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 A resilient approach is presented in this study for detecting and classifying 

faults for power distribution systems integrating renewable energy sources 

(RES). Combining discrete wavelet transform (DWT) and convolutional 

neural network (CNN). The suggested framework addresses the challenges of 

RES intermittency and kinetic energy insufficiency. The recommended 

methodology is evaluated in a MATLAB platform, featuring a power 

distribution system with photovoltaic (PV) and wind energy conversion 

system (WECS), stabilized by a boost converter and cascaded fuzzy logic 

controller (CFLC) based maximum power point tracking (MPPT) for PV and 

a PI controller for WECS. Comparative analyses demonstrate the superior 

performance of the CNN classifier with an accuracy of 96.33%, outshining 

existing classifiers, including ANN. Furthermore, under various fault 

conditions, the CNN consistently achieves high accuracy, with 98% for 

Islanding, 95% for line-to-ground fault, and 96% for line-to-line fault. The 

proposed approach exhibits excellent computational efficiency, with a 

training time of 10.5 hours, inference speed of 5 milliseconds, and resource 

utilization of 85%, emphasizing its suitability for instantaneous fault 

identification in power systems. 
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1. INTRODUCTION 

The growing concerns regarding global warming and environmental pollution have accentuated the 

significance of RES based power production. According to International Renewable Energy Agency (IRENA), 

for year 2020, the capacity of world renewable energy has expanded by more than 260 GW, which is actually 

50% greater than the amount of energy generated in 2019 [1], [2]. Among the available renewable energy 

sources (RES), the wind and solar energy account for a significant portion in terms of utilization rates. 

However, both these RES are characterized with intermittency, which leads to the introduction of electrical 

disturbances that distorts the current and voltage, resulting in several power quality disturbances (PQD). The 

massive infusion of power electronic technologies, which are non-linear in nature, into the electric power 

system has also resulted in the onset of serious PQD [3], [4]. These PQD has to be minimized in order to curtail 

power loses and also to prevent the malfunctioning of components interfaced to power system. The power grid 

faults are unpredictable and random in nature, hence the development of a precise and accurate fault detection 

technique is instrumental in ensuring its safe functioning. Moreover, for maintaining balance in power system, 

https://creativecommons.org/licenses/by-sa/4.0/
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a rapid fault detection model is essential as it improves the chances of quick recovery of unhealthy phases. 

Thus, by restoring the unhealthy phases, the stability, PQ and transient response of the entire power system is 

improved [5]-[10].  

Numerous fault detection models for power distribution system are proposed so far, which includes a 

communication-based protection plan in [11] that offers a back-up security in case of absence of the main 

protection approach. In [12], the fault types in the output of the distributed generations are detected using abc 

to dq transformation. However, the protection technique proposed in these works concentrate only on a specific 

system topology or operating mode. A harmonic current based power distribution system protection plan is 

proposed in [13], while a zero and positive sequence voltage magnitude and phase angle-based fault detection 

approach is suggested in [14]. Due to the fluctuating fault impedances and dynamic load behaviour, it is a 

challenging task to establish a suitable threshold value in the aforementioned techniques. Recently, the neural 

network-based fault detection techniques are becoming increasingly popular. In these techniques, the various 

types of faults are identified by extracting the line signal’s fault features as it is impossible to detect fault from 

unprocessed current or voltage signal. Some of commonly used signal processing tool for extracting features 

of the fault signals are Hilbert-Huang transform [15], S-transform [16] or wavelet transform [17]. 

For classifying the faults, machine learning techniques like support vector machines (SVM), k-nearest 

neighbours (k-NN) and decision trees (DT) are utilized [18], [19]. However, the data reduction method 

employed for minimizing the computational complexity, comes at the cost of information loss and lowered 

accuracy. A fault discernment mechanism is envisioned on the basis of artificial neural network (ANN) is 

suggested in [20], [21], while another fault discernment mechanism envisioned on the basis of probabilistic 

neural network (PNN) is suggested in [22]. The process of image classification is challenging in case of ANN, 

since the 2D images are required to be converted to 1D vectors, whereas the PNN are highly susceptible to 

input data discrepancies. RNN is also employed in grid connected solar systems but is susceptible to stability 

issues [23]. The most effective neural network for image classification is CNN and it is capable of handling 

large input image database. A comprehensive examination of contemporary methodologies introduced for the 

diagnosis of faults in power systems is elucidated within Table 1. The existing techniques provide valuable 

contributions to fault diagnosis in power systems, but there is a notable research gap that the proposed work 

aims to address. Specifically, none of the contemporary techniques discuss explicitly to integrate the 

advantages of both DWT and CNN for fault identification in a power distribution system that includes RES 

such as WECS and PV. This integration is precisely tailored to address the challenges posed by RES 

intermittency by employing separate stabilization methods for PV and WECS.  

