phase stator 

voltage equation is expressed as (29) [25]. 

 

𝑣𝑚 = 𝑟𝑠𝑖𝑚 + 𝐿𝑞
𝑑𝑖𝑚

𝑑𝑡
+ 𝑒𝑚 (29) 

 

Where 𝑚 denotes the a-b-c-phase, 𝑣𝑚 represents stator voltage generated by the inverter, 𝑟𝑠 represents stator 

resistance, 𝑖𝑚 represents the stator current, 𝐿𝑞 represents the q-axis self-inductance, and 𝑒𝑚 represents the 

extended back-EMF. The SynRM is driven by a three-phase voltage-source inverter (VSI) where the input 

power is dc-link voltage. The predicted stator current in the discrete-time form according to (29) is 

represented as (30) [25]. 

 

𝑖𝑚
𝑝

(𝑛 + 1) = (1 −
𝑟𝑠𝑇𝑠

𝐿𝑞
) 𝑖𝑚(𝑛) +

𝑇𝑠

𝐿𝑞
(𝑣𝑚(𝑛) − 𝑒𝑚(𝑛))  (30) 

 

Where the superscript 𝑝
 
denotes the predicted value; 𝑖𝑚

𝑝
(𝑛 + 1)

 
is the predicted value of the stator current; 

𝑣𝑚(𝑛) is the stator voltage; and 𝑒𝑚(𝑛) is the extended back-EMF. The time delay compensation is taken into 

account for the model-based predictive current controller design. Then according to (30), the predictive 

current can be expressed as (31) [26]. 

 

𝑖𝑚
𝑝

(𝑛 + 2) = (1 −
𝑟𝑠𝑇𝑠

𝐿𝑞
) 𝑖𝑚

𝑝
(𝑛 + 1) +

𝑇𝑠

𝐿𝑞
(𝑣𝑚(𝑛 + 1) − 𝑒𝑚(𝑛 + 1))  (31) 

 

Where 𝑖𝑚
𝑝

(𝑛 + 2)
 
is the predicted stator current; 𝑣𝑚(𝑛 + 1) is the predicted stator voltage; and 𝑒𝑚(𝑛 + 1) is 

the future extended back-EMF. The stator voltage is set to be constant because the sampling interval is very 

short. Therefore, the stator voltage at the (𝑛 + 1) and (𝑛) sampling intervals are assumed to be the same. 

Moreover, in (31), the future extended back-EMF 𝑒𝑚(𝑛 + 1) cannot be measured. The extended back-EMF 

can be expressed as (32) [27]. 

 

𝑒𝑚(𝑛) ≈ 𝑒𝑚(𝑛 − 1) = 𝑣𝑚(𝑛 − 1) − (
𝑟𝑠𝑇𝑠+𝐿𝑞

𝑇𝑠
) 𝑖𝑚(𝑛) +

𝐿𝑞

𝑇𝑠
𝑖𝑚(𝑛 − 1)  (32) 

 

According to (32), assumed 𝑒𝑚(𝑛 + 1) ≈ 𝑒𝑚(𝑛) due to the short sampling interval. Then (31) can be 

rewritten as (33) [27]. 

 

𝑖𝑚
𝑝

(𝑛 + 2) = (1 −
𝑟𝑠𝑇𝑠

𝐿𝑞
) 𝑖𝑚

𝑝
(𝑛 + 1) +

𝑇𝑠

𝐿𝑞
(𝑣𝑚(𝑛) − 𝑒𝑚(𝑛 − 1))  (33) 
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The minimum value of the cost function is obtained using a simple mechanism, it is expressed as (34) [25]. 

 

𝑘 = |(𝑖𝑚
∗ (𝑛) − 𝑖𝑚

𝑝
(𝑛 + 2))|  (34) 

 

Where the symbol ∗ denotes the reference command. In (34), the cost function is composed of the predicted 

current error resulting from the deviation between the current command and the predicted current. The 

predictive current is obtained from the d-q axis currents, which is transformed into the a-b-c axis currents. 

