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 This article addresses the issue related to determining the minimum 

capacitor required for the self-excitation of an induction generator. The 

determination of the minimum capacitance required for the self-excitation of 

a self-excited induction generator has already been the subject of several 

previous studies. It has been shown that the minimum capacitance depends 

on the rotation speed and the remanent magnetism. The study carried out in 

this paper shows that, in addition to the rotation speed and the remanent 

magnetism, there is a third parameter that has an influence on the self-

excitation process, which is the acceleration or, in other words, the rotation 

speed ramp-up. In this paper, several experimental self-excitation tests for 

different values of the rotation speed ramp-up are carried out, leading to new 

characteristics of the minimum self-excitation capacitance as a function of 

the rotation speed. The results obtained from simulation and experimental 

studies prove the efficacy of the proposed approach. 
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1. INTRODUCTION 

The use of wind power to generate electricity as an ecological alternative source to fossil fuels and 

nuclear energy is nowadays undergoing great development. Indeed, new units for the conversion of 

renewable energy into electrical energy are taking place. They are in the form of micro-power stations and 

are either intended to serve as a back-up source to other sources or are specifically designed for stand-alone 

operation to supply sites isolated from the electricity grid [1], [2]. 

In the case of stand-alone systems, various electric generators are used. However, for reasons of 

reliability and robustness, self-excited induction generators are still widely utilized. A capacitor self-excited 

asynchronous generator (SEIG) offers certain advantages over a conventional synchronous generator as an 

isolated electrical power source. These advantages include reduced unit cost, a brushless rotor, the absence of 

a separate DC source, and ease of maintenance [3]–[6]. In this modes, capacitors are utilized to provide the 

requisite reactive power for self-excitation of the induction generator [7]. In these situations, the generator 

adjusts its operational frequency in line with the rotational speed and load demands [8]. However, 

maintaining voltage regulation within autonomous self-excited induction generators (SEIGs) is of paramount 

importance to ensure stable and reliable power generation [9]. Various voltage regulation systems for SEIGs 

rely on automatic adjustment of capacitor capacity. SEIG voltage regulation can be enhanced through shunt 

or series compensation techniques. Technological advancements, particularly the use of thyristors and power 
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converters, have facilitated the deployment of devices such as the thyristor-based phase-controlled reactor 

(FC-TCR). In this context, the induction generator no longer requires a capacitor bank for self-excitation, as 

the reactive power needed for both the generator and the loads is supplied by the TCR-FC. Furthermore, 

static synchronous compensators (STATCOMs) offer two topologies used in SEIG voltage control [10]–[13]. 

The first topology is based on a current-controlled voltage source converter, while the second utilizes a static 

current compensator. Moreover, the series static compensator (SSC) has demonstrated its efficiency in 

optimizing voltage profiles within electrical systems. The literature has also explored different control 

strategies, encompassing both voltage and frequency regulation [12], [13]. 

 The phenomenon of self-excitation in induction machines is nowadays well known. It requires three 

conditions simultaneously [2], [14]–[17]. The existence of a reactive energy source (capacitors in the case of 

stand-alone operation), the existence of a remanent magnetism and sufficient rotation speed; for a given value 

of capacitor capacitance, there is a lower limit of rotation speed below which self-excitation will not occur. 

Studies have shown the influence of each of these three conditions on the self-excitation delay of induction 

generators and on the amplitude of the generated voltages [18]. 

This article presents a theoretical study followed by an experimental validation aimed at 

highlighting a fourth factor in the self-excitation delay of SEIG. The parameter under investigation is the 

acceleration or transient rotational speed. In the literature, several studies have been conducted to determine 

the minimum required capacitance value for ensuring self-excitation of an asynchronous generator at a given 

rotational speed [1], [15], [17], [19], [20]. The procedure involves setting the rotational speed and then 

varying the capacitance of the capacitors until self-excitation occurs [21]. Thus, a curve representing the 

minimum self-excitation capacitance as a function of rotational speed can be plotted. We have observed that 

this technique does not take into account the influence of acceleration on the self-excitation phenomenon. In 

this context, for our contributions, we fix the capacitance of the capacitors and vary the rotational speed from 

zero until the occurrence of the self-excitation phenomenon. The objective of this technique is to plot the 

characteristic of the minimum capacitance as a function of rotational speed and demonstrate the influence of 

acceleration on the self-excitation phenomenon. In order to compare the experimental and theoretical results, 

a dynamic model of the self-excited asynchronous generator is developed using Matlab-Simulink. This model 

is valid both in transient conditions to evaluate excitation delays and in steady-state conditions to assess the 

generated voltage amplitudes. 

 

 

2. SYSTEM DESCRIPTION AND MODELLING 

The proposed method will be tested in a dedicated control scheme for a SEIG driven by a DC motor. 

