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ABSTRACT

In the continuity of the work on design of high voltage gain DC-DC converter,
used for feeding the CubeSat electrospray thrusters with a variable output volt-
age according to the maneuver size, this paper introduces a simulation of the
converter model with MATLAB/Simulink to determine its conducted emission
level. By referring to the MIL-STD-461 standard, a required passive electro-
magnetic interference (EMI) filter parameters are calculated to reduce, under
thresholds, the converter noise. With consideration of the available volume and
power constraints in this kind of satellite, the design of common-mode (CM)
choke is optimized with proposed procedure optimization, so as to reduce its
volume and electrical losses. Also, this optimization procedure can be general-
ized and applied for any passive EMI filter design.
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1. INTRODUCTION
For DC-DC converters, increasing the switching frequency of semiconductor switches can, signif-

icantly, reduce the size of passive components such as capacitors and coils. However, this high switching
frequency generates signals with high di

dt and dv
dt causing conducted and radiated disturbances [1], [2], which

are injected into the environment around the so-called ”source” equipment, and impact the normal behavior of
the so-called ”victim” equipments sharing the same environment, and the generated noise is propagated under
two modes: common mode (CM) and differential mode (DM). Their cancellation is impossible, though, there
are some techniques that allow to attenuate their level to be under the limits defined in the electromagnetic
compatibility (EMC) standards. In this sense, several solutions are proposed in the literature concerning the
noise mitigation. First solution used is the passive electromagnetic interferences (EMI) filters [3], they reduce,
considerably, the noise but their size and weight have a disadvantage limiting their usage for applications with
constraints in available volume. In order to reduce the passive EMI filters dimensions, several papers introduce
approaches that reduce the source noise. Among these strategies, there is printed circuit board (PCB) layout
optimization [4], its goal is to reduce the inductance loop and parasitic capacitors. Another option concerns the
modulation strategy where a random modulation presents improvement in EMI reduction compared to classical
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pulse width modulation [5]-[8]. As an alternative, there is the adoption of soft switching like a control approach
[9], [10]. Second solution consists of the usage of active EMI filters [11]-[13], these kind of filters have re-
duced dimensions but they are more restrictive for the range of noise wider than their bandwidth. Finally, there
is hybrid EMI filters [14], [15], which combine the passive filter used to attenuate the noise at high frequencies
and the active filter to reduce the noise at low frequencies, therefore, the size and weight are reduced compared
to conventional passive filters.

This article addresses electromagnetic interference generated by a high-voltage gain DC-DC converter
used for feeding the CubeSats electrospray propulsion. This converter is intended to be operational within the
space environment, therefore, and given the sensitivity of active filters to radiation due to the use of integrated
circuits, only the passive EMI filter, which is composed with passive components, provides the filtering for
the proposed DC-DC converter. In addition, this converter will be embedded in a CubeSat, which means
other constraints to take into consideration, namely the available volume and the electrical energy generated
on-board. Since the EMI filter occupies a significant part of the converter size, hence the need to reduce
its size and increase its efficiency. Also, because the CM choke occupies a large space and consumes more
electrical power in passive EMI filter, an optimization of its volume and its electrical losses is required. Some
papers have already raised this type of optimization problem, in particular, [16]-[19] but without addressing the
minimization of the filter electrical losses.

The optimization procedure adopted in this paper is based on the MATLAB function ”fmincon” and
taking into account a number of constraints detailed in the next section. This optimization can be generalized
and applied when designing passive EMI filters for converters intended to operate in an environment where
both volume and electrical consumption constraints are imposed.

The equipment under test considered is a high voltage gain DC-DC converter used in electric propul-
sion for CubeSats [20], as shown in Figure 1, its characteristics are detailed in Table 1. Therefore, it is necessary
to refer to the aerospace standards, especially the MIL-STD-461 standard, which generally defines the mea-
surement setups of electromagnetic interferences and limit values not to be exceeded for equipment emissions
and susceptibility.

The organization of this paper is delineated into 3 distinctive sections. Section 2 gives details about
the simulation of conducted emissions generated by the proposed converter and provides a description of the
optimization procedure for the design of the CM choke. The outcomes of this optimization are examined and
discussed in section 3. The concluding remarks and perspectives of the present work in section 4.