The contributions of the proposed methodology are:  

i) Integration of DWT and CNN: The proposed work introduces a novel fault detection methodology by 

combining the strengths of DWT for efficient feature extraction and CN for robust classification. This 

integration enhances the fault detection system's accuracy and effectiveness;  

ii) Addressing challenges in RES integration: The work specifically addresses challenges associated with the 

growing penetration of RES in power distribution systems. It recognizes and tackles issues such as RES 

intermittency, kinetic energy insufficiency, and the lack of zero crossing current, which are prime aspects 

of hybrid power system fault identification;  

iii) Comprehensive power system model: The proposed framework comprises a comprehensive power 

distribution system that includes both WECS and PV systems. The stability of each system is ensured 

through the use of specific control methodologies, such as the boost converter and CFLC for PV and the PI 

controller for WECS;  

iv) Holistic evaluation of power system: The proposed work goes beyond fault detection and includes a 

thorough evaluation of the power distribution system. It considers PQ issues, load variations, and influence 

of faults on entire system stability. This holistic approach provides a more complete understanding of the 

system's behavior under different conditions; and  

v) Simulation and transparency: Simulation outcomes are presented and evaluated using MATLAB platform, 

providing transparency and reproducibility. Thus, the proposed work contributes significantly to fault 

diagnosis in power distribution by introducing an integrated approach, addressing challenges in RES 

integration, providing a comprehensive power system model, conducting transparent simulations, 

performing a comparative analysis, and demonstrating the feasibility and efficiency of the proposed 

methodology.  

These contributions collectively advance the understanding and application of fault detection techniques within 

the framework of contemporary power systems. 

The subsequent sections of the paper are meticulously organized to present a coherent and 

comprehensive exploration of recommended fault identification system. Section 2 delves into materials and 

methods employed in the study, providing a detailed account of the working methodology. Section 3 outlines 

the intricacies of the proposed system, while the modeling intricacies of recommended system are expounded 
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upon in section 4 section 5 is dedicated to presenting the results and engaging in a thorough discussion. 

Simulation outcomes, parameters, and waveforms are meticulously analyzed to showcase efficacy of the 

envisioned fault identification approach under various fault conditions. Finally, section 6 encapsulates the 

findings and insights into a succinct conclusion. 

 

 

Table 1. Contemporary techniques for fault diagnosis in power systems: an elaborate analysis 
Ref. Classifier/technique Feature extraction Strong points Shortcomings 

[24] DT classifier Hilbert Huang and 
empirical mode 

decomposition 

Fast and accurate fault 
detection, classification, and 

location 

Sensitivity to measurement quality, 
DG capacity changes, and fault 

incidence angles 

[25] Random forest (RF) The technique used is 
not explicitly mentioned 

High accuracy, robust 
generalization and effectual 

handing of missing data 

Sensitive to noisy data and 
interpretability limitations 

[26] k-NN based ensemble 
classifier 

DWT Robust feature extraction by 
DWT and high discrimination 

accuracy 

Multiple base classifiers introduce 
computational complexity 

[27] Genetic algorithm 
based ensemble 

classifier 

Lasso penalty Automatic fault diagnosis and 
uses less training dataset 

Assumption of homogenous fault 
characteristics and limited dataset 

diversity 

[28] DT classifier DWT High impedance fault 
diagnosis and high 

classification accuracy 

Performance under unpredictable 
noise require validation 

[29] Fuzzy neural network 

(FNN) 

The technique used is 

not explicitly mentioned 

Distributed processing, 

successful fault diagnosis and 

selective activation 

Complex and resource intensive 

[30] Temporal constrained 

fuzzy petri nets 

No feature extraction Uncertainty integration, 

temporal constraints 

incorporation, feasibility and 
matrix algorithm 

Challenges in adapting to highly 

dynamic power systems 

 

 

2. MATERIALS AND METHODS 

2.1. Dataset and simulation platform 

The proposed fault detection system is evaluated using a simulated dataset generated on the MATLAB 

platform. The dataset includes voltage and current signals from a hybrid power system consisting of WECS 

and PV sources. These signals are recorded during normal operating conditions and under various fault 

scenarios. 
 

2.2. Data pre-processing 

Prior to training the CNN, the dataset undergoes pre-processing to ensure uniformity and relevance. 

This includes normalization of signal amplitudes, removal of noise, and segmentation of data into fault and 

non-fault instances. In order for the network to generalize patterns from the input signals, the pre-processing 

stage is essential. 
 

2.3. CNN architecture 

It is designed to efficiently capture spatial and temporal features from the fault signals. Its intricate 

design executes meticulous feature extraction using convolutional layers, dimensionality mitigation using max-

pooling layers, classification using fully connected layers, and a softmax layer devoted to precise probability 

estimation. The training regimen is orchestrated through the employment of Backpropagation, leveraging 

stochastic gradient descent as the optimization algorithm, ensuring the network learns and refines its parameters 

effectively. 
 

2.4. DWT feature extraction 

Fault signal processing involves extracting relevant features using DWT. The voltage and current 

signals during fault condition onset are sensed and fed into DWT, which decomposes signals into 

approximation (App) and detail (Det) coefficients. These coefficients represent large and small scale frequency 

components, providing valuable information for fault classification. 
 

2.5. CFLC MPPT 

For the PV system, a boost converter with CFLC MPPT is employed to maximize power generation. 

The CFLC is configured with if-then rules based on inputs such as solar irradiance, temperature, voltage, 

current, and power. The cascading approach in the FLC helps reduce rule base complexity, ensuring efficient 

and precise MPPT under varying operating conditions. 
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2.6. Simulation parameters 

Simulations are conducted with specified parameters. These parameters ensure a realistic 

representation of the hybrid power system and fault scenarios. The proposed fault detection system is assessed 

for its capability for precisely identifying and classifying various anomalies occurring in hybrid power system. 

The CNN classifier's effectiveness, coupled with DWT feature extraction and CFLC MPPT, is analysed based 

on simulation results and performance metrics such as accuracy, sensitivity, and specificity. 
 