The SEIG is connected to a variable capacitor bank for self-excitation. Figure 1 illustrates the overall system 

diagram under study. The dynamic model of the SEIG is derived from the electrical and magnetic equations 

to which we add the self-excitation equations. The SEIG equations and parameters used in this study are the 

same as those used in our previous works [22], [23]. 
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Figure 1. Overall diagram of the studied system 

 

 

The equivalent circuit shown in Figure 2 is the classical equivalent diagram of an induction machine 

to which we have added a self-excitation capacitor in the stator branch. At no load, the rotor current is low 

compared to the stator current and the magnetising current. The rotor branch will then appear as an open 

circuit and the equivalent circuit of Figure 2 will be reduced to a single branch as shown in Figure 3 [23], 

with Rs: stator resistance, Xs: stator leakage reactance, Xm: magnetising reactance, and Xc: capacitor 

reactance. 
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From Figure 3, we can write:  
 

−𝑗. 𝑋𝑐 . 𝐼𝑠 + (𝑅𝑠 + 𝑗. 𝑋𝑠). 𝐼𝑠 + 𝑗. 𝑋𝑚. 𝐼𝑚 = 0 (1) 

 

as: 𝐼𝑠 = 𝐼𝑚 , therefore 

 

(𝑅𝑠 + 𝑗(𝑋𝑠. +𝑋𝑚 − 𝑋𝑐)). 𝐼𝑠 = 0 (2) 

 

this leads to: 

 

{
𝑅𝑠 = 0
𝑋𝑠 + 𝑋𝑚 − 𝑋𝑐 = 0   

⇒ 𝑋𝑐 = (𝑋𝑠. +𝑋𝑚) (3) 

 
1

𝐶.𝜔𝑟
= 𝐿𝑚. 𝜔𝑟  ⇒ 𝐶 =

1

𝐿𝑚.𝜔𝑟
2 (4) 

 

From (4), we plot the theoretical characteristic which gives the minimum capacitance of self-

excitation as a function of the rotation speed. Given that the value of the magnetising inductance Lm to be 

taken into account is the one corresponding to the linear zone of the no-load characteristic Lm(im), i.e. the 

initial value of Lm [24], [25]. 
 
 

  
 

Figure 2. Equivalent circuit of SEIG 
 

Figure 3. Simplified equivalent circuit of the SEIG 

 

 

3. EXPERIMENTAL TEST BENCH 

In order to demonstrate the influence of the slope of the rotation speed increase on the value of the 

self-excitation capacitance, an experimental test bench was prepared. It consists of a 1.1 kW squirrel cage 

induction machine driven by a 3 kW DC motor and a three-phase variable capacitance bank. A dynamo-

tachometer mounted on the shaft is used to visualize the speed. A voltmeter is employed to assess the 

occurrence of self-excitation. Figure 4 displays a photograph of the experimental test bench.  

Capacitor capacitance limits depend on generator rotation speed and power. For a 1.1 kW induction 

generator and for a speed of 1500 rpm, the minimum capacity is around 20 µF. The maximum limit of the 

capacitance is dictated by the magnitude of the generated voltage which should not exceed the nominal value. 

The working method employed during the experimental tests follows a well-defined process. First 

and foremost, we initially determine the excitation capacity value using a random selection. Subsequently, in 

a progressive manner, we increase the rotational speed of the machine until reaching the optimal excitation 

point of the generator. Through this testing approach, we are able to accurately determine the optimal value 

of the excitation capacity. 

 

 

 
 

Figure 4. Photograph of the experimental test bench 
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4. RESULTS AND DISCUSSION 

The experimental characteristic is obtained by fixing the value of the capacitance and gradually 

increasing the rotation speed until excitation occurs, and then noting the speed corresponding to the 

beginning of the excitation. Figure 5 shows the characteristic of the minimum capacitance of self-excitation 

as a function of the rotation speed, obtained experimentally and theoretically.  

Thus, the minimum capacitance of self-excitation C_min is inversely proportional to the square of the 

rotation speed. Figure 5 shows a good agreement between the experimental and theoretical characteristics. It 

is important to highlight that, when plotting the experimental characteristic of Cmin(r), the increase in speed 

was deliberately made very slow to correctly assess the value of the speed corresponding to the start of self 

excitation. 

For a thorough analysis, we replicated the previous experiment while accelerating the process at a 

faster rate, which led to significantly distinct outcomes. To achieve this, while maintaining a constant 

capacity, we conducted three tests by progressively increasing the acceleration rate. This approach allowed us 

to highlight the substantial impact of acceleration on the self-excitation process. 

We set the capacitance to a given value and, by means of the DC motor, we gradually increase the 

rotation speed of the motor-SEIG set until the voltmeter starts to deviate, this is the beginning of self-

excitation. The rotation speed evolves approximately in a ramp from zero to the value corresponding to self-

excitation. We carry out three tests by acting on the slope of this speed ramp up. We will thus speak about 

slow slope, medium slope and high slope.  

