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 Over decades, numerous methods have been used to optimize objective 

functions. Where cost and emissions clash. The improved non-dominated 

sorting genetic algorithm (NSGA-II) employs elitism to discover the 

optimum value and speed convergence in multi-objective optimization 

problems. Population variant differential evolution algorithm alters 

differential evolution (DE). The main distinction between DE and population 

variant differential evolution algorithm (PVDE) is population replenishment. 

NSGA-II and PVDE are combined in the suggested hybrid approach. The 

hybrid technique solves multi-objective optimization problems efficiently by 

combining two or more methods. The hybrid technique solves multi-

objective optimization problems well. This optimization problem pits cost vs 

pollution. The hybrid approach exposes half the population to the NSGA-II 

algorithm and half to the PVDE algorithm. In optimization problems with 

opposing aims, such as minimizing costs and emissions, a hybrid technique 

is utilized to find the optimal solution. Elitist diversity-preserving strategies 

avoid optimization issues becoming converging too soon. A 10-generator 

IEEE 39 bus test system was validated using this method. The hybrid NSGA-

II and PVDE methodology achieves global optimal solutions with more 

durability, simplicity, and optimization performance than existing methods. 
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1. INTRODUCTION 

A systematic planning and economic operation of generating units for electric power generation are 

always important in the electrical industry. In an extensive integrated power system network, the utilization 

of fossil fuels over a decade demands the optimal operation of thermal units. A little saving related to the 

operation of a generating system leads to a notable reduction in fuel consumption quantities and cost [1]. In 

generating systems, the problem associated with economic dispatch is bringing off the minimum operation 

cost. Over recent years, emphasis on diminishing operating costs has become an issue. Load forecasting, 

security analysis, unit commitment, and economic load dispatch are vital issues in the modern power system. 

One of the possible ways is the gentle and efficient operation of generating units economically. 

The main objective of the economic load dispatch is the economic operation of thermal units with 

minimum fuel cost while maintaining the system constraints [2]. Economic load dispatch is related to the 

online process of the minute-to-minute requirement of load allocation among the connected thermal units 

with an objective of total cost minimization [3]. Thermal units should generate for reasonable optimization 
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problems. Optimization concerns include premature convergence, keeping to the local optimal value, and 

convergence rate [4]. 

In former days, economic load dispatch optimization was a single-objective optimization issue that 

minimized overall cost [5]. Electricity industries generate electricity and pollute. Many nations have rules to 

minimize hazardous fumes from power plants and protect the environment. This measure reduces power 

sector NO2 by two million tons/year and SO2 by 10 million tons/year. Therefore, several studies include 

emission as additional target, creating multi-objective environmental and economic load dispatch [6]–[8]. 

Navaneetha et al. [9] Used a strong linear programming tool to reach global optima for rescheduling 

power dispatch under overloaded conditions utilizing the part reduction and third simplex techniques.  

A genetic algorithm (GA), a meta-heuristic related to bio-inspired evolutionary algorithms, was proposed by  

Xu et al. [10]. The authors optimize multi-objectively using this method. In an interconnected system, cost, 

emission dispatch, transient stability, small perturbation stability, and power exchange conflict. This method 

is used in three areas. GA efficiently addresses the issue, the authors discovered. Abido [11] recommend 

population-based evolutionary algorithms like the new strength Pareto evolutionary algorithm.  

A connectivity-based clustering technique with a diversity mechanism controls the Pareto set without 

compromising trade-off features to maintain non-dominated solution persistence. 

A detailed examination of non-dominated sorting genetic algorithm (NSGA), strength Pareto 

evolutionary algorithm (SPEA), and niched Pareto genetic algorithms was performed [12]. SPEA predicts 

non-dominated solutions from the existing population and stores them in a repository to evaluate the cost-

emission trade-off curve. SPEA takes longer to optimize. Palanichamy and Babu [13] used a single identical 

objective function to optimize. This optimization used analytical solution to describe cost and emission 

characteristics as total generation. The recommended technique reduces computing time in economic, 

emission, and cost function integration. Agrawal et al. [14] created updated repository particles and used 

fuzzy decision-making to fix stochastic approach defects. To improve the suggested fuzzy clustering with 

particle swarm algorithm (FCPSO) elite particles of the repository, self-adaptive mutation, and other proven 

methodologies are used on the IEEE 30 bus six generator system to create a good compromise solution of a 

diverse Pareto. 

