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 Forecasting solar photovoltaic power ensures a stable and dependable power 

grid. Given its dependence on stochastic weather conditions, predicting solar 

photovoltaic power accurately demands applying intelligent and sophisticated 

techniques capable of handling its inherent nonlinearity and volatility. 

Controlling electrical energy sources is an important strategy for reaching this 

energy balance because grid operators often have no control over use patterns. 

Accurately forecasting photovoltaic (PV) power generation from highly 

integrated solar plants to the grid is essential for grid stability. This study aims 

to improve forecasting accuracy and make accurate predictions of solar power 

output from the selected grid-connected PV system. In this study, the weather 

data was collected on-site and recorded PV power from a 20 kW on-grid 

system for one year, and different machine learning techniques like deep 

neural networks, random forests, and artificial neural networks were evaluated 

and benchmarked against reference support vector regression model. With 

improvements in forecasting accuracy of 2 to 37% over the reference model 

at study location (22.78° N, 73.65° E), College of Agricultural Engineering 

and Technology, Anand Agricultural University, Godhra, India, simulation 

results showed that the random forest technique is effective for the forecasting 

horizons of 1 to 4 hours.  
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1. INTRODUCTION 

Harnessing photovoltaic (PV) power holds promise in addressing the increasing global demand for 

clean energy due to its renewable nature, eco-friendliness, and versatility as a distributed energy source [1]. 

Power grids commonly consist of power plants that generate consistent energy flows, including coal, gas, and 

nuclear facilities, alongside those producing fluctuating energy sources, like wind and photovoltaic plants. The 

latter's output hinges on local weather conditions at specific times and locations. Preserving grid stability 

necessitates equilibrium between energy produced by sources and that consumed by users. Sustained expansion 

within the energy sector of any nation is a crucial component for both economic and technological progress 

https://creativecommons.org/licenses/by-sa/4.0/
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[2]. As technological advancements accelerate, energy consumption is experiencing a much more rapid growth 

compared to the increase in population size [3]. Currently, ensuring energy balance largely revolves around 

regulating electrical energy sources due to consumer consumption lying mostly outside grid operators' control 

[4], [5]. Solar power prediction holds pivotal significance in shaping the future of renewable energy facilities 

and their extensive integration into grids. The precision of photovoltaic power generation forecasts is highly 

relying on the dynamic and ever-changing weather conditions [6], [7]. 

Precise solar power prediction is essential to minimize energy costs and uphold premium power 

supply within electrical grids dependent on dispersed photovoltaic generation. For households and small 

businesses utilizing on-site photovoltaic generation, directly accessing historical irradiance data is challenging 

due to costly solar irradiance meters. However, while local meteorological institutions have enhanced weather 

forecasting services, providing online information such as temperature, dew point, humidity, visibility, wind 

speed, and comprehensive weather summaries, data for solar power forecasting is frequently unavailable [8]. 

One of the most important sources of electricity on the grid is solar power, and for it to be used to its full 

potential, precise information on the quantity of solar power that will be produced from various sources and at 

various times – minutes, hours, and days – is required. The forecast horizon pertains to the time interval that lies 

between the present moment of prediction and the forthcoming period earmarked for output prediction. Some 

researchers classify the forecast horizon into three distinct categories [9]: short-term, medium-term, and long-term. 

In the realm of power systems and smart grid planning, very short-term and short-term forecasting are 

deployed, encompassing prediction periods ranging from mere seconds up to less than 30 minutes. Short-term 

forecasting finds utility within the electricity market, influencing decisions regarding economic load dispatch 

and power system operation. Furthermore, it plays a pivotal role in controlling power management systems 

integrated with renewable energy sources. The temporal span for short-term forecasting typically falls between 

30 and 360 minutes. Medium-term forecasting, covering a span of 6 to 24 hours, holds significance for 

scheduling maintenance activities within conventional or solar energy-integrated power systems. This includes 

systems equipped with sophisticated transformers and diverse electro-mechanical machinery. Long-term 

forecasts extend their predictions beyond the 24-hour mark, forecasting scenarios that extend into the distant 

future. This prediction horizon finds applicability in strategic aspects such as long-term power generation, 

transmission, distribution, and even solar energy rationing. It is worth noting, however, that the predictive 

accuracy of these models tends to diminish due to the inherent challenge of predicting weather fluctuations 

spanning over a few days when using such extended horizons. 

