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 In the six years from 2010 to 2015, the peak load in the East Java region 

increased by an average of 284 MW per year. Karangkates Substation is part 

of an interconnected electrical system that supplies Java Island. To ensure a 

high level of reliability in its service, it is necessary to prepare for load growth 

to make sure that it does not exceed its ideal conditions, therefore special 

analysis of transformer capacity is needed. Using the Holt-Winters (HW) 

method as a reference for processing the data can be used as a reference in 

planning and anticipating the growing electricity demand. The results of this 

study are with the accuracy of the HW method with mean absolute percentage 

error (MAPE) = 2.645%, while the accuracy of the fuzzy time series (FTS) 

method = 6.399%. A forecast result done with HW methods shows the 

transformer at the substation Karangkates reached its normal working 

capacity in March 2018 at 99.583% of installed capacity and exceeded the 

maximum capacity in April 2018 at 101.493% of installed capacity. 
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1. INTRODUCTION 

Preview study [1]-[5], peak load in the East Java region increased by an average of 284 MW per year 

over six years (2010-2015), according to data released by National Electricity Company (PLN) in 2016 [6], 

[7]. As an important component in PLN's power grid system that supplies electricity to the entire island of Java, 

Karangkates Substation requires reliable electrical system resilience [8]-[11]. Load development planning is 

essential to ensure a high level of reliability by avoiding optimal overcapacity. Due to their continuous 

operation, transformers have a major effect on the capacity of the electrical system. A common transformer 

loading limit is 80% of the installed capacity set by PLN according to its requirements [12], [13]. 

To maintain a reliable electrical system, load increases must be considered when evaluating 

transformers. Therefore, it is necessary to accurately forecast future loads [14]. Different forecasting techniques 

are suitable depending on the type of data used. Exponential smoothing (ES) is a commonly used method to 

handle load data with trends and seasonal characteristics calculation method for load capacity of Urba [4], [15]-

[18]. There are several versions of this technique, including Holt-Winters (HW), multiple, and single ES. Long-

term trend and seasonal data can be accurately and precisely predicted by HW [19]-[22]. 

The HW method, as highlighted in previous research [23]-[26], stands out as the preferred approach 

for long-term load growth forecasting. Its effectiveness in predicting monthly peak load growth at Karangkates 
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Substation is consistently affirmed in recent studies [27]-[29]. While it may exhibit less precision for short-

term forecasts, its ability to provide satisfactory results for long-term planning is invaluable. Moreover, when 

integrated with automated data mining techniques, the HW method enables the estimation of transformer 

remaining life, facilitates anticipation of necessary modifications, and enhances maintenance and planning 

processes, ultimately ensuring the seamless continuity of energy supply. 

This study compares forecasting methods for periodic data peak load at Karangkates Substation using 

three data: data 1 (2011-2012), data 2 (2011-2014), and data 3 (2011-2017). The HW method achieves the 

lowest MAPE values across all sets, notably 2.645% in Data 3. It accurately predicts the transformer's capacity 

exceedance in March and April 2018. HW is deemed superior for long-term forecasting due to its ability to 

capture seasonal patterns and trends, unlike artificial neural networks (ANN) and fuzzy time series (FTS), 

which, although effective, exhibit lower accuracy. These results aid PLN in transformer planning and 

maintenance scheduling, affirming the reliability of the HW method [30]-[40]. 

There are three comparative studies summarized in the comparator for this study. The first study [8], 

a method for 24-hour optimal scheduling of energy storage systems (ESS) in South Korea with a focus on 

customer benefit maximization, peak load reduction, and charge/discharge cycle minimization. The second 

study [1], suggested a method for forecasting photovoltaic (PV) power in the short future with the HW method 

that could potentially be used for energy management and power leveling facing the challenges of global 

warming and increasing energy demand. The third study [9], introduced a support vector machines with 

autoregressive integrated moving averages (ARIMA-SVM) hybrid model to improve hourly load forecasting 

accuracy by correcting outliers and reducing MAPE using 2014-2015 data in the southern region, which can 

improve the stability of the electricity system network. 