Sivasubramani and Swarup [15] introduced a new harmony search method (HSA) to restore Pareto 

front uniformity. Fast non-dominated sorting and ranking are used to expand HSA on 30 and 118 IEEE bus 

test systems, resulting in a more diverse Pareto front than NSGA-based methods II. Bayon et al. [16] 

improved the economic emission dispatch issue analytical solution. Niknam and Mojarrad [17] propose a 

modified adaptive θ-PSO with a new mutation operator to address drawbacks such as stagnant optimal 

solutions.  

Jubril et al. [18] used semi-definite programming, a crucial mathematical programme. Cost and 

transmission losses were two goals in a multi-objective optimization problem. They made them single-

objective convex by lowering vector objective to scalar objective. Diversity pertains to nonlinear weighted 

selection. Multi-area power systems by Pandit et al. [19] reduce dynamic crowding distance. This technique 

optimizes multi-objective system cost, emission, and dependability. Tie line restriction is added by multi-

objective multi-area economic dispatch. Fuzzy selection priorities decision-maker significance.  

El-sobky and Abo-elnaga [20] solved the multi-objective optimization problem with security, power 

balancing, and min-max power generation restrictions using trust region globalization. Weighting turns 

multi-objective problems into unitary problems and applies them to 30 bus six generator test network to 

compare outcomes with previous approaches. Economic and stability levels are competing goals in the multi-

objective optimization issue, according to Vempalle and Dhal [21]. Load dynamics on load side composition 

affect transient stability. Risk-based criteria calculate system transient stability probabilistically. A multi-

objective programming paradigm is used to get a suitable Pareto set. The planned one on ten machines 39 bus 

system stabilizes load variance.  

For multi-objective to single-objective conversion, Chopra et al. [22] used the cost penalty factor. 

The nature-inspired grey wolf optimization technique performed well on three test systems and yielded 

comparable results. Rafi et al. [23] created a novel technique for difficult power systems with strong non-

linearity. Used population variant differential evolution algorithm (PVDE) to reduce population inactivity. 

Price penalty factor mono-objectivizes bi-objective. 

Vijay et al. [24] introduced the multi-objective economic load dispatch issue with valve point 

loading impact and gearbox losses limitations. Amorim and Rocha [25] developed objective optimization 

issues to reduce pollution, fuel cost, wind generation, and gearbox power losses within system constraints. 

NSGA-III addressed several objective optimization issues. The recommended dominance relation method 

employs reference points. NSGA-III was tested on IEEE 30 to demonstrate its potential. Sakthivel et al. [26] 

established multi-area economic environmental dispatch (MAEED) to reduce fuel cost and pollutant 

emissions with tie-line, valve point loading, multi-fuel, and power balancing restrictions. MAEED should use 

multi-objective squirrel search. Elitist depositary mechanism with crowding distance and dominance theory 
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sustains diversity with non-dominant solutions. The issue is tested on 40-, 10-, and 140-unit Korean power 

grids. Multi-objective squirrel search algorithm (MOSSA) beats existing approaches. For combined 

economic emission dispatch, Hassan et al. [27] proposed chaotic artificial ecosystem-based optimization 

(CAEO). The CAEO algorithm simulates nicely. Tahir et al. [28] Showed combined economic emission 

dispatch (CEED) without and with renewable energy. The price penalty made CEED one goal. We 

investigate multi-objective optimization. Flower pollination algorithm (FPA) cuts costs and pollutants. FPA 

tests 11–15-unit systems with and without renewable energy. FPA surpassed previous literature methods. 