Figure 1. DC-DC converter topology

Table 1. Parameter and component values
Parameter Value Component Size

Switching frequency F 100 kHz L1 and Lm 650 µH and 3.94 mH
Duty cycle D 57 - 70 % c1, c2 and cvm 1.72 µF, 1.1 µF and 10 nF

Transformer ratio N 6 D1,D2 and D3 200V, 5 A
Multiplier voltage stage number n 4 Dvm 1 kV, 1 A

Load R 1 MΩ Switch 200 V, 10 A, 0.06 Ω

Input voltage and output voltage 10 V and 1500 - 3500 V
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2. RESEARCH METHOD
2.1. Simulation of conducted emissions of the proposed converter

In this part, the measure of the converter’s conducted emissions will be conducted through MATLAB
simulations. The outcomes of these simulations will be compared against the established limits outlined in the
MIL-STD-461 standard. The objective is to determine a required passive EMI filter parameters, which will
then serve as input for the optimization procedure.

2.1.1. Description of simulation
The tool MATLAB/Simulink is used to simulate the conducted emission generated by the proposed

converter, as outlined in Figure 2. To make the results of the simulation close to those of experimental, es-
pecially, for CM noise, parasitic capacitors are included in the model [21], namely, between load and ground,
between primary and secondary of the transformer and between drain of the Mosfet and ground. In addition, the
model of line impedance stabilization network (LISN) is placed between the device under test and the power
source to block the passage of EMI between them, to stabilize the impedance of power source and to measure
the conducted emission specific to the converter.

Once the steady state is established, the simulated spectrum of conducted emission injected by the
proposed converter is visualized via the model of spectrum analyzer in Simulink. Because the measurements
displayed on the spectrum are in dBm and the limits are in dBµV, the conversion from dBm to dBµV is necessary
where dBµV = dBm + 107 (with the impedance equals 50 Ω). The power combiner, indicated in Figure 2, is
used to separate the common mode and differential mode noises. Where P1 = (VDM +VCM )2/R1, represents
the total conducted emission, and P2 = (VDM − VCM )2/(R2 = R1 = R), then PDM = V 2

DM/R =
(P1 + P2)/4 +

√
P1P2/2 and PCM = V 2

CM/R = (P1 + P2)/4−
√
P1P2/2.

Figure 2. Conducted emissions simulation

2.1.2. Simulation results
Given that the proposed converter is designed for space applications and by referring to the require-

ment matrix described in the MIL-STD-461 standard, it can be seen that the CE102 (conducted emissions,
radio frequency potential, power leads) requirement is applicable for DC source voltage of 28 V from 10 kHz
to 10 MHz, in order to evaluate the level of conducted emission produced by this converter. Since this converter
is designed to generate a variable output voltage within the range of 1500-3500 V, the simulation of conducted
emissions has been conducted for two distinct setpoints: 1500 V and 3500 V, as depicted in Figure 3. The
subsequent sections will focus on the case with a setpoint of 3500 V, as it represents the worst-case scenario in
terms of the level of conducted emissions.

Before starting the design of EMI filter parameters, it is necessary to separate the DM noise from CM
noise to get an idea about the contribution of each mode in the total EMI noise generated and to make the
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filter design more judicious. From Figure 4(a) and 4(b), it can be seen that the level of conducted emission for
DM and CM exceeds, respectively, the CE102 thresholds with 40 dBµV. To comply with EMC standards, the
designed EMI filter shall achieve an attenuation higher than 40 dBµv.

Figure 3. Total conducted emission of the proposed converter without EMI filter

(a)

(b)

Figure 4. Conducted emission of the proposed converter without EMI filter for (a) DM and (b) CM
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2.1.3. Determination of required passive EMI filter parameters
Meet CE regulations of MIL-STD-461 is the purpose of the EMI filter, it attenuates the amplitudes

of conducted emissions (CM and DM) under the CE102 limits with a margin at least of 6 dB to account for
simulation deviations and to ensure sufficient margin under of the EMC standard for the frequency range.
Using (1) and (2) detailed in [22] to calculate the required EMI filter parameters, which will be used as inputs
for optimization procedure.
− For DM part: this mode is dominant in the low frequencies around switching frequency 100 kHz, thus, the

cutoff frequency of the DM EMI filter must be equal to fRdm =10kHz, to ensure an attenuation of 40 dBµV,
as shown in Figure 4(a).

Ldmreq =
1

Cx(2πfRdm)2
(1)

Where Cx1 = Cx2 = Cx= 22 µF thus Ldmreq= 11.5 µH.
− For CM component: this mode is dominant in the high frequencies around 1 MHz because the parasitic

capacitances are very low. To have an attenuation of 40 dBµV, as indicated in Figure 4(b), with a slope of
-40 dB/decade, the cutoff frequency of the CM EMI filter shall be fRcm =100 kHz.

Lcmreq =
1

2Cy(2πfRcm)2
(2)

Where Cy= 5 nF thus Lcmreq= 253.5 µH.
Figure 5 shows the synoptic of the passive EMI filter to be designed, and to reduce the size of EMI filter, the
leakage inductance Llk of CM choke coil will be used as DM inductor.

