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 This paper presents the topology and machine learning-based intelligent 

control of a single-stage grid-connected high-power photovoltaic (PV) system 

for quality power export to the grid and optimal net energy utilization. A 

nineteen-level bi-modular inverter is proposed for efficient single-stage PV 

power conversion. The proposed integrated intelligent machine learning-

based control serves for power conversion control as well as supervisory 

control for hourly PV energy estimation and load demand control for optimal 

energy consumption. The objectives of power control are extracting maximum 

power from PV sources and exporting power to the grid at unity power factor. 

While the objectives for supervisory control are local load demand control for 

exporting power at higher export prices. The proposed system is implemented 

using MATLAB/Simulink to validate the efficiency of power conversion, 

effectiveness of machine learning for energy estimation, and load relay 

control for optimal energy pricing. The results proved efficient tracking of 

maximum power, unity power factor at grid terminals, and load relay control 

for PV energy availability and export cost function. 
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1. INTRODUCTION 

Large scale photovoltaic (PV) integration to grid and PV assisted electric drives demands for optimal 

energy consumption for efficient usage of renewable PV source. The state-of-art converters for PV integration 

and PV assisted drives is provided in this section. Also, machine learning algorithms for PV energy estimation 

and load parameter estimation is reviewed. Single stage conversion of PV power has been developed for 

efficient conversion and reduction in semi-conductor footprint in power electronic interface [1]. Modular 

converters are the better choice in this single stage conversion owing to reliability and independent control [2]. 

Multiple point integration also reduces infrastructure requirements and losses in grid integration [3]. Various 

unconventional topologies were implemented to minimize the switches or capacitors or diode in the converter. 

Various non-conventional reduced component count topologies were presented in [4] for drives and renewable 

energy integration. The un-conventional multilevel generation resorts for utilizing switching ciruit connection 

to synthesize voltage levels in symmetric [5]-[7] with equal voltage levels or asymmetric with unequal voltage 

levels [8], [9]. In all these converters, the performance is compared in terms of switching power loss, reverse 

voltage withstand capacity, number and sizing of switches, and power sharing among the modules. Further, 

adoption of machine learning for renewable system supervisory control [10], [11] and also power flow control 

is reported for stand alone renewable systems and grid connected renewable systems.  

https://creativecommons.org/licenses/by-sa/4.0/
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The issues pertaining to synchronization control and fault ride through control under various open and 

short circuit faults were reported [12], [13], where in possible real-time synchronization issues during grid 

integration of renewable systems were reported. Mitigation of disturbances pertaining to the quality of power 

export were dealt in [14], [15]. The machine learning algorithms for PV energy estimation were provided in 

[16]. Power scheduling based on optimal demand was presented in [17], [18]. Various machine learning 

applications are developed which include policy approximations for energy management in PV systems [19], 

energy loss assessment for PV sizing [20], ensemble learning for fault detection in PV systems [21], machine 

learning for PV energy forecasting [22], clustering and deep learning algorithms for energy estimation [23], 

Adaline neural networks [24], energy management systems [25], [26], improved forecasting methods for 

capacity firming [27]. All these technologies and methodologies involve multiple stage conversion, complex 

algorithms, and convergence. 

Therefore, this paper presents machine learning based supervisory and power flow control for PV 

assisted electrical systems. Current control aspects for a non-conventional, yet modular topology for PV power 

integration to grid by combining the advantages of reliability, component reduction and single stage power 

conversion. This paper also presents machine learning based supervisory control for PV energy estimation and 

corresponding load demand control. The rest of the paper is organized as: i) Section 2 presents the nineteen-

level inverter-based topology and control for high power PV systems; ii) Objectives and schemes of integrated 

intelligent control are presented in section 3; iii) Section 4 presents simulation results and performance 

validation of the system; and iv) Section 5 presents the conclusion of the paper. 

 

 

2. SYSTEM DESCRIPTION  

The topology of single-stage bi-modular inverter based grid connected photovoltaic (PV) system is 

depicted in Figure 1. The available PV source is bundled into three strings per each phase which generate 

voltage levels of 240 V, 80 V, and 40 V which form VPV1, VPV2, and VPV3 respectively. A three phase 

configuration thus constitutes from nine strings of PV arrays. Bi-modular inverter as shown in Figure 1 which 

are fed from PV source generate AC voltage with a minimum of seven levels and maximum of nineteen levels 

in the output voltage. The three-phase voltage thus generated is integrated to grid through LCL filter and 

transformer. The local loads consist of critical loads for which no interruption in the supply is allowed and time 

shift allowed category of loads for which load demand control is applied. The structure of bi-modular nineteen-

level inverter for single-stage PV conversion is shown in Figure 2 in which module M1 provide lower three 

levels of output voltage and in combination with module M2 provides the upper 6 levels in each half cycle. 