Then according to (34), an optimal voltage vector can be defined as (35) [25]. 

 

𝑘( 𝑛) |𝑆0,...,𝑆7
= 𝑚𝑖𝑛{ 𝑘( 𝑛) |𝑠0

, . . . , 𝑘( 𝑛) |𝑠7
}  (35) 

 

The voltage vector obtained from (35) is implemented to manage the six switches of the inverter at the (𝑛) 

sampling interval. Then, the model-based predictive current controller is responsible for determining the 

switching state of the inverter, as illustrated in Figure 2. 

 

 

 
 

Figure 2. The MBPCC scheme for the SynRM drive 

 

 

4. IMPLEMENTATION 

In the SynRM drives system is composed of two main components, the software and the hardware. 

The software is executed by a 32-bit floating-point TMS-320-F-28335 DSP, which is fabricated by Texas 

instruments. This DSP is employed to run the MBPC. The sampling interval of the speed-loop is 1 𝑚𝑠 and 

the current-loop is 100 𝜇𝑠. 

The block diagram of predictive controllers for SynRM drives is shown in Figure 3(a). The control 

algorithms in the software programs include the model-based predictive speed- and current-loop controllers, 

the d-q axis to a-b-c axis transformation, and a cost function minimization. The control algorithm starts with 

the speed command 𝜔𝑟𝑚
∗ (𝑛) is an input command. Then, the MBPC executes the speed-loop to obtain the 

optimal value of the 𝑖𝑞
∗(𝑛) while the 𝑖𝑑

∗(𝑛) is set as a constant. This 𝑖𝑞
∗(𝑛) is used for the current command 

in the current-loop. The d-q to a-b-c transformation frame is implemented because the current-loop control 

algorithm uses the a-b-c frame. By measuring the stator currents at the (𝑛) sampling interval, we are able to 

determine the values of the stator currents at the (𝑛 + 2) sampling interval. Finally, a cost function 

minimization technique is used to determine the best candidate for the switching function. As the DSP only 

execute simple addition, subtraction, multiplication, and division. The computations of the matrix and vector 

are converted into simple calculations before the program is implemented. 

Figure 3(b) illustrates the implementation of the SynRM drive system. The hardware consists of a 

SynRM, a three-phase VSI, some current and voltage sensing circuits, a reshaping circuit of encoder, and an 

interface circuit. The SynRM used in this paper is fabricated by Reliance Electric Company, type P56H5012. 

The motor parameters are as follows: 𝐿𝑞= 67.2 𝑚𝐻, 𝐿𝑑= 148 𝑚𝐻, 𝑅𝑠= 2.0 𝛺, 4-pole, 3.4 A rated current,  

220 V rated voltage, 560 W rated output power, and 1800 r/min rated speed. 
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(a) 

 

電 電 電 電 電 電

電 電 電 電 電 電

電 電 電 電 電

電 電 電 電 電 A/D電 電 電 電

DSP 28335

3-phase Inverter

Voltage  Sensing Circuit

Current  Sensing Circuit

Current  Sensors

A/D Converters
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Figure 3. The implemented predictive controllers for SynRM drives: (a) block diagram and (b) hardware 
 

 

5. EXPERIMENTAL RESULTS 

There are several experimental results shown here to validate the proposed MBPC for SynRM drive 

systems. The detailed parameters are selected as follows: the d-axis current command 𝑖𝑑
∗ = 0.5, the initial 

value of Laguerre function 𝐿(0) = 0.71, the prediction horizon 𝑁𝑝 = 1, and the current limitations including 

𝛥𝑖𝑞
𝑚𝑖𝑛 =  −0.5𝐴, 𝛥𝑖𝑞

𝑚𝑎𝑥 = 0.5𝐴,   𝑖𝑞
𝑚𝑖𝑛 = −4𝐴, 𝑖𝑞

𝑚𝑎𝑥 = 4𝐴. The prediction horizon is selected as 1 to 

simplify the required computation of the model-based predictive speed controller design. 