This study aims to forecast recurring peak loads at the Karangkates Substation using HW method and 

evaluate its accuracy in comparison to alternative methods. Unlike previous studies [8], [9], [20], which 

addressed energy system optimization and grid stability, this study emphasizes transformer capacity planning 

to prevent blackouts. Notwithstanding differences in extent, both types of research play crucial roles in 

advancing the electricity sector. 

The authors in this study contributed to conducting a literature study on long-term electricity load 

forecasting methods, particularly the HW method. They also collected monthly peak load data for the Karangkates 

Substation for seven years (2011-2017), used in this study. The authors' significant contribution is in comparing 

the accuracy of the HW method with other forecasting methods, such as FTS, ARIMA, and ANN, for forecasting 

the monthly peak load at GI Karangkates. The author shows that the HW method produces the lowest mean 

absolute percentage error (MAPE) value compared to other methods, especially for larger data sets. 

This research makes an essential contribution to education, especially in electrical engineering, by 

introducing a long-term electrical load forecasting method that can be integrated into the curriculum. Using the 

Holt-Winters (HW) method in peak load forecasting not only supports decision-making in the energy sector 

but also provides an opportunity for students to learn practical applications of data analysis techniques in 

optimizing electricity infrastructure. Overall, the authors proved that the HW method is the most suitable for 

long-term monthly peak load forecasting at GI Karangkates. This study's findings are expected to help PLN 

optimize future scheduling strategies for transformer replacement and maintenance. 
 

 

2. METHOD 

Electricity load refers to the total demand placed on a power plant. The classification of load is based 

on the type of electricity usage [41], [42]. Maintaining the distribution system's capacity is essential to ensuring 

dependable and ongoing service. Planning of the distribution system is necessary to accommodate the growing 

load and ensure technical and economic feasibility. The complexity of the system determines the selection of 

equipment to handle different alternatives effectively. This enables the distribution system to handle the load 

from secondary conveyors through substations, maintaining its reliability [10]. 

Transformers operate based on the electromagnetic principles of amperes and Faraday's induction. 

Variations in current or electric fields produce magnetic fields, which in turn generate induced voltages. The 

percentage of transformer loading can be determined using (1). 
 

%𝑙𝑜𝑎𝑑 =   
𝑆𝑡

𝐾𝑡𝑟𝑎𝑓𝑜
 ×  100% (1) 

 

𝑠𝑡 is transformer load at time t, 𝐾𝑡𝑟𝑎𝑓𝑜 is transformer capacity. 

Similar to reading a speedometer, exponential smoothing (ES) is a time-series forecasting technique 

that makes use of past data to anticipate future values [43], [44]. It assists in detecting recurrent trends and 

growth rates as well as mitigating random data variations. However, its basic form lacks components for 

handling trend or seasonality complexities. To overcome this, Holt proposed the double exponential smoothing 

method, which enhances forecasting capabilities by incorporating data trends. 
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The Holt-Winters (HW) method [3], also called the triple ES method, introduces components for 

seasonality and trends. It extends traditional smoothing to account for seasonal variations, ensuring that seasonal 

patterns are accurately captured. By smoothing across seasons, the method incorporates historical data from 

previous and preceding seasons to forecast the current season's component. This integration of seasonal patterns 

enhances the accuracy of the forecasting process. The equation for HW exponential smoothing is as (2)-(5). 
 

𝑙𝑒𝑣𝑒𝑙 =  1𝑡 =  𝛼. (𝑋𝑡 − 𝑚𝑡) + (1 − 𝛼). (1𝑡−1 − 1𝑛−1) (2) 
 

𝑡𝑟𝑒𝑛 =  𝑏𝑡 =  𝛽. (1𝑡 − 1𝑡−1) + (1 − 𝛽). 𝑏𝑡−1 (3) 
 

𝑠𝑒𝑎𝑠𝑜𝑛 = 𝑚𝑡 =  𝛾. (𝑋𝑡 − 1𝑡) + (1 − 𝛾). 𝑚𝑡−𝐿 (4) 
 

𝑓𝑜𝑟𝑐𝑎𝑠𝑡 =  𝑆𝑡+𝑛 =  1𝑡 + 𝑛𝑏𝑡 + 𝑚𝑡−𝐿+1(𝑛−1)𝑚𝑜𝑑𝐿  (5) 
 

Where bt is the trend component at time t, It is the level component at time t, mt is the seasonal component at 

time t, α is the level smoothing factor (0 < α < 1), β is the trend smoothing factor (0 < β < 1), γ is the seasonal 

smoothing factor (0 < γ < 1), Xt is the actual value at time t, n is the number of periods to forecast, L is the 

length of a season, and mod L represents the remainder when divided by L. 