 

 

 
 

Figure 5. C_min versus rotation speed characteristic 

 

 

Figure 6, shows the evolution of the rotation speed versus time for three different slopes, which are 

noted respectively: low, medium and high slope. Figure 7, shows the rotational speed curve versus time with 

the same slope but with different self-excitation capacitance (C = 42 µF and C = 48 µF). We can see steady 

state of rotation speed is inversely proportional to capacitance.  

 

 

  

 

Figure 6. The evolution of rotation speed versus time 

for the 3 degrees of the speed ramp up and C = 48 µF 

 

Figure 7. The evolution of rotation speed versus time, 

medium ramp up test, for C = 42 µF and C = 48 µF 

600 800 1000 1200 1400 1600
0

10

20

30

40

50

60

70

 Rotation speed (tr/min)

M
in

im
u
m

 c
a
p
a
c
it
a
n
c
e
 v

a
lu

e
 C

m
in

 (
µ

f)

 

 

Experiment

Analytical

0 5 10 15 20 25 30 35 40 45
0

200

400

600

800

1000

1200

1400

1600

Time (s)

R
o
ta

ti
o
n
 s

p
e
e
d
 (

tr
/m

in
)

 

 

Low ramp up test

Medium ramp up test

Large ramp up test

0 5 10 15 20 25 30 35 40 45
0

500

1000

1500

Time (s)

R
o
ta

ti
o
n
 s

p
e
e
d
 (

tr
/m

in
)

 

 

Pour C=42µF

Pour C=48µF



Int J Pow Elec & Dri Syst  ISSN: 2088-8694  

 

Experimental determination of minimum capacitor for self-excitation … (Madjid Sibrahim) 

113 

Thus, for each value of capacitance, three tests are carried out, corresponding to the low, medium, 

and high slopes, respectively. Table 1 shows the results of these three tests. In order to better highlight and 

interpret the obtained results presented in Table 1, we deemed it important to plot them on graphs for the 

three speed slopes.  

Figures 8, 9 and 10 depict the minimum self-excitation capacity characteristics as a function of 

rotational speed for low-ramp, medium-ramp, and high-ramp tests, respectively. According to the three latest 

figures, we observe a satisfactory agreement between the results obtained from the simulations and those 

obtained from the experimental tests conducted in the laboratory. This convergence thereby validates the 

results of the simulations. 
 

 

Table 1. Rotation speed versus excitation capacitance, for three speed ramp ups 
Minimum capacitance 

C_min (µF) 
Rotational speed in rpm 

Low ramp up Medium ramp up Large ramp up 

24.2 1420 1344 1300 

26.5 1360 1240 1200 
28.1 1320 1200 1170 

30.2 1280 1170 1110 

32.8 1240 1128 1090 
34.8 1200 1104 1060 

36 1188 1080 1038 

38.88 1130 1040 992 
42.3 1094 1000 940 

44.8 1060 960 900 

46.7 1040 920 860 
48.2 1000 900 840 

50.8 980 860 800 

53.1 960 834 780 
56.1 940 786 764 

60.1 922 754 720 

62.7 910 738 700 
66.3 890 720 694 

 

 

  
 

Figure 8. C_min versus speed characteristic, low  

ramp up test 

 

Figure 9. C_min versus speed characteristic, medium 

ramp up test 
 

 

 
 

Figure 10. C_min versus speed characteristic, large ramp up test 
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We have grouped all the experimental results obtained in Figure 11, in order to compare them using 

various measures. The graph clearly shows that, when the capacity and rotation speed are kept constant, a 

steeper acceleration slope corresponds to a reduced value of self-excitation capacity. The obtained results 

conclusively demonstrate the idea implemented in this article. Indeed, this study highlights the importance of 

considering the acceleration parameter for self-excitation of induction generators. 

 

 

 
 

Figure 11. Comparison of the experimental characteristics of C_min versus rotation speed for the 3 degrees 

of the speed ramp up 

 

 

5. CONCLUSION 

This paper has been devoted to the theoretical and experimental study of the conditions necessary 

for the self-excitation of a self-excited induction generator (SEIG). Particular emphasis has been placed on 

the characteristic that determines the minimum capacitance required for self-excitation as a function of 

rotation speed. Based on the equivalent circuit of the SEIG operating at no load and with some justified 

simplifications, a simple theoretical relationship describing the minimum self-excitation capacitance as a 

function of rotation speed has been established. The comparison between the theoretical and experimental 

results shows a good agreement. Furthermore, a dynamic model of the SEIG was developed in MATLAB-

Simulink to assess both the self-excitation delays and the amplitudes of the generated voltages. 

Subsequently, a series of experimental tests were carried out to investigate the influence of the speed 

rise slope (acceleration) on the characteristic determining the minimum self-excitation capacitance as a 

function of rotation speed. By considering the acceleration, new characteristics were plotted. The main result 

of these new tests can be summarized as follows: for the same steady-state value of the rotation speed, the 

value of the minimum capacitance for self-excitation depends on the slope at which the speed evolves 

towards steady-state. The higher the slope of the speed increase, the lower the minimum capacitance required 

for self-excitation. 
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