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 Lithium-Ion batteries are used in everyday DC equipment’s, electric vehicle 

technology, and microgrid technology. The necessity to verify the battery's 

state is crucial for the dependent apps to continue operating without 

interruption due to advancements in battery technology & adaption. This 

study uses dimension decreases in input attributes along with deep learning 

methods to determine the state of health of lithium-Ion batteries (LIB). 

principal component analysis (PCA), a deep learning technique, is combined 

with recurrent neural networks (RNN) to reduce dimensionality. For the 

purpose of evaluating the effectiveness of the dimensionality reduction used 

in the data, the state of health (SOH) estimate using the RNN with and without 

PCA is compared. The use of PCA-powered RNNs using mean square error 

(MSE) as the loss function throughout the training and testing stages of state-

of-health (SOH) estimation showed great performance in terms of loss. This 

was seen during the training and testing processes' respective testing and 

validation phases. 
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1. INTRODUCTION 

In recent years, lithium-Ion batteries or LIB have dominated the electrical storage sector. The 

condition of the battery must be examined to ensure uninterrupted operation of the devices that rely on batteries 

for power. The LIB is more prevalent on the market for electric vehicles. For either routine maintenance or 

replacement, each application requires information on the battery's condition. By carefully calculating the state 

of charge (SOC), that stands for the amount of energy stored in the batteries, while maintaining track of the 

SOH, which represents the general condition and degree of degradation of the batteries, it is possible to 

implement into practice efficient methods which improve the operational life expectancy of the batteries. The 

single particle model is a simplified battery electrochemical model that is used in this study to track changes 

in lithium-ion content with varied loaded currents and calculate the number of recyclable lithium-ions at 

various aging degrees. In order to ensure both operational speed and optimization accuracy, the model's 

parameters are determined using a hybrid technique called the hybrid coyote optimization technique and the 

grey wolf optimizer. With mean absolute percentage errors for battery capacity below 2% and SOC prediction 

below 1.8%, the suggested technique exhibits great accuracy and resilience. SOC forecast time is less than 2 

seconds during federal urban driving cycles [1].  

For the purpose of assessing the state of health (SOH) of batteries, the unscented particle filter (UPF) 

algorithm integrates recent measurements to predict the battery health and expresses uncertainty. A UPF-based 

estimator accomplishes accurate SOH evaluation with less than 5% maximum estimation error and exhibits 

https://creativecommons.org/licenses/by-sa/4.0/
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robustness across multiple lithium-ion battery types by collecting an online health indicator (HI) from 

measurable parameters and using it in a state-space model [2]. In order to accurately estimate the SOC and 

SOH of batteries in electric vehicles, a dual extended Kalman filter (EKF) and a fractional-order model (FOM) 

are used [3]. In order to overcome the difficulty of the batteries' complex aging mechanism, a novel method 

for precisely predicting the remaining useful life (RUL) and determining the state-of-health (SOH) of energy 

storage systems using LIB has been developed [4]. This method establishes a support vector regression-based 

battery SOH state-space model and makes use of a particle filter to estimate impedance degradation parameters. 

In order to improve accuracy and explore the connection between internal parameters and battery states, a joint 

extended Kalman filter-recursive-least squares method has been proposed [5] for state-of-charge estimation. 

This method estimates the SOH of lithium-ion batteries. Particle swarm optimization-least square support 

vector regression is used after parameter identification to produce reliable and accurate SOH estimation with 

good generalizability. The suggested method for state-of-health determination has undergone experimental 

tests on lithium iron phosphate batteries at various aging stages, and the results show that it is highly accurate 

and suitable. The remaining usable life (RUL) of a battery, for instance, can be predicted using a long short-

term memory (LSTM) network based on capacity degradation [6]. A convolutional neural network and a long 

short-term memory unit are combined to provide a deep learning method for online capacity estimate of 

lithium-ion batteries. 