 

3. PROPOSED SYSTEM DESCRIPTION 

The electrical power system in general encompasses numerous dynamic and interrelated components, 

which are highly liable to electrical faults. The stability and dependability of the electrical distribution system 

are negatively impacted by these failures, which can cause sizable financial losses. So, these faults are required 

to be detected and cleared immediately after their occurrence. A CNN classifier based fault event detection 

approach as seen in Figure 1 is envisioned in the recommended study. Moreover, the recommended fault 

detection approach is applied in a hybrid power system comprising of RES such as WECS and PV. Recently, 

the implementation of RES for power generation is becoming more popular on account of dwindling fossil fuel 

supply and increasing environmental pollution. However, the rise in integration of RES to the power system 

also causes serious protection risks in the power system. This is mainly attributable to their intermittent and 

variable nature, so with the intension of stabilizing their outputs, individual control methodologies are adopted. 

The PV system being the generator of low voltage supply, is coupled with a boost converter for enhancing its 

output voltage. Moreover, utmost power from PV is extracted with the assistance of CFLC MPPT.  

The DFIG output is meticulously conveyed to PWM rectifier, a critical component in the system 

architecture. This rectifier plays a pivotal role in transforming the generated output into a stable DC form. 

Facilitating this transformation is the employment of a PI controller, adding a layer of precision and control to 

the stabilization process. Through a three phase VSI, the grid is linked to both of these distributed generators. 

The voltage signals of the system and current are monitored constantly, to discern fault occurrence. In case of 

a fault occurrence, faulty are sensed and sent as input to DWT, which in turn extracts the prominent features 

of the signal. Based on these extracted features, the CNN classifier instantly detects and classifies the type of 

the incurred fault. By detecting faults quickly, appropriate maintenance measures are taken to ensure power 

system reliability by preventing the onset of PQDs. 
 

 

 
 

Figure 1. Architecture of CNN based fault detection model in a hybrid power system 
 

 

4. PROPOSED SYSTEM MODELLING 

4.1. Network fault types 

The various faults that occur in a power line of power distribution system are classified broadly as 

series and shunt faults. The former is a result of series impedance imbalance caused due to plain break in one 

or two conductors. While, latter frequently occurs in a three-phase power network during distribution of power 

in the form of phase to ground (PG), phase-to-phase (PP), three PG (3 PG), and two PG (2 PG). 

 

4.1.1. Single PG fault 

This short circuit fault takes place when a specific phase line drops to ground or comes in contact to 

neutral line. Moreover, it is caused due to falling of trees to the ground or as consequence of heavy rain. This 

can lead to an imbalance in the system, causing a surge in current flow through the grounded phase. The faulted 
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phase experiences a short circuit to the ground, resulting in an increase in current and potential overheating of 

equipment. Figures 2(a)-2(c) illustrates three types of single PG faults. 

 

4.1.2. Two PG fault 

This fault occurs due to the falling of two lines to the ground and it gives to fault current of higher 

magnitude. The simultaneous grounding of two phases creates a more significant imbalance in the system, 

leading to an increased flow of current through the faulted phases. This fault if not fixed immediately, develops 

a severe three-line to-the ground fault. Various types of two PG fault with fault resistance specified as 𝑅𝑓are 

displayed in Figures 2(d)-2(f). 

 

4.1.3. PP fault 

In a three-phase system, the PP fault occurs when there is a short circuit between two specific lines. 

The fault impedance magnitude of this unsymmetric fault, fluctuates over a wide range making it a challenging 

task to determine its lower and upper limits. In this fault scenario, two phases of the system become directly 

connected, bypassing the load impedance and creating an unintended low-impedance path for current flow 

between them. This can lead to an imbalance in the system, causing changes in voltage and current magnitudes. 

Figures 2(g)-2(i) illustrates the types of PP faults. 

 

4.1.4. Three PG fault 

It is a symmetric fault that often occurs and is caused because of equipment failure or falling of the 

electric pole. Moreover, it generates higher amount of short circuit current and the three-phase voltage becomes 

zero during this fault. During a three-phase fault, a substantial amount of short circuit current is generated 

because all three phases are directly connected, bypassing the impedance of the system. This fault condition 

causes a rapid increase in current magnitude, potentially leading to overheating of equipment and posing a 

significant threat to the integrity of the power system. Figure 2(j) illustrates this fault. 

 

 

 
 

Figure 2. Types of faults: (a) a-g, (b) b-g, (c) c-g, (d) ab-g, (e) bc-g, (f) ca-g, (g) a-b, (h) b-c, (i) a-c,  

and (j) abc-g 

 

 

4.2. DWT based feature extraction of fault signals 

Voltage and current signals of the system during fault condition, are sensed and then provided as input 

to the DWT, which subsequently analyses the signal to identify its distinct features. It aids with the 

representation of signal in time domain as a collection of adjustable wavelet coefficients, which are capable of 

generating wide variety of signal processing effects. By representing the signals in different domain, better 

understanding of prominent features of the signal such as power spectrum, autocorrelation and periodicity is 

obtained. Here, during the occurrence of fault, the distinct feature of a fault signal is represented with the 

application of DWT. Moreover, for fault signal processing, a set of high pass filters (HPF) and low pass filters 

(LPF) are employed, with the former handling low frequency domain signal analysis, while the latter handling 

high frequency domain signal analysis. Consequently, fault signal gets disintegrated into approximation (App) 

(a) (b) (c) (d) (e) (f) 

(g) (h) (i) (j) 
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coefficient [representation of large and small scale frequency components] and detail (Det) coefficient 

[representation of small and large-scale frequency components]. DWT decomposition tree is created as a result 

of App coefficient replication, as seen in Figure 3. 