The pulse width modulation signals to each switch are generated as follows: 

The carrier waveform pertaining to kth switching period is given as (1). 
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For k=0, 1, 2, 3, ... ∞. Where, T is time-period for one switching cycle with 𝜔𝑠 = 
2𝜋

𝑇
 is the angular switching 

frequency. Then, the level shifted carrier waveforms are given as (2). 

 

𝑉(𝑥−9)𝑐(𝑡) =  
𝑥

9
+ 𝑉𝑐(t) (2) 

 

For x= 0, 1, 2, …, 18 represent the eighteen level shifted carrier waveforms. The reference sinusoidal signal is 

given as (3). 

 

𝑉𝑟(𝑡) = 𝑀 sin (𝜔𝑟𝑡) (3) 

 

With |𝑀| ≤ 1 and 𝜔𝑟 is the reference angular frequency for output voltage waveform. 

The switching instants in each switching period for different carrier waveforms with natural sampling 

are represented with the following implicit relations, as in (4) and (5). 
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Where, 𝐴(𝑥−9)𝑘
𝑎

, and 𝐵(𝑥−9)𝑘
𝑎

 are leading and trailing switching instants of xth carrier in kth switching period. 

 

 

 

 

Figure 1. Multi-input point single stage modular PV system 

 

 

 
 

Figure 2. Modular nineteen-level inverter 

 

 

3. INTEGRATED SUPERVISORY AND POWER FLOW CONTROL 

The block diagram of the integrated controller is shown in Figure 3. The power flow control objectives 

of the integrated controller include extracting maximum power corresponding to irradiance at any given 

instance and export of power to the grid at unity power factor. The supervisory control objectives include 

estimation of PV energy for succeeding hour and load demand control through time shifting of allowable loads 

for optimization of energy pricing for export and import of grid energy. 

Voltages and currents of PV arrays are sensed to determine the voltage corresponding to maximum 

power. Sliding mode control (SMC) is employed for extracting maximum power point (MPP) as shown in 

Figure 4. The voltage and current are utilized to determine PV array power. The PV power along with gradient 

of PV power with respective weight functions determine the direction and step size in each iteration to track 

the maximum power point. 
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Control of single stage modular inverter is shown in Figure 5. Voltages and currents of grid phase are 

sensed for current control of modular inverter. The error in obtained direct current (DC) voltage from MPP 

control and actual PV array voltage serve as input to proportional integral (PI) controller which determine the 

modulation ratio of the reference sinusoidal current waveform. Artificial neural network (ANN) of pattern 

recognition model is utilized as machine learning structure to determine the PI controller coefficients. The error 

in MPP DC voltage and PV array voltage is fed as input to ANN which is trained to generate PI controller 

coefficients such that error is minimized to zero upon change in irradiance. Sigmoid activation function is used 

for neurons. A training set of 84 in size with validation set of 15 percent and test set of 15 percent is used. The 

phase reference is obtained from zero crossing instants of respective phase voltages. The product of these two 

determines the reference current waveform for each phase. The error in reference and actual currents serve as 

reference waveform for generating pulse width modulation (PWM) gating signals with level-shifted carries 

discussed in section 2. 
The supervisory control of PV generation estimation and load demand control are achieved through 

the ANN based algorithm as shown in Figure 6. The pattern recognition ANN network as shown in Figure 7 is 

utilized for supervisory control. The generalized model was depicted in Figure 7 in which the time varying 

inputs as an array with multiple features, hidden layers, and output layers to generate required output were 

identified. The temperature and irradiance serve as inputs for estimation of PV energy production for 

succeeding hour. The initial values of which are provided and trained with hourly data sets. The weights are 

updated for optimal value of estimated energy. The same network is also utilized for load demand control for 

optimal energy pricing. Selling price of energy and purchasing price of energy for the succeeding hour are 

taken as inputs for the pattern recognition ANN algorithm. The ANN algorithm then determines the optimal 

schedule of local loads such that net energy pricing is maximized. However, the critical loads are uninterrupted 

during this schedule. The loads which allow for time shift are assigned priority levels which serve as training 

data set. The available energy upon optimal energy pricing is determined and based on the priority levels loads 

are time advanced or delayed for net profit in energy pricing. 