The suggested algorithm achieves accurate capacity estimation with an absolute error of fewer than 

0.021 Ampere-hour and 0.11 Ampere-hour for two battery types, enabling quick online capacity estimation. 

Partial charging voltage and current data are used in the proposed algorithm without wide pre-processing, 

leading to simpler training preparation and lower computational intensity [7]. Calculations that simulate 

various battery types are used in model-based SOH estimates. Data-driven approaches train machine learning 

algorithms using real-time data from these calculations. By contrasting the factors comprising advantages, 

estimation error, and downsides of each estimating method, an examination of such methods is given in the 

literature [8]. In order to calculate ECM parameters as well as battery SOC using dual time scales, a multi-

scale extended Kalman filter relying on the first-order equivalent-circuit model (ECM) is used [9]. This 

emphasizes the significance of optimizing the excitation current for precise parameter and state estimation. 

The study illustrates the effect of excitation current selection on estimation accuracy using Cramer-

Rao bound analysis while taking voltage noise, current amplitude, and frequency into account. It then offers 

recommendations for creating battery current profiles that produce better SOC and SOH estimation 

performance. In order to estimate the SOC and SOH of power batteries used in electric vehicles accurately, the 

article [10] offers a hierarchical estimation model that takes into consideration the current rate. The proposed 

method significantly improves SOC and SOH estimation accuracy through the use of a fractional-order model, 

data-driven parameter identification, along with a multiscale dual extended Kalman filter (DEKF). It 

outperforms conventional DEKF addresses by 35.8% to 36.5% for SOC estimation as well as 34.8% to 43.1% 

for SOH estimation under various current conditions.  

In order to improve the performance of battery management systems in LIB used in diverse 

applications, the study [11] suggests a co-estimation method for SOC and SOH based on fractional-order 

calculus. The plan comprises a dual fractional-order extended Kalman filter for simultaneous estimate of SOC 

and SOH, as well as a fractional-order equivalent circuit model parameterized utilizing a hybrid genetic 

algorithm/particle swarm optimization technique. The usefulness of the proposed approach in battery 

management tasks is validated by experimental results showing that it can estimate SOC and SOH having 

maximum steady-state errors of less than 1% and is resilient to battery aging. For estimating SOC and SOH, 

there is significant interest in artificial intelligence and machine learning (ML), including feed forward neural 

network (FNN), recurrent neural network (RNN), support vector machine (SVM) and radial basis function 

(RBF) and Hamming networks. Comparative analysis of these approaches takes into account elements like 

input and output quality, test conditions, battery types, as well as accuracy, placing emphasis on the significance 

of multiple training iterations, similar network structures, and identical data for accurate comparisons between 

estimation techniques [12]. Accurate capacity prediction of batteries in ESS is critical for safe operations, and 

this paper offers a deep learning-based battery management system (BMS) that estimates battery health and 

capacity using multiple channel charging profiles (MCCPs) [13]. Deep domain adversarial network (DDAN) 

is a model that includes a deep feature generator, dense bidirectional gated recurrent unit, as well as 

unsupervised feature alignment metrics to improve feature learning and knowledge transfer, and it has been 

shown to be effective in SOH estimation on a battery dataset [14]. In real-time simulations and hardware tests, 

a successful approach to forecast battery aging & estimating battery health. 

The research project develops and implements mathematical models on a standalone hardware 

platform to determine an optimal machine learning-based method for SOH and RUL estimation, taking into 

account factors such as SOC, discharge voltage transfer features, internal resistance, and capacity. According 

to experimental findings, although a long short-term memory neural network efficiently predicts battery RUL 

with an accuracy of 10 cycles, a deep neural network predicts SOH with an acceptable error rate of 5%. The 
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suggested method provides an ideal answer for estimating battery life by showcasing multiple machine learning 

models on a real hardware platform [15]. Auto-regression nested sequence (ARNS), described in literature 

[16], is a novel data-driven approach that effectively aggregates channel- and cycle-level information whereas 

including relaxation impacts for peak prediction. When applied to NASA and CALCE datasets, ARNS 

outperforms existing methods, especially during peak periods spanning multiple SOH states and cycles. 