The occurrence of fault alters wavelet coefficients of waveforms, and these changes are also 

documented for a variety of other system parameters that contain crucial fault signature data. The expression 

for evaluating energy of a signal is given as (1). 
 

𝐸𝑖 = ∑ 𝑑𝑖𝑘
2𝑛

𝑗=1  (1) 
 

Where, the Det coefficient of a signal is specified as𝑑𝑖𝑘, number of points for wavelet coefficients 𝑗 =
1,2, … , 𝑛 and scale 𝑖 = 1,2, … , 𝐼. With the occurrence of a fault or other transient events, the signal energy 

changes in line with the variation in the wavelet coefficient. The required input features for presented fault 

detection and classification model are obtained by evaluating the signal energy of every 3Φ signals. The DWT 

applied to a signal 𝑥 at scale 𝑚 and position 𝑛 is (2). 
 

𝐷𝑊𝑇𝑥,𝑚,𝑛 =
1

√𝑎0
𝑚

∑ 𝑥(𝑘)𝜓∗
𝑙 (

𝑛−𝑙𝑎0
𝑚 𝑏0

𝑎0
𝑚 ) (2) 

 

Where, 𝑎0
𝑚 specifies scale shift parameter, 𝑙𝑎0

𝑚 𝑏0 specifies the time shift parameter, and the terms 𝑚 and 𝑙 are 

integer variables. 
 

 

 
 

Figure 3. DWT decomposition tree 
 

 

4.3. CNN based fault classification 

The network fault types are classified with the aid of CNN and for the CNN to function, the fault 

signals are required to be converted to images, which is accomplished with the aid of wavelet-based signal 

analyser of MATLAB. The topology of the CNN as seen in the Figure 4 entails a softmax layer, max pooling, 

input layer along with fully connected layers and convolutional layers. They are mainly applied for 2D image 

recognition, since they are highly efficient when operated with image inputs. In addition to classification, the 

different layers found in CNN are also capable of performing architecture size reduction and feature extraction. 

The prominent features of the input image are extracted by convolution layer of CNN. Moreover, training of 

CNN is carried out by updating a collection of filters that estimates the dot products between input and filter 

values by spatially sliding across the input matrix. When these filters slide along the height and width of the 

image input, a 2D activation map is generated, which at each spatial position, provides the filter response. 
 

 

 
 

Figure 4. Architecture of CNN fault classifier  
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When the filters come across unique features in an input image like colours or edges, it gets activated 

and the network is also alerted. The max-pooling layer located between the convolutional layers, reduces 

overfitting by decreasing the parameters and size of the input image. The major process of classification in 

CNN takes place in the fully connected layer, which comprises of several neurons that are connected to the 

previous layer activation functions. The ReLU activation function applied at each convolution unit is (3). 

 

f(zl) = {
zl, ifzl ≥ 0

0, otherwise
 (3) 

 

Where, the 𝑙 th convolutional layer output element is specified as 𝑧𝑙 . As mentioned earlier, the 

maxpooling layer, aids with the reduction of the overall computational complexity by minimizing the spatial 

size of parameters and features of the input data. All the pooled features are then converted to 1D vector by the 

flatten function. On the basis of features collected by the prior layers, the fully connected layer forms a new 

feature map. The final layer of the CNN is the softmax layer and for 𝑀 classes, the output is given as (4). 

 

z = [z1, … , zM]T = σ(h) (4) 

 

Here, the type of fault determined in the 𝑚-𝑡ℎ category of𝑀 classes is referred as 𝑧𝑀, the softmax 

function is specified as𝜎(ℎ) and for the final fully connected layer ℎ = [ℎ1, … , ℎ𝑀]𝑇, the output is given as (5). 

 

zm = [σ(h)]m =
ehm

∑ e
hjM

j=1

 (5) 

 

With the aid of training data set 𝑉, CNN parameters are developed with the intention of minimizing the loss 

function. Here, the 𝑖th training sample’s loss function is the cross entropy between the target and prediction, 

as in (6). 

 

Loss(z(i)) = − ∑ tm
(i)

log (zm
(i)

)M
m=1  (6) 

 

Where, for the 𝑖th training sample, if the index of ground truth is 𝑚, then 𝑡𝑚
(𝑖)

= 1 or otherwise𝑡𝑚
(𝑖)

= 0. The 

total training set loss is given as (7). 

 

I(θ) =
1

|V|
∑ Loss(z(i))iϵV  (7) 

 

Where, the test set elements are specified as|.|. Moreover, in order to minimize the loss function, 

Adam optimizer is selected. An image of size 224 × 224 × 3which represents the3Φ voltage or current is 

provided as the CNN input. This image is accepted by the input layer, then it passes through the various filters 

of the convolution layer. It then subsequently passes through ReLU and maxpooling layer. Moreover, input 

data is down sampled by the pooling layer, in order to minimize overfitting. The convolution between the input 

matrix and filters is the major task performed by the convolution layer and its working is greatly influenced by 

the filter size. The smaller filter size leads to information loss, whereas a larger filter size leads to computational 

complexity. The presented fault classification technique is implemented in a hybridized power system 

encompassing wind and PV with individual control approaches, which are detailed as follows: 

 

4.4. PV system modelling 

The PV cell circuit as seen in the Figure 5 is represented as a single diode model for the ease of 

understanding. The terms𝐼0 and 𝐼𝑝ℎ represents the diode saturated current and the photo generated current 

respectively, while the terms 𝑅𝑃 and 𝑅𝑆 refers to the shunt and series resistance respectively. Moreover, output 

current of PV cell is given as (8). 