Heuristic approaches like GA, neural networks (NN), simulated annealing (SA), particle swarm 

optimization (PSO), Ant Colony, and artificial bee colony (ABC) and its variants have improved economic 

and emission dispatch issue analysis and combination of both and produced excellent and acceptable 

solutions. Power systems are modernizing daily under grid and rule control. Quality of solutions, emission 

control, convergence, decreased losses, treatment of all limitations, and global optimal solutions for 

combined emission and economic dispatch must be improved continuously. The literature study suggests that 

the article will concentrate on novel algorithms and how they might solve combined emission and economic 

dispatch concerns. This study addresses CEED valve-point impact using NSGA-II and PVDE. The reference 

Pareto-front is derived using real coded genetic algorithm’s (RCGA) weighted sum. The remaining sections 

are: i) the CEED issue formulation is shown in section 2; ii) in section 3, we discuss how to apply NSGA-II, 

PVDE, and a hybrid NSGA-II-PVDE to the CEED problem; iii) section 4 presents the simulation results of 

many test scenarios; and iv) section 5 concludes. 
 
 
2. PROBLEM FORMULATION 

The power business needs well-planned economic generating unit operation. In an interconnected 

power system with ‘n’ units, economic load dispatch is linked to scheduling thermal unit active power 

production to reduce operating costs using nonlinear cost functions. Cost and thermal unit emissions must be 

reduced in scheduling difficulties for environmental reasons. Thus, the issue is a multi-objective economic 

load dispatch optimization problem (MOELD) with two competing goals of minimizing cost and emission by 

fulfilling equality and inequality constraints. 
 
2.1. Mathematical formulation 

The objective function and associated constraints of the multi-objective economic load dispatch 

problem are given by (1). 
 

𝑀𝑖𝑛 ∑ [𝐶𝐹𝑥(𝑃𝑔𝑥) + 𝐸𝐹𝑥(𝑃𝑔𝑥)]𝑛
𝑥=1  (1) 

 

Where 𝐶𝐹𝑥: represents the cost function of thermal unit ‘x’; 𝐸𝐹𝑥: indicates the emission function of thermal 

unit ‘x’; 𝑃𝑔𝑥: is the real power generation of thermal unit ‘x’; 𝑥’: is a number of thermal units varying from 1 

to n. The mathematical expression of a cost function 𝐶𝐹𝑥(𝑃𝑔𝑥) represented in quadratic form as (2). 
 

𝐶𝐹𝑥(𝑃𝑔𝑥) = 𝑎𝑥 + 𝑏𝑥𝑃𝑔𝑥 + 𝑐𝑥𝑃𝑔𝑥
2 (2) 

 

Where 𝑎𝑥, 𝑏𝑥, 𝑐𝑥 represents the cost coefficients of thermal unit ‘𝑥’. The mathematical expression of an 

emission function 𝐸𝐹𝑥(𝑃𝑔𝑥)represented in quadratic form as (3). 

 

𝐸𝐹𝑥(𝑃𝑔𝑥) =  𝑥 + 𝛽𝑥𝑃𝑔𝑥 + 𝛾𝑥𝑃𝑔𝑥
2 (3) 

 

Where 𝑥, 𝛽𝑥, 𝛾𝑥represents the emission coefficients of thermal unit ‘𝑥’. The inequality and equality 

constraints of the problem are as (4). 

 

𝑃𝑔𝑥
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑥 ≤ 𝑃𝑔𝑥

𝑚𝑎𝑥 (4) 

 

Where 𝑃𝑔𝑥
𝑚𝑖𝑛, 𝑃𝑔𝑥

𝑚𝑎𝑥is minimum and maximum real power generation limits of ‘𝑥’ unit. Equality constraint 

relates to the sum of total generation and total demand [29]–[31]. 
 

∑ 𝑃𝑔𝑥 = 𝑃𝐷
𝑛
𝑥=1  (5) 

 

Where PD is the total demand; 𝑃𝑔𝑥is the power generation of thermal unit ‘x’; ‘n’ represents the total number 

of thermal units 
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3. METHODOLOGY 

Maintenance of power balance is essential between the variation of load demand and power 

generation from thermal units. Linear programming, nonlinear programming, quadratic programming, the 

gradient technique, the Newton Raphson method, and the lambda iteration method, were all used to find an 

answer to the aforementioned optimization issue. Evolutionary algorithms like the non-dominated sorting 

genetic algorithm-II (NSGA-II) and PVDE are more efficient in obtaining an optimal global solution for the 

MOELD. 

