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 In this paper, a gradient-based optimizer (GBO) algorithm is presented to 

optimize the parameters of a proportional integral derivative (PID) controller 

in DC motor control. The GBO algorithm which mathematically models and 

mimics is inspired by the gradient-based Newton method. It was developed to 

address various optimization issues. To determine the performance of the 

proposed method, a comparison method with the ant colony optimization 

(ACO) method. It was compared using the integral of time multiplied absolute 

error (ITAE). They are most popularly used in the literature. From the test 

results, the proposed method is promising and has better effectiveness. The 

proposed method, namely GBO-PID, shows the best performance. 
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1. INTRODUCTION 

There are various sorts of control actions in a control system, including proportional, integral, and 

derivative control actions [1]–[4]. There are benefits to each of these control measures. Fast research is a benefit 

of proportional control action, minimizing errors is a benefit of integral control action, and lowering errors or 

overshoot/undershoot is a benefit of derivative control action [5]. 

The industry uses proportional integral derivative (PID) control extensively, which improves the 

system's transient and steady-state behavior [6]–[8]. To accomplish the conditions as per the anticipated 

setpoint, this control system processes computations based on the control variables Kp, Ki, and Kd. The DC 

motor rotational speed can be controlled by this control system to generate a satisfactory output response. 

However, in practice, when the setpoint changes, this PID control system has not been able to deliver a good 

output response in accordance with the intended circumstances [9]–[13]. 

Only linear conditions will allow a PID control system to function. DC motor convert electrical energy 

into mechanical energy [14]–[16]. A DC motor, however, exhibits a non-linearity effect. A single PID control 

system cannot generate an output response with the same characteristics under multiple setpoint values due to 

the variance in properties. A technique that can remove this non-linearity effect must be used in order to provide 
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an output response with the same properties from various setpoints. A DC motor's rotational speed can be 

managed using an adaptive PID control, which is one method of removing this non-linearity impact.  

In recent years, several improving PID control methods using artificial intelligence have been 

presented, such as the neural network [17]–[20], henry gas solubility optimization algorithm [21], [22], transit 

search optimization algorithm [23], gray wolf optimization [24], salp swarm algorithm [25], slime mould 

algorithm [26], and particle swarm optimization [27]. This paper will present DC motor control using PID 

which is optimized using the gradient-based optimizer (GBO) algorithm. The GBO was introduced by 

Ahmadianfar et al. in 2020 [28]. The method was inspired by Newton's gradient-based search method. To test 

the performance of the proposed method, this paper will make a comparison with the ant colony optimizer 

(ACO) method. The contributions of this research are: i) Application of the gradient-based optimizer (GBO) 

algorithm method to tune parameter PID as DC motor control and ii) Comparison of the GBO method with the 

ACO method applied to PID as DC motor control. 

This paper is divided into some sections: i) Section 2, which is about the concept of DC motor and 

the gradient-based optimizer (GBO) method; ii) The section 3 is the results and discussion; and iii) The last 

section is to draw conclusions from the research. 

 

 

2. METHOD 

2.1. DC motor 

DC motor is controlling by armature and field [29]. Stator and rotor are important parts of a DC motor. 

The non-rotating part of the DC motor is called the stator. While the rotating part is the rotor. DC motor with 

anchor control uses armature current as the controlling variable. Current coils or permanent magnets can 

generate a stator field. When a fixed field current pours in the field coil, the motor torque (τ_m) shown as (1). 

 

τm(𝑠) = (𝐾1𝐾𝑓𝐼𝑓)𝐼𝑎(𝑠) = 𝐾𝑚𝐼𝑎(𝑠) (1) 

 

If it is using permanent magnets, then shown as (2). 

 

𝑇𝑚(𝑠) = 𝐾𝑚𝐼𝑎(𝑠) (2) 

 

Where, 𝐾𝑚 is the permeability function of the magnetic material. The relationship between the armature current 

(𝐼𝑎) and the input voltage (𝑉𝑎) in the armature circuit can be formulated as (3) and (4). 

