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 For the past few years, to reduce system power losses and maintain operating 

constraints, such as voltage stability, network reconfiguration has been crucial 

in determining the radial operating framework. Distributed generation (DG) 

is typically used to generate energy close to the site of consumption. This 

technology generates energy that is affordable, in contrast to conventional 

energy production. To lessen energy losses as well as boost voltage 

characteristics, the adopted methodology is centered on reconfiguration and 

DG distribution in the radial distribution network (RDN). In this work, the 

loss sensitivity factor (LSF) is used to determine the right DG position in 

RDN. After identifying the bus for DG positioning, the artificial rabbits 

optimization (ARO) technique is used to ascertain the ideal reconfigured 

network and DG size to lessen energy losses and enhance the voltage profile 

for RDN. The employed methodology is investigated on IEEE-33 and 69 

RDN, respectively, for two cases of considering only reconfiguration without 

distributing units of DG and reconfiguration with an allotment of three DG 

units. The latter case showed better results compared to the case of only 

reconfiguration. 

Keywords: 

Artificial rabbits 

Distributed generation 

Loss sensitivity factor 

Optimization 

Radial distribution network 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Ganney Poorna Chandra Rao 

Faculty of Electrical and Electronics Engineering Sciences, Visvesvaraya Technological University 

Belagavi, India 

Email: g.poornachandrarao@gmail.com 

 

 

1. INTRODUCTION 

A significant proportion of electricity is lost in a radial distribution network (RDN). A bad voltage 

profile and unproductive losses in power are the outcomes of inefficient system performance. The system must 

be appropriately reconfigured to boost efficiency and increase profiles of voltage [1]–[3]. Reconfiguration 

describes the procedure of changing a switch's state to elevate voltage while cutting losses. The reconfiguration 

of networks with renewable energy sources is not addressed in these methods [4], [5]. RDN has always had to 

react to changes in load demand, resulting in voltage oscillations beyond the allowable fluctuation range across 

multiple buses and losses in power. Distributed generation (DG) must be correctly positioned and scaled for a 

better profile of voltage and to minimize electrical power losses [6], [7]. Timely variations in load demand in 

an energy distribution network make operation and management more difficult. With fluctuating load demand 

and a fixed network structure, the losses in power loss of an RDN will not be at their lowest. Thus, prompt 

network reconfiguration is necessary. However, this approach does not deal with reconfiguring networks to 

https://creativecommons.org/licenses/by-sa/4.0/
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include renewable energy sources [8]. An approach incorporating and omitting DGs has been proposed to 

decrease power losses during reconfiguration. In this strategy, the required search region for each iteration step 

is changed for reconfiguration. This strategy, however, was unable to handle load uncertainties [9]. 

Reconfiguration and the erection of DG are frequently employed to lessen losses of power and increase profiles 

of voltage. The DG's position and size are the primary identifiers in the DG installation [10]–[12]. 

To handle the challenges of simultaneous reconfiguration, optimal size, and location of DG, hybrid 

methods were introduced in RDN [13], [14]. An algorithm was deployed for optimum reconfiguration to 

minimize losses and reinforce the voltage pattern. It modifies an existing network's configuration by combining 

the divergent properties of particle swarm optimization (PSO) with the heightened effect of genetic algorithms 

(GA). The adopted technique was only evaluated on an IEEE 33 RDN [15]. A mixed probabilistic model to 

consider the DGs' power output unpredictability and system demands was proposed. The method did not 

prioritize reducing power losses through reconfiguration and DG allotment [16]. A unique modified neural 

network approach is developed to minimize losses in power and increase profiles of voltage [17].  

A reconfiguration approach has emerged as a practical technological response for distribution system operators 

for enabling quick voltage regulation and enhancing systems' overall efficiency [18]–[20].  