 

3.1. Non-dominated sorting genetic algorithm – II (NSGA-II) 

NSGA-II, an upgraded version of the non-dominated sorting genetic algorithm (NSGA), uses elitism 

to find the best value and accelerate convergence in multi-objective optimization problems. Figure 1 shows 

the NSGA-II flowchart for MOELD cost and emission calculations. The NSGA-II implementation phases 

are: 

a) To begin, random populations are created and their fitness values are assessed. These parent populations 

are chosen by ranking and crowding distance. Each population's rank is decided via non-dominated 

sorting [32]. 

b) Crowding distance reveals population proximity to neighbours. Crowding distance is assessed for each 

population to identify parent populations with the same rank.  

c) NSGA-II operations, including binary crossover and polynomial mutation, produce offspring from 

selected parent populations.  

d) Iterations continue until the maximum number is achieved. Get the optimum cost and emission values 

from the optimization problem. 

 

 

 
 

Figure 1. Flowchart for MOELD using NSGA-II 
 

 

3.2. Population variant differential evolution algorithm (PVDE) 

DE-modified PVDE. Population refreshment separates DE/PVDE. The DE population is fixed but 

regenerated in PVDE using interquartile range. Figure 2 shows the PVDE approach for IEEE 39 bus system 

MOELD flowchart. PVDE procedures are: 

a) Set the number of deciding factors to 1, power limits, scaling factor vector (tsf), crossover probability 

vector (tcp), and refreshment factor β. 

b) From tsf and tcp evaluate maximum, minimum, and median values [23]. 
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c) Initialize the random parent populations which have to satisfy both equality and inequality constraints, 

show in (3)-(5).  

d) For the refreshment of the parent populations, Varmin and Var are evaluated.  

e) Varmin is the vector difference of power limits i.e. maximum and minimum limits multiplied by 0.01.  

f) Var is evaluated on parent populations based on the interquartile range (IQR). 

g) IQR is defined as the difference between the upper quartile and lower quartile range.  

h) If Var is less than Varmin new generation limits are evaluated. A new population is generated with the new 

generation of limits which is termed a refreshed population. 

i) Determine the fitness values of refreshed parent populations and find the best population i.e. which is 

having minimum fitness value. 

j) Find scaling factor (SF), and crossover probability (CP) which are useful for the performance of mutation 

and crossover. 

k) Perform mutation, crossover, and selection process to generate offspring population.  

l) If the fitness of the offspring population is less than the fitness of the parent population, the offspring 

population is considered for the next generation. Otherwise, the parent population is considered for the 

next generation.  

m) Update cp and sf as well as the current best population. Process repeats until the iteration count reaches 

the maximum iteration count.  

n) Finally, a set of optimal solutions are obtained called Pareto optimal solutions evaluate an optimal 

solution. 
 

 

 
 

Figure 2. Flowchart for MOELD using PVDE 
 

 

3.3. Multi-objective optimization problems using hybrid method 

Section 2's issue formulation in (1)-(3) must maintain equality and inequality restrictions in (4) and 

(5). This optimization issue was addressed hybrid. NSGA-II and PVDE are combined in the suggested hybrid 

approach. The hybrid technique solves multi-objective optimization problems efficiently by combining two 

or more methods. The hybrid technique solves multi-objective optimization issues well. In this optimization 

challenge, cost, and emission clash. The hybrid technique executes the NSGA-II algorithm on half the 

population and the PVDE algorithm on the other [33]. The hybrid technique (NSGA-II and PVDE) 

implementation plan is shown in Figure 3. Hybrid technique process: 
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a) Before starting the hybrid approach, the decision variables, goals, emission and cost coefficients, 

maximum iterations, and system demand are initialised. 

b) The output of each generator is represented as a decision variable and presented as Pg= [Pg1, Pg2, Pg3 

…] where Pg is the decision vector and Pg1, Pg2, Pg3…….. are the decision variables. 

c) Random population is generated, which has to satisfy in (4) and (5). 

d) Initial half of the population is considered for NSGA-II and fitness is evaluated for each parent population 

using (2) and (3). 

e) Apply the non-dominated sorting based on the ranking and crowding distance, and the process continues 

until all ranking fronts are obtained. 

f) The corresponding genetic operators i.e. selection, crossover, and mutation are implemented to generate 

half of the offspring population [33]. 

g) The remaining parent population includes PVDE. Initially, population is analysed using interquartile 

range. 

h) Appraisal of scaling factor and crossover probability supports the operation during the production of 

offspring populations. 

i) Best population is evaluated from the half-refreshed population. The sequence of mutation, crossover, and 

selection is carried out to generate half the offspring populations. 

j) The two half offspring populations are combined to form the population of original size. 

k) The parent population is amalgamated with the offspring population which leads to enhancement of 

population size, which is twice in number.  

l) Based on the best fitness values the initial size of a population is selected and remaining discarded.  

m) The newly produced population serves as the parent population for the next iteration, and the iteration 

process continues until the maximum number of iterations is reached. 
 