 

IPVcell = Iph − (Io(eVD αVT⁄ − 1)) −
VPVcell+IPVcellRS

Rp
 (8) 

 

The output current of a PV module produced by combining multiple PV cells is shown as (9). 

 

IPV = Iph − Io [exp (
q(VPV+IPVRS)

AKTNs
) − 1] −

VPV+IPVRSNs

RPNs
 (9) 
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Where, the terms 𝑇, 𝑞, 𝑘 𝑎𝑛𝑑 𝐴 refers to the operating temperature, electron charge, Boltzmann constant and 

diode ideality factor respectively. Moreover, the number of cells that together constitute a PV module is 

specified as 𝑁𝑠.  

 

 

 
 

Figure 5. Configuration of a PV module and a PV cell 

 

 

4.5. Boost converter modelling 

The boost converter aids with maximizing the solar power generation 𝑃𝑃𝑉 by varying output 

voltage 𝑉𝑃𝑉 of PV array. The input voltage to converter is 𝑉𝑃𝑉, 𝑖𝐿 represents the inductor current and 𝑉𝑜𝑢𝑡 

indicates the voltage output. Input capacitor which is shunt coupled to the PV generator is eliminated as seen 

in Figure 6, for simplifying the designing process of the MPPT controller. 

On considering the continuous conduction, the boost converter operates in two switching modes, 

which are: 

- On-state dynamics: In case of switch ON condition, the dynamics of output voltage and input current is 

expressed as (10). 

 

{

dIPV

dt
=

VPV

L
dVout

dt
=

−Vout

RC

  (10) 

 

- Off-state dynamics: In case of switch OFF condition, the boost converter’s state space equation is given  

as (11).  

 

{

dIPV

dt
=

VPV−Vout

L
dVout

dt
=

IPV

C
−

Vout

RC

 (11) 

 

A time invariant nonlinear system is represented generally as (12). 

 

Ẋ = f(X) + g(X)u (12) 

 

Where, 𝑢 ∈ [0 1] and the vector state space is represented as 𝑋 = [𝑥1𝑥2 … 𝑥𝑛]𝑇. On the basis of (12), the model 

of boost converter is formulated by multiplying the duty cycle D with (10) and (1-D) with (11). Moreover, the 

state-space average approach is also used, in which (13) and (14). 

 

Dϵ[0 1] (13) 

 

X = [IPVVout]
T (14) 
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In continuous mode, the boost converter model is given as (15). 

 

{

dIPV

dt
=

VPV

L
−

Vout

L
(1 − D)

dVout

dt
=

−Vout

RC
+

IPV

C
(1 − D)

 (15) 

 

The extracted power from the PV is further maximized with the aid of an appropriate MPPT approach. Here, a 

CFLC is utilized as MPPT controller, which adjusts D of boost converter to allow extraction of maximum power. 
 

 

 
 

Figure 6. Boost converter without input capacitor 
 

 

4.6. CFLC MPPT technique 

The fuzzy logic controller (FLC) is an effective mathematical tool capable of handling vague, unclear, 

uncertain and imprecise data. The mapping of the input to the output is carried out with the aid of if-then rules 

in an FLC and the term rule base refers to the collection of these if-then rules. The complexity of the rule base 

has a significant impact on the FLC's performance because a more complicated rule base necessitates a longer 

execution time. Thereby, with the aim of reducing the rule base complexity, a cascading approach is proposed 

for FLC in this work. The cascading technique is implemented by connecting several FLCs in series, with the 

output from one FLC serving as input to the following FLC. The CFLC is used as an MPPT controller and the 

inputs to the MPPT are solar irradiance, temperature,𝑉𝑃𝑉 , 𝐼𝑃𝑉 and 𝑃𝑃𝑉 . For a normal FLC with 𝑛 membership 

functions and 𝑚 inputs, the total number of rules is expressed as (16). 

 

Total number of rules = mn (16) 

 

As mentioned above, five inputs are considered for the MPPT controller. Thus, it is resulting in the 

requirement of 55 = 3125 rules, in case of a normal FLC with five membership functions. However, in case 

of CFLC MPPT as seen in Figure 7, requires a total of 52 +  52 +  52 +  52 = 100 rules, thus successfully 

reducing the computational complexity of the MPPT controller.  
 

 

 
 

Figure 7. Structure of CFLC MPPT 
 

 

The FLC being an intelligent technique, is tuned on the basis of human experience and knowledge 

about the working of the system. Moreover, compared to conventional MPPT techniques, it overcomes the 
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problem of overshoot and is capable of maintaining the operating point at MPP in spite of fluctuations in 

temperature and irradiance. The inputs of the FLC are mapped to the fuzzy variable in the fuzzification block. 

The actual expert data are presented in the inference block through the membership rules contained in if-then 

statements. The linguistic inference rules are then converted to crip numerical values in the output 

defuzzification block. In case of CFLC MPPT, the change in duty ratio command for the boost converter is 

attained as output. 
 

4.7. Modelling of DFIG based WECS 

The characteristics of a wind turbine, which generates mechanical energy through the conversion of 

kinetic energy of the wind is given as (17)-(19). 
 