Based on the time horizons, two main techniques are used to forecast solar energy: statistical time series 

forecasting for short- to mid-term intervals, and numerical weather prediction for long- to medium-term intervals 

[8], [10]. With the tremendous improvement in their ability and accuracy to provide trustworthy forecasts, 

machine learning-based (ML) algorithms have recently emerged as a trustworthy alternative to or supplement 

to numerical weather projections (NWP) in solar energy prediction challenges [11]. Machine learning is a 

subfield of artificial intelligence that, without the use of explicit programming, uses datasets to create a nonlinear 

mapping between input and output data. While the literature has used statistically based machine learning 

forecasting techniques, the most common techniques are SVM, ANN, or DNN, there are only a small number 

of studies that use random forest (RF) algorithms for solar photovoltaic power forecasting, and these algorithms 

still require extensive exploration of their forecasting accuracy for various site-specific and seasonal data. 

Sarmas et al. [12], a meta-learning technique to enhance one-hour-ahead forecasts of PV systems by 

blending predictions from diverse deep learning models was presented. Without relying on numerical weather 

predictions, the approach dynamically selects the most effective model for specific conditions. Evaluation in 

Lisbon, Portugal, demonstrated up to 5% improvement over the best-performing base model per site and up to 

4.5% over an equal-weighted combination of forecasts. The study employed in [13] proposed an optimized 

extreme learning machine (ELM) to forecast real-time solar power generation (SPG) in Chhattisgarh, India, 

integrating weather conditions. By refining parameters like weights and biases, ELM exhibited enhanced 

performance. Computational techniques adept at handling high-dimensional problems are employed. The 

collaboration of modified teaching-learning-based optimization (MTLBO) with optimized ELM improved 

solar power generation forecasting for various timeframes, including one hour, one day, one month, and three 

months ahead, showcasing superior performance in simulations. Extreme learning machine techniques and 

other recently reported works involve complex computational techniques and a big volume of data. In real 

conditions, it is not possible to get humongous data from each place. There is a need to work on such techniques 

which will offer better accuracy with lesser data. 

In the current study, using the ensemble random forest (RF) technique, a forecasting model with multi-

step short-term (one hour to four hours in advance) solar PV power forecasting for the chosen site was 

developed. Machine learning algorithms like support vector machine/regression (SVM/SVR) and artificial 

neural network or deep learning neural networks (ANN/DNN), the two commonly used statistical machine 

learning-based techniques, were compared to the results attained from the random forest technique. A careful 
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comparison and evaluation of the forecasting models using various performance metrics for various seasonal 

intervals of the data conducted for selecting an appropriate forecasting for the forecasting horizon of 1 hour 

ahead to 4 hours ahead. 

The rest of this paper is divided into several sections. In section 2, a brief introduction to RF, SVR, 

and ANN/DNN machine-learning statistical models for predicting short-term solar photovoltaic power is 

presented. Section 3 delves into the specifics of the dataset employed in this research, the methodologies 

applied for data analysis, and the forecasting of solar photovoltaic power outputs across various time intervals 

(ranging from 15 to 60 minutes) utilizing recorded weather parameter data. Section 4 presents performance 

metrics based on which the analysis was done, and the results obtained from the study presented in section 5 

and section 6 conclude the paper. 