The factors that lead to the implementation of DGs include the appropriate utilization of electricity 

production, market liberalization or competition laws, investments in energy sources, quick processing times 

and lower investment costs of individual plants, and proximity of the generating station to heavy loads that 

reduce costs [21]–[23]. A novel strategy based on graph theory is suggested for rapid and reliable network 

reconfiguration. This strategy does not resolve the uncertainty in generation [24]. Numerous governments 

concur that the main legal justification for the adoption of DGs is their ability to reduce exhaust pollutants. 

Loss in the RDNs is lowered by executing reconfiguration with DG hosting [25]. The enhanced sine-cosine 

algorithm (ESCA) for the finest placement of RDN by including reconfiguration and DG has been proven by 

Raut and Mishra [26]. In order to configure the RDN with the best distribution of numerous DGs, an improved 

spotted hyena algorithm has been proposed [27]. An RDN operation optimization using mixed particle swarm 

optimization (MPSO) has been offered by Essallah and Khedher [28] to mitigate loss and boost the voltage  

in RDN. 

The adopted methodology addresses all the limitations of current methods in the preceding 

paragraphs. artificial rabbits optimization (ARO), a recently developed meta-heuristic algorithm, tackles the 

shortcomings of previous algorithms' poor convergence efficiency and restricted search capabilities. 

Combinatorial optimization problems lend themselves very well to this meta-heuristic’s technique. It can 

commonly do so in a reasonable amount of time and with a sufficient response. ARO is employed in this study 

because of its capacity to locate the global optimal in a relatively limited time frame: i) Reconfiguring the RDN 

and determining the DGs sizes to address issues with voltage stability and power loss minimization; ii) Loss 

sensitivity factor (LSF) is exploited to identify the potential bus location for the DG connection; and iii) To 

assess its effectiveness, ARO has been evaluated against IEEE 33 and 69 RDN. 

The investigation is organized in the following manner: i) The problem of this investigation is defined 

in section 2; ii) Section 3 defines arithmetic equations with the proposed method; iii) The fourth part shows the 

outcomes and their comparisons; and iv) The final section summarizes the findings of this investigation. 

 

 

2. PROBLEM FORMULATION 

DG sizing and distribution should be approached with caution. Studies suggest that incorrectly sized 

or positioned DG could result in greater system losses. To mitigate true power losses, various techniques are 

employed to define the optimum reconfigured network and DG sizes. To accomplish this, LSF and ARO are 

implemented to locate the right position of the DG, the optimal reconfigured network, and DG sizes. The 

study's objective function described in (1). 

 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓 = 𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 ∑ 𝑅𝐴
𝑛
𝐴=1  

𝑃𝐴
2+𝑄𝐴

2

|𝑉𝐴|2  (1) 

 

Where n represents the entire number of branches, VA, RA, QA, and PA are voltage, branch resistance, wattless 

power and true power of branch A. 

 

2.1. Flow chart of adopted methodology 

The primary goal is to reconfigure the RDN to place the DG in the most feasible location and 

dimensions to lessen losses of power and increase voltage values. To locate potential buses for DG connections, 

the LSF is used. Using ARO, the ideal reconfiguration network and DG size have been identified. The adopted 

methodology's work flow is pictured in Figure 1. 
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Figure 1. Adopted methodology's workflow 

 

 

3. PROPOSED METHOD 

The major aim is to reconfigure the RDN and obtain the most optimal positioning and size for the DG 

to mitigate losses in power and boost voltage levels. The LSF is employed to identify prospective bus locations 

for DG connections. The optimum reconfiguration network and DG size have been determined using ARO. The 

findings of the adopted methodology are significantly improved when tested on typical IEEE-33 and 69 RDN. 

 

3.1. Loss sensitivity factor (LSF) 

The LSF [11] of each bus is calculated by running load flow and sorted in decreasing order. The buses 

for DG installation must likewise be prioritized in the same manner. The bus with the highest LSF value is 

given top priority for DG placement. The Ath line, as illustrated in Figure 2, has impedance RA+JXA between 

the A-1 and A buses and is attached to the load Pe+jQe. 

Active power loss for Ath line is given by (2). 