λi =
1

1 λ+0.08β⁄ −0.035/(β3+1)
 (17) 

 

Cp(λ, β) = 0.645(
116

λi
− 0.4β − 5)e−21 λi⁄  (18) 

 

Tm =
0.5ρπR2Cp(λ,β)Vwind

3

ωWT
 (19) 

 

Where, the terms 𝜌, 𝛽, 𝜆, 𝐶𝑝 𝑎𝑛𝑑 𝑅 refers to the air density, pitch angle, tip speed ratio, power coefficient and 

blade radius respectively. A highly efficient AC asynchronous variable-speed generator with decreased 

mechanical stress, greater energy harvesting, and improved reactive power controllability is known as the 

DFIG. Figures 8(a) and (b) illustrate the structure and equivalent circuit of a DFIG. The DFIG is modelled with 

the aid of subsequent expressions. The stator voltage is estimated using (20). 
 

vs̅ = −Rsis̅ +
1

ωb

dΨs̅̅ ̅̅

dt
+ j

1

ωb

dθs

dt
Ψs
̅̅ ̅ (20) 

 

The rotor voltage is expressed as (21), the stator flux linkage is expressed using (22), while the 

electromagnetic torque is expressed as (23). 
 

vr̅ = −Rrir̅ +
1

ωb

dΨr̅̅ ̅̅

dt
+ j

1

ωb

dθr

dt
Ψr
̅̅ ̅ (21) 

 

Ψs
̅̅ ̅ = Ls(−is̅ + ir̅), Ψr

̅̅ ̅ = Ψs
̅̅ ̅ + Lkrir̅ (22) 

 

te = −Im (Ψs
̅̅ ̅ir) , ps = −Re(vs̅is) (23) 

 

Where the stator voltage, current, inductance and resistance are specified as 𝑣𝑠, 𝑖𝑠, 𝐿𝑠  𝑎𝑛𝑑 𝑅𝑠 respectively, 

while the rotor voltage, current, inductance and resistance are specified as𝑣𝑟 , 𝑖𝑟 , 𝐿𝑟  𝑎𝑛𝑑 𝑅𝑟 respectively. The 

positive torque is specified as𝑡𝑒, while the rotor and stator flux are designated as Ψ𝑟  and Ψ𝑠 respectively. To 

obtain a DC voltage output, a PWM rectifier is linked to the DFIG-based WECS's output. The PWM rectifier's 

output is stabilized using the PI controller, which provides the appropriate error compensation.  
 
 

  
(a) (b) 

 

Figure 8. DFIG topology: (a) DFIG structure (b) DFIG equivalent circuit 
 
 

5. RESULTS AND DISCUSSION 

The process of fault detection using CNN classifier and DWT is proposed. The proposed fault detection 

scheme is considered in hybrid power system comprising of RES such as WECS and PV. Since both these RES 
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are characterized with intermittency, individual control methodologies are employed for stabilizing their outputs. 

Through accurate detection and correction of faults, the PQ of the entire system is enhanced. Moreover, by 

taking suitable maintenance measures, the breakdown of the entire power distribution system is also prevented. 

The simulation setup of suggested work is presented in Figure 9. The system includes a combination of WECS 

and a PV system, where the PV system incorporates a boost converter and a closed-loop CFLC MPPT for 

optimal power extraction. The output from the DFIG undergoes transformation through a PWM rectifier, 

controlled by a PI controller. Both the PV system and DFIG are linked to grid via a three-phase VSI. Continuous 

monitoring of voltage and current signals enables prompt fault detection. In the event of a fault, the signals are 

processed through DWT and the extracted features are input into a CNN classifier for rapid and accurate fault 

classification. The processing of signals is added as sub blocks in the simulation setup. This setup aims to 

expedite fault identification, allowing for timely maintenance actions to prevent PQDs and ultimately ensuring 

power system reliability, particularly in the context of intermittent and variable RES integration. 
 
 

 
 

Figure 9. Simulation setup of the proposed work 
 

 

5.1. Simulation results 

The overall fault detection system is analysed on the basis of the simulation outcome derived from 

MATLAB. A simulation model for the suggested DWT-CNN based fault identification approach is developed 

and tested for its effectiveness in maintaining PQ in a power distribution system. Table 2 also includes a 

tabulation of the parameters for the developed simulation model. 

The PV system unlike the conventional fossil fuel-based power systems, delivers a variable voltage 

supply as output. The PV panel output voltage waveform given in Figure 10(a), indicates that a rise in voltage 

level from 185 V to 195 V is observed at 0.2 s. This variation in voltage level is attributable to the operating 

condition changes such as variation in ambient temperature or solar irradiance. However, on the basis of the 

boost converter output voltage waveform shown in Figure 10(b), it is observed to maintain a 600 V at 0.2 s 

regardless of the input voltage fluctuation. This is mainly due to the effectiveness of the CFLC MPPT and the 

boost converter. 

The waveform representing the DFIG voltage output is given in Figure 11(a). It is evident that the 

voltage output ranges at +600 V to -600 V and this AC voltage is then supplied to the PWM rectifier. The 

PWM rectifier is effective in delivering a stabilized DC voltage of 600 V as output from 0.15 s, with the 

assistance of PI controller as shown in Figure 11(b). The outputs showcasing the turbine rotor speed and torque 

are provided in Figure 12. The three currents of the three phases of the stator are provided in Figure 13. 

DC-link voltage is noted to be a stable 600V from 0.075s after initial variations as seen in 

Figure 14. In a power distribution system, the abrupt addition or removal of loads induces PQDs such as voltage 

swell and sag as displayed in Figure 15. Voltage swell issue is characterized with instantaneous increase in 

voltage level, whereas the issue of voltage sag is characterized with instantaneous decrease in voltage level. 

Both these PQDs are required to be detected and compensated swiftly for ensuring the stable power distribution 

system working. 