 

 

 

 

Figure 3. Control block diagram 

 

 

 

 

Figure 4. Maximum power point control 
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Figure 5. Modular nineteen-level inverter current control 

 

 

 
 

Figure 6. Machine learning algorithm for integrated intelligent control 
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Figure 7. Machine learning scheme for proposed control 

 

 

4. SIMLULATION RESULTS  

The proposed topology and integrated control are implemented in MATLAB/Simulink. Simulation 

parameters are shown in Table 1. The sample priority of loads is shown in Table 2 which depicts the time shift 

allowed loads and critical loads which serve as parameters to determine optimal energy pricing for estimated 

hourly PV energy. Hourly data sets of temperature and irradiance with corresponding energy generated by PV 

arrays on a typical sunny day at Guntur, Andhra Pradesh, India are provided in Table 3. Fifty of such data sets 

pertaining to different conditions of irradiance and temperature are used for training ANN. 

 

 

Table 1. Simulation parameters 
Parameter Value 

PV power rating 1 MW 

VPV1, VPV2, VPV3 (for each phase) 40 V, 80 V, 240 V 

Rated inverter output voltage  230 V (RMS) 
L1, L2 0.18 pu, 0.07 pu 

C3 0.77 pu 

 

 

Table 2. Load priority 
Load type Priority 

Refrigeration 1 

Ventilation 1 

Illumination 0.7 
Air conditioning 0.6 

Pumping 0.4 

 

 

Table 3. Sample training data-hourly data PV for energy estimation 
Time interval (HH:MM) Irradiance (W/m2) Temperature (°C) Normalized power generated (%) 

13:00 504 41 25.39472593 
13:05 465 41 23.13561481 

13:10 465 41 23.13561481 

13:15 487 41 24.40998519 
13:20 569 42 28.92241481 

13:25 505 42 25.21515556 

13:30 474 42 23.41945185 

 

 

4.1. Power flow control 

A step change in irradiance from 1000 W/m2 to 800 W/m2 is created as shown in Figure 8. Following 

this change in irradiance, VPV and IPV change to new values within 0.4 sec. The power settled to a new 

maximum value corresponding to 800 W/m2 irradiance. Thus, the integrated MPP control is accurate in 

tracking maximum power for change in irradiance. 
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The other objective of the power flow control is the modulation of an inverter to export power at 

the unity factor to the grid. This is realized using single-stage conversion through modulation of inverter instead 

of regulating D bus. Figure 9 presents the accurate modulation of inverter output voltage for a change in 

irradiance. Figure 10 presents voltage and current at the grid terminal which depict unity power factor 

operation. Therefore, it is evident the power is exported to the grid at the unity power factor. Also, the total 

harmonic distortion is observed to be only 0.7 percent which indicates the efficient conversion. 

 

 

 
 

Figure 8. Maximum power point tracking 

 

 

 
 

Figure 9. Inverter output voltage 

 

 

 
 

Figure 10. Grid voltage and output current 
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4.2. Load demand control 

The training of ANN for PV energy estimation and load demand control is depicted in Figure 11. The 

training sets as shown in Table 2 and Table 3 are utilized for machine learning. The convergence was obtained 

at the eighth iteration of training. The regression for training, validation, and training data sets was observed 

in Figure 11 which depicts the accuracy to of the training to target output data. The gradient of a mean of 

squared error and validation checks is shown in Figure 12 which also depicts the convergence of the neural 

network. The validation of power generation estimation is shown in Figure 13 in which a larger set of instances 

proved closeness to zero error. The mean squared error shown in Figure 14 indicates a better degree of accuracy 

in predicting the PV power and load of the proposed ANN control. The load relay pattern for estimated energy 

and energy pricing for the succeeding hour is shown in Figure 15 which depicts the load to be time-shifted and 

cut down for the succeeding hour. 
 

 

 
 

Figure 11. Training ANN for load demand control 
 

 

 
 

Figure 12. Gradient of mean squared error and validation checks 
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Figure 13. Error histogram for twenty test samples 

of PV power estimation 

 

Figure 14. Performance of ANN 

 
 

 
 

Figure 15. Load relay control 
 

 

5. CONCLUSION 

A multilevel inverter based single stage conversion for high power PV integration to grid is presented 

in the paper. Also, utilizing the machine learning, a supervisory control strategy to control local loads for 

optimal power export to grid is developed. The proposed topology and intelligent integrated control proved 

efficient power conversion with good transient time of 0.25 sec to track new maximum power point and export 

power to grid at unity power factor with total harmonic distortion of only 0.8 percent. The supervisory control 

through ANN for PV energy estimation proved accurate estimation with error in actual and predicted value 

less than 0.01 units. The intelligent controller also determined the load schedule for succeeding hour for optimal 

energy pricing. Thus, an intelligent control of single stage PV grid integration is achieved with minimal 

component count and optimal power export. 
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