Indirect health indicators (IHIs), which reflect battery capacity loss, can be extracted from voltage, current, and 

temperature curves throughout the charging and discharging processes, according to literature [17]. High 

estimation accuracy is achieved by selecting the significant IHIs using (PCA) and using them as inputs for 

SOH estimation using gaussian process regression (GPR). The development of a unique SOH [18] estimate 

method is based on the battery pack's behavior in active charge balancing (ACB), and has a positive correlation 

with SOH. We outperform state-of-the-art methods by leveraging this metric and other cell parameter to train 

a Random Forest (RF) regression estimator, which leads to accurate SOH estimate with 1.94% accuracy for 

capacity as well as 4.28% accuracy for resistance. A lithium-ion battery (LIB) online SOH monitoring 

technique is presented in article [19] that makes use of the battery's charge-discharge characteristic in real time. 

The proposed method demonstrates accurate real-time prediction of LIB SOH using NASA 

experimental data, with strengthened accuracy due to the use of techniques such as complete ensemble 

empirical mode decomposition with adaptive noise (CEEMDAN), logistic regression based on sliding time 

window (LR-STW), Kalman filter (KF), and radial basis function neural network (RBFNN), as well as (PCA) 

to analyze the relationship between the charge-discharge feature and SOH. 124 commercial lithium iron 

phosphate/graphite cells with varied cycle lifetimes were cycled under fast-charging conditions, and a 

comprehensive dataset was created [20]. The potential of combining intentional data generation with data-

driven modeling to comprehend complex dynamical systems is demonstrated by predictive models that achieve 

a 9.1% test error for quantitatively predicting cycle life as well as a 4.9% test error for classifying cycle life 

into two groups via using machine-learning tools to discharge voltage curves from early cycles. The changing 

pattern of the charging current during the constant-voltage (CV) phase serves as the foundation for developing 

an approach to detect battery SOH [21]. By establishing a measurable link between the normalized battery 

capacity and the current's time constant, an accurate estimation of SOH becomes achievable. The time constant 

of the CV charging current is acknowledged as a dependable indicator associated with battery aging. The 

proposed approach may successfully show the SOH of several batteries under a 2.5% error bound, according 

to experimental results.  

The idea of effective battery capacitance is first mentioned in literature [22] as a way to forecast the 

SOH of certain cells. A linear relationship among maximum effective capacitance and SOH is found and 

validated using data from several Toyota Prius battery packs. The maximum effective capacitance is 

determined through a voltage versus charge curve analysis and acts as a signal for end-of-life or catastrophic 

failure of battery modules. A innovative method for predicting long-term remaining usable life (RUL) and 

estimating short-term (SOH) online is presented in literature [23] by combining particle filtering (PF) and a 

degradation model based on Brownian motion (BM). The review paper [24] discusses the viability and 

economics of data-driven methods for estimating battery health in practical applications by utilizing 

developments in "Big Data" analytics using statistical/computational tools. The authors classify these 

techniques according to the models and algorithms that underlie them, talk about their benefits and drawbacks, 

and explore the difficulties of managing the real-time battery health. This review intends to advance data-

driven battery health estimate and forecasting across all technology readiness levels by offering insights into 

commercial technology decisions and research goals. An adaptable health estimation model is presented in the 

literature [25], which demonstrates the effectiveness of a Bayesian non-parametric approach employing 

Gaussian process regression for gauging capacity degradation across diverse usage scenarios. The author 

effectively anticipates long-term capacity fading using this technique on the NASA randomized battery usage 

dataset, attaining an optimal normalized root MSE of 4.3% alongside accurate computation of predictive 

uncertainty. Various literatures that discuss on the different battery performance evaluation and different 

chemical composition, novel methods for performance evaluation are considered [25]-[43]. 

Though the SOH implementation for batteries is used to build machine learning algorithms in the 

prior research, dimensionality reduction of the input characteristics using techniques for feature extraction is 

not addressed. In order to achieve the SOH estimation using the SVM implementation, this article uses the 

PCA-based feature extraction method. The implementation process is covered in section 2. Section 3 includes 

a description of the results and discussion, followed by the conclusion and references. 