 

𝑃𝑙𝑜𝑠𝑠 =
(𝑃𝑒

2+𝑄𝑒
2)𝑅𝐴

𝑉𝐴
 2  (2) 

 

The LSF can be obtained from load flow analysis using (3). 

 
𝜕𝑃𝑙𝑜𝑠𝑠

𝜕𝑃𝑒
=

2∗𝑃𝑒∗𝑅𝐴

𝑉𝐴
2  (3) 

 

Where, 𝑉𝐴 is the amplitude of voltage received. 
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Figure 2. Line from A-1 to A node 
 
 

3.2. Artificial rabbits’ optimization 

ARO is employed in this work to determine the best-reconfigured network and DG size. Artificial 

rabbits optimization (ARO) works based on rabbit behavior [29]. The ARO approach's search procedures are 

shown in the following stages. 
 

3.2.1. Detour foraging (exploration) 

A rabbit will not consume grass close to its nest. The rabbit likes to roam aimlessly to remote regions 

in quest of food. This is referred to as detour foraging, and it is represented by (4)-(8). 
 

𝑋𝑖(𝑡 + 1) =  𝑋𝑗(𝑡) + 𝐴 × (𝑋𝑖(𝑡) −  𝑋𝑗(𝑡) + 𝑟𝑜𝑢𝑛𝑑(0.5 × 𝑅1)) × 𝑛1 (4) 
 

𝐴 = 𝑐 × 𝐿 (5) 
 

𝐿 = (𝑒 − 𝑒(
𝑡−1

𝑇
)2

) × 𝑠𝑖𝑛 (2𝜋𝑅2) (6) 

 

𝑔 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚 (𝐷) (7) 
 

 𝑛1~ 𝑁(0,1) (8) 
 

Where: 

-  𝑋𝑖(𝑡 + 1) → 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑟𝑎𝑏𝑏𝑖𝑡 𝑖𝑛 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 t+1 

- 𝑋𝑖(𝑡) → 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑡ℎ 𝑟𝑎𝑏𝑏𝑖𝑡 𝑖𝑛 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡;  𝑋𝑗(𝑡) → 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑗𝑡ℎ  𝑟𝑎𝑏𝑏𝑖𝑡 𝑖𝑛 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡 

- 𝑏(𝑘) = {
 1, 𝑖𝑓 𝑘 == 𝑔(𝑙)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝑘 = 1, … . . , 𝐷 𝑎𝑛𝑑 𝑙 = 1, … . , [𝑅3 × 𝐷]  

- 𝐿 → 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑎𝑏𝑏𝑖𝑡𝑠; 𝑁 → 𝐷𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒;  𝐷 𝑖𝑠 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 

- 𝑇 → 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠; randperm (D) is an arbitrary integer between 1 and D  

- R1, R2, R3, and R4 are all arbitrary numbers in the range [0, 1]. 
 

3.2.2. The move between exploration to exploitation 

In ARO, rabbits often employ randomized concealing in the final phases of the hunt. Although, 

constant detour foraging is more prevalent in the initial phases of the iteration. The concept of employing rabbit 

energy to produce a balanced ratio of exploitation and exploration depict in (9). 
 

𝐸(𝑡) = 4 (1 −
𝑡

𝑇
 ) 𝐼𝑛 

1

𝑅4
 (9) 

 

3.2.3. Random hiding (exploitation) 

In ARO, a rabbit constantly develops D passages across the boundaries of the search space prior to 

randomly choosing any to stay concealed in to reduce the likelihood of getting captured by predators. The 

mathematical explanation of this phenomenon is seen in (10)-(14). 
 