Figures 4(a) and 4(b) show the predictive controller responses when the motor running from low 

speed to the rated speed. The different speed command with step input is given to evaluate the transient 

response. As can be observe from those figures, the proposed drive system has an adjustable speed range 

from 2 r/min to 1800 r/min with satisfactory performance.  
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Figure 4. Transient responses at different speeds: (a) low speed and (b) high speed 
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Figure 5 show the results of the comparison of the proposed MBPC and the PI controller. These two 

controllers operate with and without load. Then, based on the pole assignment technique, the parameters of 

the PI current-loop and speed-loop controllers are determined. In this paper, the PI speed-loop controller is 

chosen as 𝐾𝑝 = 50 and 𝐾𝑖 = 2. On the other hand, the PI current-loop controller is chosen as 𝐾𝑝 = 50 and 

𝐾𝑖 = 5. Figure 5 demonstrates the transient response with step command at 800 r/min. Compared to the PI 

controller, the MBPC has a faster transient response, including faster rise time and no overshoot before it 

converges to speed command. As well, it is important to note that the integral gain in the PI controller causes 

an overshoot in the speed response. 

The rise time of the proposed MBPC is 0.9 second, while the PI controller is 1.6 second. The steady 

state error of the proposed MBPC is 0.32 r/min, while the PI controller is 6.6 r/min. The load disturbances 

responses at 500 r/min are shown in Figure 6 A 1 N.m external load are added to the drive system while it is 

running at steady-state. Once again, the proposed controller provides better performance than the PI 

controller. The MBPC has a small speed dip and a quick recovery time. Figures 7(a) and 7(b) show the 

measured speed responses to the sinusoidal speed commands using two different controllers. As can be 

observed, the predictive controller has better tracking responses than the PI controller for both positive half 

cycle and negative half cycle.  As shown in Figure 8, different controllers are used to track current in the a-

phase circuit. The proposed MBPCC can track the current command very well. Furthermore, the MBPCC has 

better current tracking responses and smaller current ripple than the PI controller. 

Figures 9(a) and 9(b) show the measured current trajectory in the 𝛼 − 𝛽 frame when using the 

predictive controller and the PI controller. In Figure 9(a), the MBPC provides satisfactory current tracking 

with little current ripple. However, the PI controller has greater current ripple and has worse current tracking 

as shown in Figure 9(b).  Figures 10(a) and 10(b) show the measured current errors in the 𝑑 − 𝑞 frame. In 

Figure 10(a), the predictive controller has little current error. However, the PI controller has greater current 

error in the 𝑑 − 𝑞
 
frame, which is shown in Figure 10(b). Actually, the current errors in the d-q frame that is 

shown in Figures 10(a) and 10(b) have DC offset. The DC offset is caused by the A/D converter does not 

convert the exact value at zero points. 
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Figure 8. Current tracking responses: (a) predictive and (b) PI 
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Figure 9. Current trajectories in the 𝛼 − 𝛽 frame: (a) predictive and (b) PI 
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Figure 10. Current errors in the 𝑑 − 𝑞 frame: (a) predictive and (b) PI 

 

 

6. CONCLUSION 

The design and implementation of a model-based predictive speed and current controller for a 

SynRM drive system is presented in this paper. Experimental results indicate that the proposed controllers are 

capable of achieving fast transient response and load disturbances response. In addition, the proposed 

controllers achieve wide adjustable speed from 2 r/min to 1800 r/min. In addition, the proposed drive system 

tracks the current command very well with small current errors. Although the analysis is complicated, the 

realization of the controllers is quite easy by using a DSP. The proposed predictive controllers can be 
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implemented in industrial application due to their satisfactory performance. However, the computational 

issue of the implemented predictive controllers for SynRM in this paper can be simplified in the future. 
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