This study takes into consideration different ways for comparison in addition to the ES method. These 

methods include FTS, autoregression (AR), moving average (MA), ARIMA, and ANN. Shown as follows: 

- FTS includes creating rules, defuzzifying sets [40], figuring out membership functions, and fuzzifying sets. 

using the mean-max method. 

- AR explores [41] the relationship between a variable's values in consecutive periods and measures the effect 

size and strength using the autocorrelation coefficient with the same variable as both independent and 

dependent variables. 

- The simple moving average (SMA) is a time series calculation that helps filter out noise and reveal data 

patterns by averaging past data [42]. It smooths out short-term fluctuations and provides insights into trends 

or cycles in the data. It also allows for distinguishing between short-term and long-term behavior. SMA is 

commonly employed in financial analysis, including stock market analysis, exchange rates, and sales 

volume. 

- ARIMA (Box-Jenkins method) [43] is a powerful time series forecasting technique, excelling in short-term 

forecasting by solely using past and current values of the dependent variable, but accuracy diminishes for 

long term. ARIMA is effective when observations in the time series exhibit statistical dependence. 

- ANNs [44] emulate the human brain's information-processing capabilities through interconnected neurons 

that process information for tasks like classification and prediction. They adapt to various applications 

through a versatile architecture. ANNs resemble human learning through supervised learning from data 

examples and patterns. 

- Time-series neural networks comprise two main model types: nonlinear autoregressive (NAR) and 

nonlinear auto-regression exogenous (NARX), which are two types of autoregression [44]. NARX models 

are autoregressive models that consider external inputs alongside their own time-series data, enabling the 

output to be influenced by both past data values and external factors. NAR models, on the other hand, base 

their modeling exclusively on historical time-series data. 

Common methods for measuring forecast accuracy include mean squared error (MSE) and MAPE. 

These indicators are as (6). 

 

𝑆𝑆𝐸 =  ∑ (𝑋𝑖 − 𝑆𝑖)
2𝑁

𝐼=1  (6) 

 

Xi represents the observed or true value at the specific time point i, while Si denotes the predicted or forecasted 

value corresponding to that same time point I, as in (7). 

 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑋𝑖−𝑆𝑖

𝑋𝑖
| 𝑋 100%𝑛

𝑖=1  (7) 

 

Let n be the number of observations, Xi be the actual value at time i, and Si be the forecast value at time i. The 

optimal parameter values for α, β, and γ are determined using the sum of squared errors (SSE) method, which 

measures the difference between the true values and the predicted values of the statistical model during analysis 

and forecasting. The overall forecasting accuracy is evaluated using the mean absolute percentage error 

(MAPE), which quantifies the forecasting error relative to the observed data and indicates how well the 

statistical models can forecast given the available data. 
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2.1.  Data set and pre-processing 

The study utilizes 7 years (2011-2017) of monthly peak load data from the Karangkates Substation. 

The data consists of monthly readings for active power (P) and reactive power (Q), converted to VA units. The 

data is arranged in a time series format. Three data sets are used for forecasting evaluation: Data 1 (2011-2012) 

with a 10-month forecast, Data 2 (2011-2014) with a 10-month forecast, and Data 3 (2011-2017) with a 10-

month forecast, including forecasts for 2018 and beyond until exceeding the transformer's maximum capacity. 

Figure 1 shows a plot of the monthly peak loads from 2011 to 2017. The x-axis represents the years, 

while the y-axis shows the peak load values in VA units. The plot displays a generally increasing trend in peak 

loads over the 7-year period. 
 

 

 
 

Figure 1. Monthly peak loads 2011-2017 
 
 

2.2.  Holt-Winters 

By including seasonal elements into the forecasting trend, Holt-Winter (HW), also known as Triple 

Exponential Smoothing with seasonal components, is one kind of approach that makes use of seasonal 

additions. The additive HW method's seasonal component revolves around zero. An alternative approach is the 

multiplicative Holt-Winters method, which involves expressing the seasonal component in relative terms and 

multiplying it by the components of level and trend. The (8)-(11) represents the seasonal component of the 

additive Holt-Winters method. 
 