 

 

2. DIMENSIONALITY REDUCED RNN-BASED SOH ESTIMATION 

The variables are prepared for PCA analysis to determine the total number of primary components to 

be used for SOH estimate. The dimensionality reduction method utilized in machine learning applications is 
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(PCA). By encapsulating every variable in a small number of variables, principal components (PC) can 

condense a sizable number of variables. All variables are linearly combined to create the principal components 

(PC), which are then generated. The SVM decision-making algorithm receives its input from the PCs. 

A collection of experimental data called the NASA dataset for LIB can be used to calculate a battery’s 

SOH. SOH stands for the battery's lifetime energy storage and delivery capacity. This dataset, which was 

produced by the NASA Ames research center and the jet propulsion laboratory, contains measurements of 

several lithium-ion battery properties made across a number of charge and discharge cycles. The dataset 

contains data on the voltage, current, temperature, capacity, and impedance of the batteries. It also includes 

information about the battery's structure and content, as well as the testing environment. Different testing 

techniques, such as accelerated aging and real-world cycling, were used to gather the results. As shown in 

Table 1, the dataset contains variables that were noticed during the charging and discharging cycles. The 

experiment is done on the data acquisition test bed using the lithium-ion battery's charging and discharging 

cycles. Rechargeable batteries in the 18650 size that are readily available on the market are employed. Table 2 

lists the characteristics noticed for the impedance operation. 

Models and algorithms are created using the dataset, which comprises all the variables gleaned from 

the charge-discharge cycles, in order to anticipate battery performance and calculate the battery's remaining 

usable life. LIB can be designed better and used more effectively in a variety of applications with the help of 

these models. After performing a PCA-based dimensionality reduction on the dataset, the data-driven SOH 

estimation is implemented using a recurrent neural network. To compare the outcomes of PCA extracted and 

non-PCA implementation, model loss is obtained for both. Figure 1 shows the block diagram for the SOH 

estimate using PCA and RNN. 
 

 

Table 1. Data structure for charge, discharge operations 
Attribute Attribute explanation Unit 

Voltage_measured Battery terminal voltage Volts 

Current_measured Battery output current Amps 

Temperature_measured Battery temperature Degree Centigrade 
Current_charge Current measured at the charger Amps 

Voltage_charge Voltage measured at the charger Volts 

Time  Time vector for the cycle Secs 

Capacity (Only for Discharge operation) Battery capacity (Ahr) for discharge till 2.7V Ahr 

 

 

 
 

Figure 1. Dimensionality reduced SOH estimation using RNN 
 
 

The block diagram shows how the specified CSV files are used to read the dataset. For the 

implementation of SOH estimation, the attributes are divided into input and output. Following the application 

of PCA, the data has been normalized utilizing the min-max scaler normalization method and trained on the 

RNN network having the following structure. To carry out the dimensionality-reduced SOH estimation 

utilizing RNN, Python-based code has been created. The MSE is used as the objective for convergence in the 
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training and testing of SOH estimation using RNN. To appreciate the effectiveness of the approach, the 

comparative MSE convergence of the RNN without PCA and RNN with PCA is derived. 
 
 

Table 2. Data structure for impedance operations 
Attribute Attribute explanation Unit 

Sense_current Current in sense branch Amps 
Battery_current Current in battery branch Amps 

Current_ratio The ratio of the above currents NIL 

Battery_impedance Battery impedance (Ohms) computed from raw data Ohms 
Rectified_impedance Calibrated and smoothed battery impedance (Ohms) Ohms 

Re Estimated electrolyte resistance (Ohms) Ohms 

Rct Estimated charge transfer resistance (Ohms) Ohms 

 
 

3. RESULTS AND DISCUSSION 

Figure 2 shows the box plots for the attributes: Figure 2(a): capacity, Figure 2(b): voltage measured, 

Figure 2(c): current measured, Figure 2(d): temperature measured, Figure 2(e): current load, and Figure 2(f): 

voltage load. Using a box plot, the input attributes are represented in order to determine their range of values. 

Figure 2 illustrates the attributes of the battery charging procedure alongside the span of values encompassing 

these characteristics. 
 