Figure 5. Synoptic of passive EMI filter

2.2. Optimization procedure of CM choke design
An optimization of the volume and losses of the CM choke allows to reduce the size of the converter

breadboard and increase its electrical efficiency. Therefore, this board will be more adapted to the volume and
consumption constraints imposed by the CubeSats on all on-board subsystems. This part will be devoted to
CM choke optimization procedure by detailing the involved constraints and the followed algorithm.

2.2.1. List of constraints
The choice of the CM choke parameters indicated in Figure 6, namely, the dimensions of the magnetic

core (x(1)=OD, x(2)=ID, x(3)=H), the winding turns number (N=x(4)) and the angle occupied by the coil on
the core (x(5)=θ), is optimized in order to reduce the volume and losses of the CM choke by taking several
constraints (mechanical, magnetic and electrical) into account for the correct operation of the filter.

− Inductance constraints: To mitigate the CM EMI noise, it is imperative that the CM inductance surpasses the
specified threshold denoted as Lcmreq, as mentioned in (3). Adhering to this criterion ensures that the CM
inductance is appropriately dimensioned to address the targeted CM EMI noise, contributing to enhanced
overall system performance and electromagnetic compatibility.

Lcmreq ≤ Lcm = µ0µr
N2Ae

le
(3)

Where µ0 is the Vacuum permeability, µr is The relative permeability for a core material,
Ae=x(3)(x(1) − x(2))/2 is the effective cross sectional area of the core and le=2π(x(1) + x(2))/4 is the
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effective length of the magnetic path of the core.
DM Inductance which equals Leakages inductance of CM choke [23], shall be greater than Ldmreq , as
expressed in (4), to filter the part of DM EMI noise.

Ldmreq ≤ Ldm = Llk ≈ 2.5µ0
N2Ae

le
√
θ/(2π) + sin(θ/2)/π

(
√

π/Aele/2)
1.45 (4)

− Core saturation constraint: Preventing core saturation necessitates that the magnetic flux density, denoted as
Bpk, generated by common-mode and differential-mode currents, remains below the saturation flux density
of the core, denoted as Bsat, as outlined in (5) [24]. Given the low values of Llk and Icmpk, this constraint is
typically guaranteed, ensuring the effective avoidance of core saturation.

Bpk =
LcmIcmpk + Llk(Icmpk + Idmpk)

2NAe
≤ Bsat (5)

Where Icmpk is the peak CM current and Idmpk is the peak DM current.
− Core dimensions constraint: In order to accommodate the inductance windings, it is imperative that the inner

radius of the core exceeds the minimum specified value Rmin = 2Nd2

IDθ , as mentioned in (6), that represents
the necessary thickness of the winding wire around the core. Adhering to this criterion ensures proper spatial
allocation for the inductance windings.

ID ≥ 2d
√
N/θ (6)

Where d is the winding wire diameter.
− Stability constraint: Applying the Middlebrook criterion [25] is essential for securing the stability of the

proposed DC-DC converter. According to this criterion, it is imperative that the output impedance of the filter,
denoted as Zout, consistently maintains a value lower than the input impedance of the converter, represented
by Zin, as described by (7).

Zout =
√

Llkmax/Cx ≤ Zin =
v2inRη

2v2out
(7)

Where η is the efficiency of proposed converter.

2.2.2. Optimization design algorithm
The objective function to be minimized combines volume and electrical losses with weighted coef-

ficients, as detailed in (8). The ”fmincon” of MATLAB is used as a nonlinear programming solver to find
the minimum of the objective function, then after a number of iterations, its optimization algorithm ”interior-
point” converges to an optimal choice of the five parameters (OD, ID, H, N and θ) related to CM choke.

Obj − Fun = w1.V ol(x) + w2.Los(x) (8)

Where V ol(x) = π(x(1)2 + 4x(4)d2

(x(1)+x(2))x(5) )
2(x(3) + 8x(4)d2

(x(1)+x(2))x(5) ) assuming that (x(1)+x(2))x(5)
4 −

dx(4) ≤ 0 and Los(x) =Winding loss+Core loss= 8ρ(x(3)+x(1)−x(2))x(4)I2

d2 +8F 1.621(
(Lcm+Llk)Icmpk

(x(1)−x(2))x(3)x(4) )
1.982

pi(x(1)2 − x(2)2)x(3)/4 [26] with I is the input current of converter and ρ is the resistivity of copper.
Figure 7 encapsulates the methodology of the common-mode (CM) choke design optimization al-

gorithm through a concise flow chart. The process is initiated by defining a set of inputs, followed by the
imposition of constraints integral to the design optimization. As for the dimensions of the magnetic core, there
are two cases; Choosing the standard dimensions which are close to optimal dimensions proposed by this algo-
rithm, or it is possible to order the magnetic cores with the specific dimensions directly from the manufacturer.
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Figure 6. CM choke parameters

Figure 7. Optimization algorithm flow chart

3. OPTIMIZATION RESULTS AND DISCUSSION
The optimization algorithm, outlined above, is implemented in MATLAB, selecting the optimal pa-

rameters for the CM choke based on the inputs specified in Table 2. In this context, nanocrystalline is chosen as
the core material, and the values of Icmpk and Idmpk are computed in accordance with the CE102 standard. The
algorithm successfully converges after 25 iterations, yielding an objective function value of 1.15, as visually
depicted in Figure 8. This outcome represents the minimum achieved while adhering to all the constraints
described earlier.