 

 

2. MACHINE LEARNING MODELS EMPLOYED IN THIS WORK 

Proposals for various forecasting techniques have been described in various papers in order to forecast 

PV power at various time horizons and most importantly, short-term PV power forecasting is very much 

essential in controlling, dispatching, and scheduling power [14]. Machine learning (ML) involves training a 

computer system to gain expertise by processing and analyzing data collected over time, aiming to improve its 

performance over time [15]. In the present study machine learning models Random Forest (RF) technique, 

artificial neural networks (ANN), and deep neural networks (DNN) were benchmarked with support vector 

machines (SVM). Code for analyzing the data is scripted in Python code using Jupyter Notebook. 

 

2.1. Random forest 

Renowned for its simplicity, random forest (RF) stands out as one of the most popular machine 

learning algorithms. With applications in both regression and classification tasks, RF belongs to the category 

of supervised learning algorithms, alongside support vector machines (SVMs), naive Bayes, and other tree-

based methods like Adaboost [16]. Initially introduced and proposed by Leo Breiman at the University of 

California in 2001, random forest regression represents an ensemble learning approach. By amalgamating 

predictions from diverse machine learning algorithms, it achieves greater accuracy in predictions compared to 

individual models [17], [18]. The technique involves constructing trees individually by employing bootstrap 

data samples, creating a forest comprising numerous decision trees. As more trees are incorporated, the 

forecast's accuracy is enhances, resulting in enhanced precision [19]. Figure 1 demonstrates the configuration 

of the random forest model. 
 

 

 
 

Figure 1. Random forest model 
 

 

To execute random forest regression on the training data set, the subsequent actions must be taken: i) To 

begin, a set of 'k' data points selected from the input (training) dataset, labeled as 'x'; ii) A decision tree generated 

to represent these chosen 'k' data points; iii) The first and second steps reiterated until 'N' decision trees generated 

during the training phase; iv) When presented with a new data point, each of the generated trees produces a 

prediction value 'y'; and v) The data point is then attributed to the average of all predicted 'y' values. Random 

forest regression performs well on diversified problems with the potential of handling non-linear relationships. 

In recent times, random forest (RF) has garnered increased interest among researchers in the realm of 

photovoltaic (PV) power forecasting, owing to its benefits in ensemble learning and superior performance when 

compared to alternative statistical-based machine learning algorithms [20]. In this study, RF techniques were used 
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to forecast PV power output from a grid-connected PV plant. To assess the effectiveness of RF, other commonly 

used models such as SVR and ANN/DNN were also evaluated and compared with the RF technique. SVR 

technique is used as a benchmark model for evaluating the skill score of the model proposed for the selected site. 

 

2.2. Support vector machines 

Vapnik introduced the support vector machine (SVM), an advanced machine-learning technique 

acclaimed for its exceptional performance [21]. A supervised learning algorithm known as a support vector 

machine (SVM) is utilized for both classification and regression analysis tasks [22]. Support vector machines 

(SVMs) determine the optimal hyperplane to separate data into different classes, using a kernel function to map 

data into higher dimensions. Support vectors define this hyperplane, utilized for classification (SVC) and 

regression (SVR). SVR aims to minimize errors between predicted and actual values, controlling model 

complexity through margins, with heavier penalties on distant points to reduce outlier sensitivity. SVC focuses 

on finding a hyperplane that best classifies data, penalizing misclassifications to enhance model sensitivity. 

SVMs employ structural risk minimization for generalization, ensuring potential for global optimum solutions, 

and apply to both classification and regression tasks [23].  

a. Feature space and kernel functions 

The fundamental principle of SVMs involves mapping data into a feature space using non-linear 

mapping, followed by the application of a linear algorithm. However, this feature space often requires high-

dimensional dot product evaluation, demanding substantial computational resources and time. Occasionally, 

simpler kernels are explored for efficacy. In real-world scenarios, complex problems necessitate more 

sophisticated hypothesis spaces than those offered by linear learning machines, constrained by computational 

limitations. Linear learning machines possess the advantageous characteristic of being expressible in a dual 

form, allowing the hypothesis to be represented as a linear combination of training points. This facilitates 

decision rule evaluation based solely on inner products between test and training points. In cases where direct 

calculation of inner products in feature space using original input points is feasible, a non-linear learning 

machine termed direct computation method of the kernel function (denoted by K) may be constructed [23]. 