 

𝑉𝑎(𝑠) = (𝑅𝑎 + 𝐿𝑎. 𝑠). 𝐼𝑎(𝑠) + 𝑒𝑏(𝑠) (3) 

 

𝑒𝑏(𝑠) = 𝐾𝑏𝜔(𝑠) (4) 
 

Where Ra and La are armature resistance and armature inductance. 𝑒𝑏 is back electromotive force. The torque 

in the motor is the same as the torque delivered to the load. 

 

𝜏𝑚(𝑠) = 𝜏𝐿(𝑠) + 𝜏𝑑(𝑠) (5) 

 

The load torque for a rotating object is written as (6). 

 

𝜏𝐿(𝑠) = 𝐽𝑠𝜔(𝑠) + 𝐵𝜔(𝑠) (6) 

 

Where 𝜏L is the torque connected to the load. 𝜏d is fault torque. J and B is inertia of the DC motor and damping 

friction ratio. Schematically of the DC motor are shown in Figure 1. 
 

 

Kb

Vs(s) ω (s)

τm (s)

τL (s)

τd (s)

+

-
+

-

 
 

Figure 1. DC motor block diagram 
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2.2. A gradient-based optimizer (GBO) 

The GBO method uses two main algorithms namely gradient tracing rules (GSR) and local escape 

operators (LEO) with a set of vectors to explore the search space. To increase exploration and convergence 

speed in finding the best position in the search space, GSR uses a gradient-based method. Meanwhile, 

according to Ahmadianfar [28] LEO is used to achieve local optimal. 
In GBO, the amount of iterance and the population dimensions (𝛼) are based on the difficulty of the 

problem. Each member of the population is represented as a vector. Thus, the method adds a vector N in the 

D-dimension. The GBO method can be formulated as (7). 

 

𝑋𝑛,𝑑 = [𝑋𝑛,1, 𝑋𝑛,2, … , 𝑋𝑛,𝐷], 𝑛 = 1,2, … , 𝑁, 𝑑 = 1,2, … . 𝐷 (7) 

 

In first stage, the vector was randomly selected in the prospecting zone. This could be formulated as (8). 

 

𝑋𝑛 = 𝑋𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 (0,1) × (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) (8) 

 

Where the limit of the decision variable is represented by 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎x. 

 

2.2.1. Gradient search rule (GSR) 

Vector displacement is controlled in an effort to find better searches in viable domains. Besides, to 

achieve a better position. This is done using the GSR method. The proposed method is applying the gradient 

based (GB) method in an effort to increase exploration and accelerate the convergence of GBO. The GB method 

initiates the initially estimated completion and shifts towards the next location along the direction detailed by 

the gradient. To derive the GSR, the first-order derivative is calculated using the Taylor series. The GSR 

method can be formulated as (9). 

 

𝐺𝑆𝑅 = 𝑟𝑎𝑛𝑑𝑛 ×
2∆𝑥×𝑥𝑛

(𝑥𝑤𝑜𝑟𝑠𝑡−𝑥𝑏𝑒𝑠𝑡+ )
 (9) 

 

Where random numbers that are normally distributed are represented as 𝑟𝑎𝑛𝑑𝑛. The small number in the range 

[0, 0,1] is 휀. The best solution is 𝑥best. 𝑥worst is the worst solution. 

The optimization method must maintain a balance motion to probe a hopeful area in the prospecting 

zone that leads to a globally best completion. In the GSR, the adaptive coefficient is used to equilibrium 

processes. This could be formulated as (10)-(20). 
 