To assess the incremental value of the optimization procedure, a thorough comparison is conducted
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between the results of an intuitive design, which meets all the specified constraints without optimization, and
the outcomes derived from the proposed optimization procedure. Table 3 compiles essential metrics such as
CM choke volume, CM choke electrical losses, dimensions of the magnetic core, and winding parameters for
each design approach. Notably, the optimized results exhibit a considerable reduction compared to the intuitive
design outcomes. The optimization procedure demonstrates a gain exceeding 10 for the CM choke volume,
and there is a notable reduction of more than 30% in electrical losses. These results underscore the substantial
improvement achieved through the optimization process.

Table 2. Algorithm input parameters
Parameter Value

Input current I 3 A
Winding wire diameter d 1 mm
Lcmreq , Ldmreq and Cx 253.5 µH,11.5 µH and 22 µF

Weighted coefficients w1=w2 0.5
Icmpk=Idmpk 0.06 Arms

Bsat and µr(100kHz) 1.25 T and 20000
Lower Bounds LB [1.12, 0.51, 0.58, 1, π/3]
Upper Bounds UB [16.69, 12.39, 3.05, 100, π]

Figure 8. Obj-Fun values

Table 3. Comparison results
V ol(cm3) Los (W) OD (cm) ID (cm) H (cm) N (turn) θ (rad)

Intuitive design 21.83 0.29 3.46 1.73 1.73 14 1.05
Proposed design 2.08 0.22 1.20 0.62 0.58 31 π

Also, on the catalogs offered in the market, the standard magnetic core W902 with dimensions
1.41x0.66x0.63 (cmxcmxcm) close to the output of the algorithm.Using these five parameters, the calculated
CM choke inductances are Lcm=13.6 mH and Llk=11.5 µH. To visualize the impact of passive EMI filter
on conducted emission of proposed converter, a simulation is performed with the implementation of the filter
components in the Simulink model between the LISN and the converter, Lcm=13.6 mH, Llk=11.5 µH, Cx=22
µF and Cy=5 nF. In Figure 9, it can be noticed that the conducted emission level is attenuated with a sufficient
margin below CE102 limits. Only for the second harmonic (F=200kHz), where the margin of 3 dB under the
limits is low compared to those of the other harmonics.

As mentioned in introduction, this optimization procedure can be generalized and used, for other
converter with different input power, as guideline for a choice of the magnetic core and winding parameters.

Simulation and optimization of EMI filter of conducted emission ... (Abdelaali Ouhammam)
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Table 4 summarizes the five parameters optimization for different winding wire diameters dependent on the
input current. For an input current,assuming that the required inductances are the same, the core dimensions
calculated allow to choose, easily, the appropriate core on catalog with reducing the occupied volume and
electrical losses by satisfying the attenuation requirement.

Figure 9. Total conducted emission of the proposed converter with EMI filter

Table 4. Optimization results for different winding wire diameters
d(cm) V olmin(cm

3) Losmin (W) OD (cm) ID (cm) H (cm) N (turn) θ (rad)
0.05 0.84 0.10 1.12 0.58 0.58 32 π
0.10 2.08 0.22 1.20 0.62 0.58 31 π

0.15 5.26 0.28 1.54 0.94 0.60 31 π

0.20 10.48 0.46 1.94 1.18 0.76 28 π
0.25 17.91 0.50 2.33 1.41 0.92 25 π

4. CONCLUSION
In this paper, the conducted emission generated by the proposed converter is simulated in MAT-

LAB/Simulink . Due to the sensitivity of integrated circuits to radiation in space, the passive EMI filter ensures
the filtering operation alone. In addition, the proposed optimization procedure is used to minimize the volume
and electrical losses of CM choke, also can be applied for any passive EMI filter design, by acting on the
core dimensions, the winding turns number and the angle occupied by the coil. Then the effectiveness of the
proposed filter is verified by Simulink simulations. As a perspective for this paper, it is planned to perform the
experimental prototype of the proposed filter and to check its effectiveness in conducted emission mitigation.
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