SVM models utilize input variables correlated with the target variable, which is the variable to be predicted. 

This entails representing the data through a non-linear function, denoted as f(x) in (1), and visualizing it. 

 

𝑓(𝑥) = 𝜔. 𝜑(𝑥) + 𝑏 (1) 

 

Where 𝜔 is the normal vector; 𝑏 is a constant or biased term; and 𝜑(𝑥) is a large dimensional special 

characteristic mapped by a space vector x. To determine the coefficients 𝜔 and 𝑏, an optimization problem is 

solved using (2)-(6) through minimization. 

 

𝑅(𝑆𝑉𝑀)(𝑓) = 𝐶
1

𝑁
∑ 𝑥𝑖=1 =  𝐿𝑒(𝑓(𝑥𝑖), 𝑦𝑖) +

1

2
‖𝑤‖2𝑁

𝐼=1  (2) 

 

𝐿𝑒(𝑓(𝑥𝑖), 𝑦𝑖) = 𝑆𝑖|(𝑓(𝑥), 𝑦)| − 𝜖 𝑓𝑜𝑟 |(𝑓(𝑥), 𝑦)| ≥ 𝜖  (3) 

 

𝐿𝑒(𝑓(𝑥𝑖), 𝑦𝑖) = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (4) 

 

Where 𝜖 is the parameter of the model; 𝐿𝑒(𝑓(𝑥𝑖), 𝑑𝑖) is describes the 𝜖𝑡ℎ missing function, this refers to the 

fact that any errors that fall under the value of epsilon will not be subject to penalty, 𝑑𝑖 represents the solar PV 

power in the period i; and 𝐶
1

𝑁
∑  𝐿𝜖(𝑓(𝑥𝑖), 𝑑𝑖)𝑁

𝐼=1  defines the empirical error of the SVM model. 
1

2
‖𝑤‖2 is the 

regularization term, C is the penalty function assessed to balance the compensation between the error and 

empirical risk by utilizing slack variables 𝜀 and 𝜀∗. These variables indicate the presence of excessive top and 

bottom skews, respectively. In (2) can be formulated as demonstrated below by utilizing the characteristics of 

the function that need to be optimized (illustration shown in Figure 2). 

Minimize: 

 
1

2
‖𝑤‖2 +

1

𝑁
∑ ( 𝜀𝑖 + 𝜀𝑖

∗ )𝑁
𝑖=1  (5) 

 

only when: 

 

{

|𝑦𝑖 − (⟨𝑤|𝑥𝑖⟩ + 𝑏) ≥ 𝜀𝑖 + 𝜀𝑖
∗|

(⟨𝑤|𝑥𝑖⟩ + 𝑏. 𝑦𝑖 ≤ 𝜀𝑖 + 𝜀𝑖
∗)

𝜀𝑖, 𝜀𝑖
∗ ≥ 0

 (6) 
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By utilizing Lagrange and optimal constraints, it is feasible to derive a non-linear regression function shown 

in (7) and (8) to solve in (1): 

 

𝑓(𝑥) = ∑ ( ∝𝑖−∝𝑖
∗ )𝑙

𝑖=1 𝐾(𝑥𝑖 − 𝑥) + 𝑏 (7) 

 

where ∝𝑖 , ∝𝑖
∗ are Lagrange multipliers. The term 𝐾(𝑥𝑖 − 𝑥) is defined as a kernel function. 