𝑦̂𝑡+ℎ|𝑡 =  𝑙𝑡 + ℎ𝑏𝑡 + 𝑠𝑡+ℎ−𝑚(𝑘+1) (8) 
 

𝑙𝑡 =  𝛼. (𝑦𝑡 − 𝑠𝑡−𝑚) + (1 − 𝛼). (𝑙𝑡−1 + 𝑏𝑡−1) (9) 
 

𝑏𝑡 =  𝛽∗. (𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽∗). 𝑏𝑡−1 (10) 
 

𝑠𝑡 =  𝛾. (𝑦𝑡 − 𝑙𝑡−1 − 𝑏𝑡−1) + (1 − 𝛾). 𝑠𝑡−𝑚 (11) 
 

Multiplicative HW is a different kind of HW method where the seasonal component is specified in or according 

to the seasonal period and is expressed in relative terms. 
 

𝑦̂𝑡+ℎ|𝑡 =  (𝑙𝑡 + ℎ𝑏𝑡). 𝑠𝑡+ℎ−𝑚(𝑘+1) (12) 
 

𝑙𝑡 =  𝛼.
𝑦𝑡

𝑠𝑡−𝑚
+ (1 − 𝛼). (𝑙𝑡−1 + 𝑏𝑡−1) (13) 

 

𝑏𝑡 =  𝛽∗. (𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽∗). 𝑏𝑡−1 (14) 
 

𝑠𝑡 =  𝛾.
𝑦𝑡

𝑙𝑡−1+ 𝑏𝑡−1

+ (1 − 𝛾). 𝑠𝑡−𝑚 (15) 

 

Also known as triple exponential, HW by including seasonal elements in the predicting trend, a sort 

of technique known as seasonal additives can be used. There is hardly no seasonal component. There are three 

smoothing equations based on the HW additive equation [19], which are level lt, trend bt, and seasonality St. 

When predicting 𝑦̂𝑡+ℎ|𝑡, for the seasonal period m, the number of periods h is given by an integer 
𝑦𝑡

𝑠𝑡−𝑚
 that is 
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used to guarantee that When the most recent sample, which was the observation, was taken, the sample's 

seasonal index was in force γ that shows the passage of time t. Based on the lowest error value, the related 

smoothing parameters β, α, γ have a value between 0 and 1. 

 

 

3. RESULT AND DISCUSSION 

3.1.  Data 1 

Figures 2 and 3 analyze and visualize forecasting results for data 1. Figure 2 shows graphical 

representations of load prediction outcomes. Figure 3(a) breaks down the results of Holt-Winters (HW) and 

single exponential smoothing (SES) models. Figure 3(b) examines autoregressive (AR) and simple moving 

average (SMA) model results. These figures provide a multi-faceted view of different models' performance in 

predicting data 1 load patterns. 
 

 

 
 

Figure 2. Data 1 
 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
 

Figure 3. Displays forecast results: (a) HW and SES, (b) AR and SMA, (c) ARMA and ANN,  

and (d) ARIMA and FTS 
 

 

Figure 3(c) presents the load forecasting results using ARMA and ANN models. Figure 3(d) displays 

the outcomes using ARIMA and FTS models. Table 1 summarizes the results from all forecasting models, 

while Table 2 displays the MAPE figures determined for the various models under consideration. 
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In general, the chart patterns of the forecasting models exhibit a linear shape. However, the Holt-

Winters model stands out with a distinct seasonal pattern depicted on the resulting graph. This can be attributed 

to the limited size of the data, which restricts the ability of other models to accurately predict future changes. 

Unlike other models, the Holt-Winters model directly incorporates seasonality data, enabling it to capture and 

incorporate recurring trend changes within the model. 
 