 

 
 

Figure 3. Flowchart of a hybrid method 
 

 

4. SIMULATION RESULTS 

In this we are focusing on the economic load dispatch (ELD) and combined economic and emission 

dispatch for various test systems including different buses. Standard coefficients would be provided for each 

system under test. The system considered would be provided with the full loads that need to be generated. 

The range of power that can be generated with each generator of the system is also provided. These values 
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were fed as input to optimization models of hybrid NSGA-II and PVDE method. This NSGA-II-PVDE is 

validated IEEE 39 bus test network with ten generators. The results of the entire algorithm provide total cost 

of the system (fuel cost, emission cost, and combined total cost) and the output (load) needed to be generated 

from each generator system. 
 

4.1. IEEE 39 bus system using NSGA-II 

The single-line diagram of the IEEE 39 bus system is shown in Figure 4 and its parameter values are 

given in Table 1. Cost and emission values of IEEE 39 bus system in MOELD using NSGA-II for 700 MW, 

850 MW, 1000 MW, 1300 MW, and 1500 MW given in Table 2. The Pareto front for maximum load 

demand of 1500 MW is shown in Figure 5. 
 

 

Table 1. Parameter values employed to obtain a global optimal solution for IEEE 39 bus system  

in MOELD using NSGA-II 
Parameter Value Parameter Value 

Crossover rate 0.8 Population size 80 

Mutation rate 0.2 number of iterations 100 

 

 

Table 2. Cost and emission values of IEEE 39 bus system in MOELD using NSGA-II for 700 MW, 850 MW, 

1000 MW, 1300 MW, and 1500 MW 
Load(MW) 700 850 1000 1300 1500 

P1 400.52 440.46 451.29 444.98 454.96 

P2 156 159.32 248.51 436.49 451.96 

P3 23.47 85.94 93.56 125.50 129.89 

P4 25 25 106.61 95.49 131.11 

P5 20 63.24 25 121.40 160.90 

P6 10 10 10 10 66.23 

P7 10 10 10 10 25.59 

P8 10 10 10 10 32.60 

P9 25 25 25 25 20.47 

P10 20 20 20 20 27.45 

Cost (Rs) 14,79,315 16,73,628 18,74,080 22,94,360 26,38,125 

Emission (lb) 1,994.99 2,206.74 2,407.15 3,024.34 3,139.86 

 

 

4.2. IEEE 39 bus system using PVDE 

The same initial parameter values are considered in PVDE, which was considered in NSGA-II case 

(i). Cost and emission values of IEEE 39 bus system in MOELD using PVDE for 700 MW, 850 MW, 1000 

MW, 1300 MW, and 1500 MW is given in Table 3. In a comparison of IEEE 39 bus system with NSGA-II, 

cost value increased and emission values are decreased using PVDE. Figure 6 shows the Pareto front 

obtained for IEEE 39 bus system for a load of 850 MW using PVDE. 
 

 

 
 

Figure 4. Single line diagram of IEEE 39 bus system 
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Table 3. Cost and emission values of IEEE 39 bus system in MOELD using PVDE for 700 MW, 850 MW, 

1000 MW, 1300 MW, and 1500 MW 
Load (MW) 700 850 1000 1300 1500 

P1 360.18 360.62 440.24 450.72 458.14 

P2 152.79 164.40 283.32 414.98 452.14 

P3 40.12 98.77 47.43 131 129.98 

P4 46.90 126.20 128.23 128.99 129.99 

P5 10 10 10 21.14 54.89 

P6 10 10 10 10.35 54.26 

P7 10 10 10 10 16.50 

P8 25 25 25 82.15 141.34 

P9 20 20 20 25.25 28.94 

P10 25 25 25 25 34.05 

Cost (Rs) 14,80,967 16,77,759 18,77,406 23,01,943 26,58,865 

Emission (lb) 1,888.32 2,029.47 2,389.87 2,945.30 3,091.92 

 