Here, PI controller and dq theory aids with the achievement of grid voltage synchronization and a 

stable voltage and current of range -400 V to +400 V and -13.5 A to +13.5 A respectively are maintained as 

seen in Figure 16(a)-(b). For better understanding, the phase 𝐴 waveform of both grid voltage and current are 

considered as illustrated in Figure 16(c).  
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Table 2. Parameter specifications 
Parameters Values Parameters Values 

No. of series cells 36 Operating voltage and current 16.8 V and 5.8 A 
No. of panels 10 Switching frequency 1 kHz 

DC-link voltage 600-1500 V Load type Variable 

Area of each cell 125×31.25 mm   

 
 

  
(a) (b) 

 

Figure 10. Output voltage waveforms: (a) PV panel and (b) boost converter 
 
 

  

(a) (b) 

 

Figure 11. WECS waveforms representing: (a) DFIG output and (b) PWM rectifier 
 

 

  
(a) (b) 

 

Figure 12. Waveforms showcasing wind turbine: (a) rotor speed and (b) torque 



Int J Pow Elec & Dri Syst  ISSN: 2088-8694  

 

CNN based fault event classification and power quality enhancement in hybrid … (Abdul Quawi) 

1863 

 
 

(a) (b) 

 
(c) 

 

Figure 13. Output Waveforms of DFIG current: (a) phase A current, (b) DFIG phase B current,  

and (c) DFIG phase C current 
 

 

 
 

Figure 14. DC link voltage 
 
 

  
(a)  (b)  

 

Figure 15. Source voltage affected by PQ issues of (a) voltage swell and (b) voltage sag 
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(a) 

 
(b) 

 
(c) 

 

Figure 16. Grid side waveforms representing (a) voltage, (b) current, and (c) voltage and current waveform 
 

 

Magnitude of real power as observed from Figure 17(a) is 8500 W, while the reactive power is noted 

to be below -150 VAR as seen in Figure 17(b). Since, both voltage and current waveforms are in phase, a 

power factor value of one is observed in Figure 17(c). The power factor value of one also implies that the 

amount of harmonic content in the grid side is very low. This is confirmed with the assistance of the THD 

waveform given in Figure 18, which shows that the value of THD is 0.89%. 
 

 

  
(a)  (b)  

 
(c) 

 

Figure 17. Grid side: (a) real power waveform, (b) reactive power waveform, and (c) power factor waveform 
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Figure 18. THD waveform 
 
 

5.2. Fault analysis 

The proposed fault detection system comprising of DWT and CNN classifier, undergoes a 

comprehensive evaluation under conditions simulating half the normal load to assess its fault detection 

capabilities across a variety of fault scenarios. This methodical analysis aims to validate the robustness and 

sensitivity of the system when the electrical system is not operating at full capacity. It is crucial for 

understanding its performance under less-than-ideal conditions. 

 

5.2.1. Islanding condition 

Islanding is an unsafe and critical condition during which the RES based distributed generators 

continues to supply power even when there is no power from the grid. The problem of islanding is dangerous 

to the utility workers and it causes damage to the customer appliances and inverters. Hence, the earliest 

detection of islanding is considered important. 

The CNN classifier detects the islanding condition on the basis of grid current and voltage waveforms 

given in Figure 19. An abrupt variation in grid voltage is noted during the islanding condition that occurs 

between 0.5 to 0.6 seconds. The grid current remains unchanged, however a corresponding variation in real 

power and reactive power is observed during this time interval. 

 

5.2.2. Line-to-ground fault 

This fault typically arises from incidents such as a tree collapsing onto the power line, especially 

during periods of heavy rainfall. This fault condition materializes when the power line makes contact with the 

ground or comes into connection with the neutral line due to external factors like adverse weather conditions. 

Specifically, if the line physically descends to the ground or establishes contact with the neutral line, it results 

in what is referred to as a line-to-ground fault. This fault scenario can be triggered by a variety of environmental 

factors, with the consequences analyzed based on the extent and nature of the fault occurrence. 

CNN classifier detects this fault on basis of current and voltage waveform displayed in Figure 20. The 

Line-to-Ground fault is observed between 0.5 to 0.6 seconds, during which the grid voltage witnesses a slight 

dip in its magnitude, while the grid current undergoes rapid distortions. Similarly, the active power also 

decreases in its value, whereas the reactive power experiences fluctuations during the occurrence of this fault. 

 

5.2.3. Line-to-line fault 

In a triphasic system, an asymmetrical fault arises when a short circuit arises between lines, termed as 

line-to-line fault. This type of fault manifests when an unintended connection or disruption arises between two 

distinct phases within the power distribution network. The line-to-line fault is characterized by a disruption in 

the equilibrium of the electrical system, leading to distinctive alterations in grid voltage and current. This fault 

condition occurrence can be attributed to various factors, such as equipment malfunction or external 

disturbances. The unsymmetrical nature of the fault introduces complexities in the electrical parameters, 

requiring a meticulous analysis for accurate detection and subsequent corrective measures. The recognition of 

line-to-line faults is pivotal in maintaining the integrity of the power system, as prompt identification enables 

swift intervention to prevent cascading failures and minimize potential damage to connected equipment. 