 

Table 1. Forecast results and actual value 
No. Actual (MVA) Forecasting method (MVA) 

HW SES AR SMA ARMA ANN ARIMA FTS 

1 14.098 13.943 14.150 14.480 14.205 14.241 14.199 14.256 14.747 
2 14.459 13.616 14.150 14.327 14.155 14.185 14.137 14.192 14.531 

3 14.459 13.605 14.150 14.103 14.155 14.167 14.168 14.172 14.314 

4 14.459 13.603 14.150 14.226 14.155 14.162 14.103 14.166 14.314 
5 14.459 13.931 14.150 13.931 14.155 14.160 14.108 14.165 14.314 

6 14.819 13.545 14.150 13.998 14.155 14.160 14.106 14.165 14.314 

7 15.179 13.858 14.150 13.826 14.155 14.160 14.117 14.166 14.314 
8 15.900 13.513 14.150 14.043 14.155 14.159 14.151 14.167 14.314 

9 16.621 14.221 14.150 14.002 14.155 14.159 14.152 14.168 14.314 

10 15.900 13.863 14.150 14.136 14.155 14.159 14.169 14.169 14.314 

 
 

Table 2. MAPE value 
No. Forecasting method MAPE (%) No. Forecasting method MAPE (%) 

1 AR 6.4 5 SES 5.7 
2 MA 5.7 6 FTS 5.1 

3 ARMA 5.7 7 ANN 5.8 

4 ARIMA 5.7 8 HW 8.2 

 

 

3.2.  Data 2 

Data 2 is visualized in Figure 4. The forecasting results for data 2 are illustrated in Figure 5.  

A comprehensive summary of the forecasting results from all models can be found in Table 3. Furthermore, 

Table 4 provides the calculated MAPE values for each forecasting model. From Table 4, most models have 

MAPE below 10%, except SMA. Comparing Data 1 and 2, there is overall accuracy improvement. HW MAPE 

dropped significantly from 8.1% to 4.6%. ANN decreased from 5.8% to 3.9%. AR went from 6.4% to 3.9%. 

ARMA decreased from 5.7% to 4.9%. ARIMA improved markedly from 5.7% to 2.6%. SES dropped from 

5.7% to 3.1%. FTS decreased from 5.1% to 3.8%. 
 

 

 
 

Figure 4. Data 2 
 

 

Table 3. Forecast results and actual value 
No. Actual (MVA) Forecasting method (MVA) 

HW ANN AR MA ARMA ARIMA SES FTS 

1 16.260 16.192 16.595 16.393 15.507 16.464 16.560 16.565 16.356 

2 16.621 16.199 16.486 16.394 14.918 16.393 16.544 16.565 17.354 
3 16.621 16.112 16.357 17.233 14.918 16.326 16.555 16.565 16.689 

4 16.621 16.014 16.391 16.835 14.918 16.262 16.584 16.565 16.356 

5 16.621 15.952 16.348 17.624 14.918 16.202 16.623 16.565 17.354 
6 16.260 16.811 16.452 17.433 14.918 16.145 16.669 16.565 16.689 

7 19.091 16.155 16.378 17.281 14.918 16.091 16.720 16.565 16.356 

8 18.062 16.957 16.383 17.624 14.918 16.041 16.773 16.565 17.354 

9 16.981 16.616 16.401 17.676 14.918 15.992 16.828 16.565 16.689 

10 16.981 16.098 16.391 17.522 14.918 15.947 16.884 16.565 16.356 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
 

Figure 5. Displays forecast results: (a) HW and SES, (b) AR and SMA, (c) ARMA and ANN,  

and (d) ARIMA and FTS 
 
 

Table 4. MAPE value 
No. Forecasting method MAPE (%) No. Forecasting method MAPE (%) 

1 AR 3.9 5 SES 3.1 
2 MA 1.7 6 FTS 3.8 

3 ARMA 4.9 7 ANN 3.9 

4 ARIMA 2.6 8 HW 4.6 

 

 

3.3.  Data 3 

Figure 6 displays Data 3. Figure 7 shows the forecasting results for Data set 3. Table 5 provides a 

comprehensive summary of results from all models. Table 6 includes the calculated MAPE values for each 

model. Among the models, only HW, FTS, and ANN exhibit a MAPE below 10%, with HW having the lowest 

MAPE of 2.6%, followed by ANN at 3.7% and FTS at 6.4%. 