𝜌1 = 2 × 𝑟𝑎𝑛𝑑 ×∝ −∝ (10) 
 

∝= |𝛽 × 𝑠𝑖𝑛 (
3𝜋

2
+ sin (𝛽 ×

3𝜋

2
))| (11) 

 

𝛽 = 𝛽𝑚𝑖𝑛 + (𝛽𝑚𝑎𝑥 − 𝛽𝑚𝑖𝑛) × (1 − (
𝑚

𝑀
)

2

)
2

 (12) 

 

The (9) changes to: 
 

𝐺𝑆𝑅 = 𝑟𝑎𝑛𝑑𝑛 × 𝜌1 ×
2∆𝑥×𝑥𝑛

(𝑥𝑤𝑜𝑟𝑠𝑡−𝑥𝑏𝑒𝑠𝑡+ )
 (13) 

 

∆𝑥 = 𝑟𝑎𝑛𝑑(1: 𝑁) × |𝑠𝑡𝑒𝑝| (14) 
 

𝑠𝑡𝑒𝑝 =
(𝑥𝑏𝑒𝑠𝑡−𝑥𝑟1

𝑚 )+𝛿

2
 (15) 

 

𝛿 = 2 × 𝑟𝑎𝑛𝑑 × (|
𝑥𝑟1

𝑚 +𝑥𝑟2
𝑚 +𝑥𝑟3

𝑚 +𝑥𝑟4
𝑚

4
− 𝑥𝑛

𝑚| (16) 

 

𝑥𝑛+1 = 𝑥𝑛 − 𝐺𝑆𝑅 (17) 
 

To make better use of the nearby area, a direction of movement (DM) parameter was added as (18) and (19). 
 

𝐷𝑀 = 𝑟𝑎𝑛𝑑 × 𝜌2 × (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑛) (18) 
 

𝜌2 = 2 × 𝑟𝑎𝑛𝑑 ×∝ −∝ (19) 
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Where the random number in [0, 1] is denoted 𝑟𝑎𝑛𝑑. The random variable helps each vector have a diverse 

pace measure is represented by 𝜌2. The current vector position in (20) can be updated based on GSR and DM. 

 

𝑋1𝑛
𝑚 = 𝑥𝑛

𝑚 − 𝐺𝑆𝑅 + 𝐷𝑀 (20) 

 

2.2.2. Local escaping operator (LEO) 

LEO is enabled to boost the performance of method in breaking complicated issues. The (21) can find 

a significant solution position. 

 

 𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.5 

Xleo
m =xn

m+1+f1(u1×xbest-u2×xk
m)+f2×p

1
×(u3×(X2n

m-X1n
m)+u2×(xr1

m-xr2
m))/2 (21) 

 

Else, as (22)-(25) show. 

 

Xleo
m =xbest+f1(u×xbest-u2×xk

m)+f2×p
1
×(u3×(X2n

m-X1n
m)+u2×(xr1

m-xr2
m))/2 (22) 

 

𝑢1 = {
2 × 𝑟𝑎𝑛𝑑,   𝑖𝑓 𝜇1 < 0.5
1,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (23) 

 

𝑢2 = {
𝑟𝑎𝑛𝑑,   𝑖𝑓 𝜇1 < 0.5

1,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (24) 

 

𝑢3 = {
𝑟𝑎𝑛𝑑,   𝑖𝑓 𝜇1 < 0.5

1,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (25) 

 

2.3. Proposed GBO for controlling DC motor speed 

To increase the reaction of the DC motor in the detailed point as overshoot, rise-time, and settling 

time, the PID controller parameter values are searched using the proposed method, namely the GBO algorithm. 

Figure 2 is a block diagram illustration of the proposed method with the GBO-PID for the DC motor. GBO 

gets input from ITAE calculations which are always updated during the iteration process. The output obtained 

is the PID parameter 

 

 

Kb
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-
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Figure 2. Proposed method diagram 

 

 

3. RESULTS AND DISCUSSION 

The programming code required for the GBO algorithm and simulations is performed using the 

MATLAB/Simulink. The laptop is used with an AMD A9 (3.10 GHz) and ram 4 GB. The variable of the GBO 

and the values can be seen in Table 1. 