The line-to-line fault is detected between 0.5 to 0.6 seconds by the CNN classifier. As seen in 

Figure 21, grid voltage is almost zero and grid current is affected by heavy distortions during this fault 

condition. The reactive power experiences a sudden increase, while the active power drops to zero. The CNN 
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classifier's performance is analyzed on the basis of accuracy, sensitivity and specificity in Figure 22(a) and it 

is observed that the CNN classifier outshines the functioning of all the other existing classifiers in these 

categories. It offers an excellent accuracy of 96.33% with sensitivity and specificity of 96%, which is 

comparatively better than the performance of ANN classifier as seen in Table 3. Moreover, the efficiency of 

the proposed CFLC MPPT is 91% as given in Figure 22(b). Table 4 presents a comprehensive comparison of 

the performance of various fault detection systems under diverse fault conditions. The proposed CNN exhibits 

an overall accuracy of 96.33%, which is significantly greater than the average accuracy of other models 

(ranging from 84% to 92%). This emphasizes the comprehensive effectiveness of the CNN-based approach 

across different fault conditions. 
 

 

 
 

Figure 19. Islanding condition waveforms 
 

 

 
 

Figure 20. Parameters noted in case of line-to-ground fault 
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Figure 21. Parameters noted in case of line-to-line fault 

 

 

Table 5 offers a comparative overview of the classifiers based on their training time, inference speed, 

and resource utilization, providing insights into the efficiency and computational demands of each model. The 

proposed CNN exhibits a training time of 10.5 hours, an inference speed of 5 milliseconds, and a resource 

utilization of 85%. These metrics collectively demonstrate the efficiency and computational effectiveness of 

the proposed approach in training the model, making rapid predictions during inference, and utilizing system 

resources optimally. In comparison, the DT classifier demonstrates a shorter training time of 2.3 hours but with 

a slightly higher inference speed of 15 milliseconds and a resource utilization of 70%. SVM, RF, and FNN 

show varying performance across these metrics, while the ANN classifier requires the longest training time 

(20.1 hours) with moderate inference speed (12 milliseconds) and resource utilization (60%). These results 

provide valuable insights into the trade-offs between training time, inference speed, and resource utilization 

for each classifier. The proposed CNN stands out for achieving a balanced performance across these metrics, 

showcasing its suitability for real-time fault detection applications in power systems. 

 

 

  
(a) (b) 

 

Figure 22. Comparison charts for (a) classifiers and (b) efficiency 

 

 

Table 3. Comparison of CNN against ANN classifier  
Classifiers Accuracy Sensitivity Specificity 

ANN 87% 95% 93% 

CNN 96.33% 96% 96% 
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Table 4. Fault detection system performance comparison under various fault conditions 
Fault condition CNN DT SVM RF FNN ANN 

Islanding 98% 90% 92% 93% 94% 91% 
Line-to-ground fault 95% 87% 88% 89% 92% 86% 

Line-to-line fault 96% 85% 86% 87% 90% 84% 

Overall accuracy 96.33% 87.33% 88.67% 89.67% 92% 87% 

 

 

Table 5. Computational efficiency comparison of classifiers 
Classifier Training time (hrs) Inference speed (ms) Resource utilization 

CNN 10.5 5 85 

DT 2.3 15 70 

SVM 8 8 80 

RF 12.2 7 75 

FNN 15.8 10 65 

ANN 20.1 12 60 

 

 

5.3. Discussions 

The proposed fault detection system, integrating DWT and CNN, demonstrates notable effectiveness 

in enhancing the PQ and reliability of a hybrid power system comprising WECS and PV. The simulation 

results, conducted in MATLAB, provide insights into the system's performance under various conditions. The 

stability of both WECS and PV, achieved through individual control methodologies, ensures the system's 

resilience against faults and contributes to maintaining a stable PQ. The PV system, characterized by variable 

voltage output, exhibits stable voltage maintenance through the boost converter and CFLC based MPPT. 

Similarly, the WECS output is stabilized through a PI controller. The fault analysis, conducted under different 

conditions such as islanding, line-to-ground fault, and line-to-line fault, showcases the CNN classifier's robust 

performance, with an overall accuracy of 96.33%. The comparative analysis against other classifiers, including 

ANN, highlights the superiority of the proposed CNN classifier in terms of accuracy, sensitivity, and 

specificity. Additionally, the computational efficiency comparison reveals that the CNN model achieves a 

balanced performance with a training time of 10.5 hours, inference speed of 5 milliseconds, and resource 

utilization of 85%. The implications of these findings extend to the future development of fault detection 

systems in power distribution. The robustness demonstrated by the CNN classifier, coupled with efficient 

computational performance, positions it as a promising tool for real-time fault detection applications. This 

research contributes valuable insights into advancing power system stability and reliability in the context of 

increasing renewable energy source integration. 

 

 

6. CONCLUSION 

The increased penetration of RES in power system has resulted in the existence of severe protection 

issues, PQDs and faults. Therefore, to improve stability, PQ, and reliability of power system, these faults are 

required to be identified instantly without delay. So, a CNN classifier-based fault detection is proposed in this 

work for identifying faults taking place in a hybrid power system consist of wind and PV. Moreover, features 

of the fault signal are extracted with the aid of DWT. Furthermore, individual control approaches are applied 

for wind and PV for stabilizing their outputs. Consequently, a boost converter along with CFLC MPPT is 

employed for PV, while PI controller is employed for WECS. The MATLAB platform is utilized for carrying 

out the simulation of the proposed fault detection approach. Moreover, the classification capability of CNN is 

tested for various kinds of fault such as line-to-line fault, islanding and line-to-ground faults. On the basis of 

the obtained outcomes, the CNN classifier offers an exceptional classification accuracy of 96.33% and it 

outperforms other available classifiers such as ANN, SVM, and RF. 
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