 

  
 

Figure 5. Pareto front of IEEE 39 bus system using 

NSGA-II 

 

Figure 6. Pareto front of IEEE 39 bus system using 

PVDE 
 

 

4.3. MOELD using hybrid method 

The parameters used for this hybrid method are as in Table 4, population parameter is considered 

80, the number of iterations is 100, crossover value 0.90, and mutation value 0.01. The results obtained from 

this method for MOELD are given in Table 4, which illustrates the cost and emission values of IEEE 39 bus 

system in MOELD using hybrid method for 700 MW, 850 MW, 1000 MW, 1300 MW, and 1500 MW. The 

cost and emission values for each load demand of 24 hours with one hour time horizon are given in Table 4. 

The optimal value of cost is Rs 26,45,344 and Rs 14,81,924 for loads 1500 MW (highest) 700 MW (lowest) 

which is illustrated in Table 4. Table 5 shows the comparative analysis of cost and emission values of IEEE 

39 bus system in MOELD. 

 

 

Table 4. Cost and emission values of IEEE 39 in MOELD using HM for 700 MW, 850 MW, 1000 MW,  

1300 MW, and 1500 MW 
Load(MW) 700 850 1000 1300 1500 

P1 410 450.57 445.11 452.64 453.93 

P2 150 150 253.75 394.27 442.46 

P3 20 57.99 124 128.50 130 

P4 20 91.42 77.12 129.99 130 

P5 25 25 25 104.49 162 

P6 20 20 20 20.5 69.82 

P7 25 25 25 25 26.5 

P8 10 10 10 24.57 39.43 

P9 10 10 10 10 24.87 

P10 10 10 10 10 20.96 

Cost (Rs) 14,81,924 16,76,787 18,85,833 23,07,059 26,45,344 

Emission (lb) 2,009.13 2,206.05 2,435.11 2,901.30 3,109.97 
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Table 5. Comparative analysis of cost and emission values of IEEE 39 bus system in MOELD 
Method NSGA-II PVDE Hybrid method (NSGA-II-PVDE) 

Load (MW) Cost (Rs) Emission (lb) Cost (Rs) Emission (lb) Cost (Rs) Emission (lb) 

700 14,79,315 1,994.99 14,80,967 1,888.32 14,81,924 2,009.13 

850 16,73,628 2,206.74 16,77,759 2,029.47 16,76,787 2,206.05 

1000 18,74,080 2,407.15 18,77,406 2,389.87 18,85,833 2,435.11 

1300 22,94,360 3,024.34 23,01,943 2,945.30 23,07,059 2,901.30 

1500 26,38,125 3,139.86 26,58,865 3,091.92 26,45,344 3,109.97 

 

 

5. CONCLUSION 

The power sector must design and operate low-emission producing units economically to fulfill 

demand. MOELD and multi-objective unit commitment (MOUC) are emphasized in power systems to save 

cost and emission by preserving system limits. Many methods exist for tackling optimization issues with 

competing goals. We first solve the MOELD with two competing objectives—cost and emission—using 

NSGA-II and PVDE. Both optimization methods are used to two IEEE 39 bus and 17-unit test systems with 

24 load demands in one hour. NSGA-II has cheap cost and PVDE has low emissions, according to 

simulations. Hybrid approaches tackle multi-objective optimization problems better. Hybrid technique 

combines NSGA-II and PVDE to find optimum MOELD and MOUC solutions. Results suggest that MOUC 

objective values are better than MOELD optimization problem. NSGA-II, PVDE, Hybrid, and modified 

hybrid methods are compared using metrics. Metric analysis shows that the hybrid approach outperforms the 

modified hybrid method. That indicates the Hybrid technique reduces cost and emissions better than NSGA-

II, PVDE, and modified hybrid for all three optimization issues. The NSGA-II-PVDE algorithm also 

outperformed or equaled other meta-heuristic optimization methods. Formulating any multi-objective 

function in optimum power flow using HBSA makes it easy to include power system emergent challenges 

like the environmentally friendly EED without complicating the solution approach. 
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