To see the effectiveness and advantages of the proposed GBO-PID approach, the GBO-PID controller 

was compared with ACO-PID. The convergence curve can be seen in Figure 3. DC motor controlled by PID 

optimized using GBO has the lowest integral of time multiplied absolute error (ITAE) value. In addition, the 

GBO-PID control has the least number of iterations, which is under five iterations. 
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Table 1. Parameter of GBO 
Parameter Value 

Number of populations 50 
Maximum number of iterations 50 
Probability parameter 0.5 
Lower bound 0 
Upper bound 10 
Dim 4 

 

 

The DC motor speed step response for the GBO-PID and ACO-PID controllers is shown in Figure 4. 

Details regarding the step respond of GBO-PID and ACO-PID can be seen in Table 2. The proposed GBO-

PID has the best reaction step because it has the fastest constancy. The performance index used as a comparison 

is ITAE. ITAE has been widely used in several studies. the mathematical formula of the ITAE index is as (26). 

 

𝐼𝑇𝐴𝐸 = ∫ 𝑡 . 𝑒 (𝑡) 𝑑𝑡
𝑡

0
 (26) 

 

 

  
  

Figure 3. Convergence profile of GBO-PID Figure 4. Step response 
 

 

Table 3 is a comparison of the ITAE values of the ACO-PID and GBO-PID methods. The ITAE value 

of the proposed method, namely GBO-PID, has a value of 0.0292. This value is better than the value of the 

ACO-PID method. To test the robustness of the proposed method, three tests were carried out. The test by 

changing the parameters of the DC motor. The details data of the variables can be seen in Table 4. 

Figure 5(a) is the output from test 1 with parameters Ra=1 and K=1. The settling time value of the 

proposed method is 0.625% better than the ACO method. In test 2, it was found that the settling time value of 

the proposed method was 0.24% better than the ACO method. Test 2 graph can be seen in Figure 5(b).  

Figure 5(c) displays the results of test 3 with the settling time value of the proposed method being 2.77% better 

than ACO. The proposed GBO-PID has the best reaction step because it has the fastest constancy. From  

Tables 5-7 and Figure 5, that changes in system parameters result in different responses. However, GBO-PID 

has the fastest rise and settling time. The experimental results with various test variants validate the toughness 

of the GBO-PID control applied to the system. 
 

 

Table 2. Comparison of transient result 
Controller Overshoot Rise time Settling time 
ACO-PID 1.03245 1.917 3.012 
GBO-PID 1.03201 1.777 2.829 

 

Table 3. Comparison of ITAE result 
Controller ITAE 
ACO-PID 0.0329 
GBO-PID 0.0292 

 

  

  

Table 4. Detail of test condition 
Test number Ra K 

1 0.03 0.005 

2 0.012 0.005 

3 0.03 0.009 
 

Table 5. Comparison of results for test 1 
Controller Rise time Settling time 

ACO-PID 3.303 4.6229 

GBO-PID 3.202 4.594 
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Table 6. Comparison of results for test 2 
Controller Rise time Settling time 

ACO-PID 3.318 4.6340 

GBO-PID 3.205 4.6227 
 

Table 7. Comparison of results for test 3 
Controller Rise time Settling time 

ACO-PID 2.3968 4.0227 

GBO-PID 2.2444 3.9116 
 

 

 

  
(a) (b) 

 
(c) 

 

Figure 5. Comparison step response of (a) test 1, (b) test 2, and (c) test 3 

 

 

4. CONCLUSION 

PID parameter optimization is an interesting area to research. Weak optimization of parameters will 

affect the performance of the control. In addition, this results in an inefficient system. This research proposes 

the A gradient-based optimizer (GBO) method to adjust the PID parameters on a DC motor. For DC motor by 

PID, GBO is used to minimize ITAE. Performance comparisons were performed with the PID set with ACO. 

From the simulation, it was found that the ITAE value of the proposed method was 11.25% better. By using 

several experiments with various problems, it was found that the GBO-PID method had an average settling 

time of 1.139% better than the ACO-PID method. The results of the comparative analysis show that the 

proposed method GBO-PID has the optimum performance. 
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