 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(d) 

 
 

Figure 2. Box plots for the attributes of (a) capacity, (b) voltage measured, (c) current measured,  

(d) temperature measured, (e) current load, and (f) voltage load 
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To understand the battery's capacity profiling, the graph analyzes the data for SOH versus cycle. 

Figures 3(a) and 3(b) show the SOH versus cycle profile and the capacity versus cycle, respectively. Figures 

3(a) and 3(b) exhibit the instantaneous SOH and capacity values along with the average SOH and capacity 

values. The Figure 3 clearly shows how the capacity and SOH have declined. 

For efficient memory usage in SOH prediction training and testing, the attributes for SOH estimation 

must be feature minimized. The correlation diagram provides information about how closely the attributes are 

related; the higher the correlation, the less frequently an attribute is used. Although there is a higher correlation 

among all the distinctive factors, the ambient temperature has a larger correlation. For PCA analysis, all seven 

attributes are kept in place. Since PCA is used to extract variance from characteristics, it is calculated as a 

linear combination of attributes, and as a result, the implementation of PCA shows a reduction in 

dimensionality. Different percentage variances are contributed by the principal components (PCs). However, 

the first and second PCs, PC1 and PC2, are the principal variations that account for the majority of the variance 

in the characteristics. Figure 4(a) shows the PC graph, whereas Figure 4(b) shows the correlation graph between 

the qualities. Table 3 shows the PCs and their proportional contribution to reflecting the variance of the 

characteristics. It is evident from the chart that the top three or four PCs' contributions account for the majority 

of the differences in all the parameters. 

To create the model loss versus epoch graphs, the RNN technique is used in conjunction with the 

original attributes and the extracted PCs, which may be all of them or only three or four of them. To compare 

the training convergence and testing model loss vs the epochs, the model loss graph with the train and test 

operation on the dataset is obtained. Model loss in machine learning is a metric indicating how effectively a 

model can forecast the target variable given a specific set of input data. The difference between the projected 

value and the actual value is used to calculate it. Figure 5 shows the model loss responses for the various 

instances addressed. Figures 5(a) and 5(b) show that the model loss response is identical when the whole set 

of characteristics and all PCs are used for the SOH estimation. While the model loss while employing 4 PCs 

and 3 PCs is comparable, as shown in Figures 5(c) and 5(d), respectively. 

When using 4 Pcs for the SOH estimation, the root mean square of 0.1379859619348809 was 

achieved. When the characteristics are employed directly, the SOH estimation achieved using PCA and RNN 

essentially yields equal values of model loss. As a result, when dimensionality is reduced using PCA, the model 

loss values are close to those obtained when PCA is not used. As a result, as compared to an implementation 

that does not use PCA, the SOH estimation approach uses less RAM. 

 

 

 

 

(a) (b) 

 

Figure 3. Profiling of SOH and capacity: (a) SOH versus cycle and (b) capacity versus cycle 
 

 

Table 3. PC contribution 
PC number Eigen value Percentage 

0 4.172993 59.614191 
1 1.350306 19.290089 

2 0.910773 13.011049 

3 0.385525 5.507497 
4 0.138061 1.972299 

5 0.026477 0.378236 

6 0.015865 0.226640 
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(a) (b) 
 

Figure 4. PCA implementation: (a) correlation diagram and (b) principal components (PCs) 
 

 

 
 

(a) (b) 

 
 

(c) (d) 

 

Figure 5. Model loss response: (a) without PCA, (b) with all PCs, (c) with 3 PCs, and (d) with 4 PCs 

 

 

4. CONCLUSION 

The NASA dataset, a common dataset, is utilized in the machine learning context for SOH estimation. 

The PCA is used to apply the dimensionality reduction technique to the input attributes. Using the PCs acquired 

via PCA, the RNN from the Deep Learning technique is utilized to estimate the SOH. The model losses were 

provided by the implementation to be quite close to those when all attributes are utilized. Even when 
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dimensionality reduction using PCA is used, the performance of the SOH estimation is still in a good range. 

The algorithm's RMSE results show that the PCA with RNN algorithm has increased memory economy while 

preserving performance equivalence to the non-PCA implementation. 
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