The AR, MA, ARIMA, SES, and ARMA models showed high error values of 10-29%, while FTS, 

ANN, and HW had smaller MAPE, especially with larger datasets. HW demonstrated superior long-term 

forecasting accuracy. For Data 1, 2, and 3, HW had MAPE of 8.2%, 4.6%, and 2.6% respectively, 

outperforming others. HW is suitable for long-term seasonal/trendy data due to its components. FTS is good 

for short/medium data but struggles with non-repetitive seasons. ANN can improve with modified layers/more 

data. HW can improve with tuned smoothing parameters but risks overfitting. Single ES, AR, SMA, and 

ARIMA are unsuitable for such data. 

The Karangkates Substation transformer, with a capacity of 30 MVA at 70/20 kV, exceeded its normal 

operating capacity from March to August 2018, peaking at 101.5% in April 2018. Although the load decreased 

after September 2018, it rose again from December 2018 to March 2019. Fluctuations in March-April 2016 

may be attributed to PLN interconnection maneuvers and system regulation. Given the transformer's exceeding 

of maximum capacity in April 2018 and anticipated further increases from January 2019, PLN should promptly 

consider adding or replacing transformers, or implementing network maneuvers to ensure power supply 

stability and reliability. 

In conclusion, for the monthly peak load forecast data of the Karangkates Substation, the most suitable 

method is the HW model. This model effectively captures the seasonal patterns and trends present in the data, 

enabling accurate forecasting. Moving forward, a forecast is conducted to determine the projected time when 

the transformer at the Karangkates Substation will reach its maximum capacity, as depicted in Figure 8. 
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Figure 6. Data 3 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
 

Figure 7. Displays forecast results (a) HW and SES, (b) AR and SMA, (c) ARMA and ANN, and  

(d) ARIMA and FTS 
 

 

Table 5. Forecast results and actual value 
No Actual (MVA) Forecasting method (MVA) 

AR MA ARIMA SES FTS ANN HW 

1 25.788 28.890 20.318 28.018 27.915 27.563 25.831 26.087 
2 26.160 29.873 17.319 28.175 27.915 26.850 26.725 25.821 

3 24.440 30.336 17.319 28.343 27.915 23.763 26.714 24.034 

4 23.812 31.175 17.319 28.519 27.915 21.863 24.111 23.143 
5 21.839 32.052 17.319 28.700 27.915 23.763 22.133 20.946 

6 21.717 32.459 17.319 28.884 27.915 23.763 22.937 20.602 

7 25.909 33.952 17.319 29.069 27.915 27.563 24.298 25.352 
8 28.254 33.458 17.319 29.255 27.915 26.613 28.400 28.926 

9 25.788 34.907 17.319 29.442 27.915 27.563 26.825 26.743 

10 28.375 35.439 17.319 29.630 27.915 26.613 26.439 28.965 
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Table 6. MAPE value 
No. Forecasting method MAPE (%) 

1 AR 28.7 
2 MA 29.6 

3 ARMA 15.1 

4 ARIMA 10.1 
5 SES 12.2 

6 FTS 6.4 

7 ANN 3.7 
8 HW 2.6 

 

 

 
 

Figure 8. Peak load forecast of Karangkates Substation 
 

 

4. CONCLUSION 

This study verifies that, in the long term, the Holt-Winters (HW) method is the best choice for 

predicting the monthly peak load at Karangkates Substation. Although its accuracy may not be as accurate as 

for short-term estimation, it routinely provides sufficient results. The method is effective in estimating the 

remaining life of transformers and determining the optimal time for upgrades, especially when paired with 

automated data mining tools. The implementation of an integrated strategy facilitates planning and 

maintenance, guarantees optimal transformer operation, and prevents interruptions to the power supply. The 

findings establish the HW approach as the industry standard for long-term load growth projections at 

Karangkates Substation. 

Using this method, PLN can plan transformer capacity more precisely, reducing the risk of under or 

overcapacity that could jeopardize energy availability. The HW method helps PLN plan transformer 

maintenance schedules and choose the right time to replace, repair or upgrade components without disrupting 

energy flow. Careful long-term planning also lowers the likelihood of unplanned power interruptions, 

improving customer service dependability. Precise predictions help simplify budget administration for 

transformer maintenance and upgrades, and maximize expenditure while reducing resource wastage. The 

findings are expected to drive the development of more advanced forecasting technologies in the future, 

enabling real-time monitoring of transformers and strengthening power system reliability. 
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