𝑋𝑖(𝑡 + 1) =  𝐴 × (𝑅5  ×  𝑏𝑖,𝑟(𝑡) −  𝑋𝑖(𝑡)) + 𝑋𝑖(𝑡) (10) 

 

𝑏𝑖,𝑟(𝑡) =  𝐻 ×  𝑔𝑟  (𝑘) × 𝑋𝑖(𝑡) + 𝑋𝑖(𝑡) (11) 
 

𝑔𝑟 (𝑘) = {
1, 𝑖𝑓 𝑘 == [𝑅6 × 𝐷]

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (12) 

 

𝐻 =  
𝑇−𝑡+1

𝑇
× 𝑛2 (13) 

 

𝑛2~ 𝑁(0,1) (14) 
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𝑏𝑖,𝑟(𝑡) depicts the ith rabbit's burrow picked randomly among the D burrows. 𝑅5 and 𝑅6 are arbitrary numerical 

values from zero and one.  

 

4. RESULTS AND DISCUSSION  

In this research, the implementation for optimum network restructuring and DG sizing is executed. 

The ARO methodology has been validated for optimum restructuring of networks and sizing of the DG. While 

LSF is used for finding the optimal DG unit positioning. The adopted methodology has been validated on 

IEEE-33 and 69 RDN. 

 

4.1. Performance analysis of IEEE-33 RDN  

The ARO method is used on the 12.66 KV RDN, termed the IEEE-33 RDN illustrated in Figure 3. To 

evaluate the effectiveness of the ARO technique, two separate cases of only reconfiguration and 

reconfiguration with an allocation of three DG units were investigated. In comparison to other solutions for 

both circumstances, the methodology used has been shown to lower real power losses while boosting minimum 

voltage levels. 

 

4.1.1. Case 1 (IEEE-33 RDN reconfiguration) 

It just involves reconfiguring the 33-RDN, and the results of the ARO strategy are compared to those 

of the other ways in Table 1. It reveals that the utilized methodology reduced real power losses to 137.06 kW 

as compared to the base configuration losses of 202.69 kW. The methods used also increased the minimum 

voltage level to 0.9512, compared to the base configuration's minimum voltage of 0.9107. 

 

4.1.2. Case 2 (IEEE-33 RDN reconfiguration with distribution of three DG units) 

Three DG units are distributed during reconfiguration, and the results of the ARO methodology are 

compared to those of the other approaches in Table 2. It reveals that the utilized methodology reduced real power 

losses to 57.06 kW as compared to the base configuration losses of 71.46 kW. The methods used also increased the 

minimum voltage level to 0.9792, compared to the base configuration's minimum voltage of 0.9687. 

 

4.2. Performance analysis of IEEE-69 RDN  

IEEE-69 RDN is used to assess the effectiveness of the implemented approach. It is equipped with 68 

sectionalized switches and 5 tie lines. The cumulative true and phantom power demands are 3802 kW and 2694 

kVAR. Figure 4 illustrates the base configuration of an IEEE-69 RDN. 

 

4.2.1. Case 1 (IEEE-69 RDN reconfiguration) 

It involves only reconfiguring the IEEE-69, and the outcomes of the ARO approach are contrasted 

with those of the other methods in Table 3. It reveals that the utilized methodology reduced real power losses 

to 97.62 kW as compared to the base configuration losses of 224.95 kW. The methods used also increased the 

minimum voltage level to 0.9532, compared to the base configuration's minimum voltage of 0.9092. 

 

4.2.2. Case 2 (IEEE-69 RDN reconfiguration with allocation of three DG units) 

Three DG units are distributed during reconfiguration, and the results of the ARO methodology are 

compared to those of the other approaches in Table 4. It reveals that the utilized methodology reduced real 

power losses to 38.62 kW as compared to the base configuration losses of 69.40 kW. The methods used also 

increased the minimum voltage level to 0.9894, compared to the base configuration's minimum voltage of 

0.9790. 

 

 

 
 

Figure 3. IEEE-33 RDN (base configuration) 
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Table 1. Investigations for IEEE-33 RDN (only reconfiguration) 
Parameter Base configuration Modified sequential 

switch opening and 
exchange [9] 

Advanced cuckoo 

search algorithm 
[19] 

Harmony search 

algorithm [21] 

Adopted 

methodology 

Tie-switches 33,34,35,36,37 7,9,14,32,37 07,14,9,32,28 7,14,9, 32, 37 7,10,14,37,36 

Real power 
loss (kW) 

202.69 139.55 139.98 138.06 137.06 

Loss 

mitigation 

NA 31.15% 30.93 31.88 32.3% 

Minimal 

voltage (p.u.) 

0.9107 0.9378 0.9413 0.9342 0.9512 

 

 

 
 

Figure 4. IEEE-69 RDN 
 

 

Table 2. Outcomes for IEEE-33 RDN (reconfiguration with three DG units) 

Parameter Base configuration 

Modified sequential 

switch opening and 

exchange [9] 

Advanced 

cuckoo search 

algorithm [19] 

Harmony search 
algorithm [21] 

Adopted 
methodology 

Tie-Switches 33,34,35,36,37 7,9,14,32,37 7,10,13,32,27 7,14,10,32,28 7,14,11,28,32 

DG in kW (Bus) 
754 (14), 1099.4 

(24), 1071.4 (30) 

754 (14), 1099.4 

(24), 1071.4 (30) 

426.3 (32), 

1202.4 (29), 
712.7 (18) 

525.8 (32), 

558.6 (31), 584 
(33) 

580 (21), 618.2 

(29) 765.2 (33) 

Real power loss (kW) 71.46 57.7 63.69 71.05 57.06 

Loss mitigation NA 19.25% 10.8% 5% 20.1% 
Minimal voltage (p.u.) 0.9687 0.9774 0.9786 0.9700 0.9792 

 

 

Table 3. Investigations for IEEE-69 RDN (only reconfiguration) 

Parameter 
Base 

configuration 
Modified sequential switch 
opening and exchange [9] 

Advanced cuckoo 
search algorithm [19] 

Harmony search 
algorithm [21] 

Adopted 
methodology 

Tie-Switches 69,70,71,72,73 13,57,61,69,70 69,70,14,57,61 69,18,13,56,61 13,22,52,69,71 

Real power 
loss (kW) 

224.95 99.69 98.59 99.35 97.62 

Loss 

mitigation 
NA 55.68% 56.16 55.85 56.6% 

Minimal 

voltage (p.u.) 
0.9092 0.9428 0.9495 0.9428 0.9532 

 

 

Table 4. Outcomes for IEEE-69 RDN (reconfiguration with three DG units) 

Parameter 
Base 

configuration 

Modified sequential 

switch opening and 

exchange [9] 

Advanced cuckoo 

search algorithm 

[19] 

Harmony search 
algorithm [21] 

Adopted 
methodology 

Tie-Switches 69,70,71,72,73 13,58,64,69,70 69,70,12,58, 61 69,17,13,58, 61 13,57,61,69,71 

DG in kW (Bus) 526.8 (11), 

380.4 (18), 
1719 (61) 

526.8 (11),380.4 (18), 

1719 (61) 

1749.6 (61), 156.6 

(62), 409 (65) 

1066.6 (61), 

352.5 (60), 
425.7 (62) 

626.4 (18), 424.7 

(60), 525.4 (62) 

Real power loss 

(kW) 

69.40  39.64 40.49 40.3 38.62 

Loss mitigation NA 42.88% 41.6% 41.9% 44.3% 

Minimal voltage 

(p.u.) 

0.9790 0.9693 0.9873 0.9736 0.9894 
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5. CONCLUSION 

The current research introduces a unique technique for optimized reconfiguration and positioning of 

DG that lowers losses while boosting voltages in RDN. For lowered RDN losses, ARO is recommended to 

resolve the reconfiguration problem and provide the optimal switching pattern. To determine the ideal spot for 

DG installation, LSF is used. The efficacy of the employed procedure was tested on IEEE 33 and 69 RDN for 

two cases of considering only reconfiguration and reconfiguration with the allotment of 3 DG units. Case 2 has 

shown better results for the IEEE-33 and 69 RDN. This investigation may ultimately be broadened by analyzing 

the reconfiguration under various blended algorithms and network architectures. 
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