 

𝐾(𝑥𝑖 − 𝑥) = ∑ 𝜑𝑖(𝑥) + 𝜑𝑖(𝑦)𝐷
𝑖=1  (8) 

 

There are four main functions available for SVM: linear (9), polynomial (10), radial basis function (11), and 

sigmoid (12). [15]. 

b. Linear kernel function 

 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖 . 𝑥𝑗 (9) 

 

where 𝑥𝑖 , 𝑥𝑗 are the inputs to the ith and jth dimensions respectively. 

c. Polynomial kernel function 

 

𝐾(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖 . 𝑥𝑗)𝑞 (10) 

 

where 𝑞 is a degree of the polynomial. 

d. Radial Basis kernel function 

 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒(
‖𝑥𝑖−𝑥𝑗‖

2
𝜎

2
)(𝑥𝑖 . 𝑥𝑗)𝑞 (11) 

 

where 𝜎 is kernel weight. 

e. Sigmoid kernel function 

 

𝐾(𝑥𝑖 , 𝑥𝑗) = tanh (𝑣(𝑥𝑖 . 𝑥𝑗) + 𝑐) (12) 

 

where 𝑣 𝑎𝑛𝑑 𝑐 ae adjustable kernel functions relying on the data. 

 

 

 
 

Figure 2. Illustration of an SVR 

 

 

2.3. Artificial neural networks (ANN) and deep neural networks (DNN) 

ANNs mimic the structure and function of natural neural networks found in the human body. They 

possess the ability to autonomously recognize patterns within previously included data, making them highly 

effective for modeling complex and nonlinear relationships between input and output variables in comparison 

to other forecasting methods. Figure 3 depicts the basic architecture of an ANN, where neurons process input 

data and generate output using individual activation functions. Crucial parameters like learning rate, number 

of hidden layers, and maximum iteration count regulate the learning process in ANNs. Adjustments to 

activation function weights and parameters occur through a learning process. ANNs may vary in the number 
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of neurons across input, hidden, and output layers, employing various activation functions such as Sigmoid, 

Rectified Linear Unit, and SoftMax for computation. Despite advantages like fault tolerance and parallel 

processing capability, ANNs have limitations including hardware dependency and lack of interpretability, 

which necessitate processors with parallel processing power. Additionally, the network's interpretability and 

the predictability of its duration are significant concerns [24]. 

Deep neural networks (DNNs), a variant of artificial neural networks (ANNs), differ by incorporating 

multiple hidden layers instead of just one. These layers are adept at capturing and leveraging the inherent one- 

or two-dimensional structure within the network. Given the proliferation of internet of things and the escalating 

volume of big data, DNN models have garnered considerable attention across various research domains. A 

notable advantage lies in their proficiency at discerning nonlinear relationships between input features and 

output targets. This involves progressively learning multiple layers of representations from data, gradually 

refining them into more meaningful depictions. With deeper exploration, DNNs gain the capability to identify 

increasingly sophisticated representations, thereby establishing precise correlations between input 

characteristics and their intended targets [25]. 

 

 

  
(a) (b) 

 

Figure 3. Basic architecture of (a) artificial neural networks and (b) deep neural networks 

 

 

3. MATERIALS AND METHODS 

3.1. Study area description, data collection and preparation 

Data collection was done over a 12-month period spanning from October 2021 to September 2022. 

This data collected from a 20kW solar power plant connected to the grid, along with a nearby weather station 

situated at coordinates 22.78° N, 73.65° E, specifically at the College of Agricultural Engineering and 

Technology within Anand Agricultural University in Godhra, India. The study site experiences four distinct 

seasons. Autumn from October to November, followed by winter from December to February. The summer 

season encompasses the months of March to May, while the rainy season extends from June to September. 

Data collected at a 15-minute time resolution, but only data between 7:00 AM and 5:00 PM was 

considered due to solar radiation availability and averaged to hourly values as the forecasting interest is in steps 

of hours. However, missing values occurred in the dataset due to power failures affecting the data loggers. This 

resulted in a dataset of 2460 samples, as shown in Table 1. One data logger of weather monitoring station 

procured from Engineering and Environmental Solutions Pvt limited model (WMS10158) was used to record 

various weather parameters, including time of day, ambient temperature, relative humidity, solar radiation, 

wind speed, and wind direction. Simultaneously, a second data logger integrated with the inverter captured the 

target variable, which is solar photovoltaic power. Special attention was given to ensuring the synchronization 

of data collected from both loggers in terms of data collection timing. The distribution of the weather variables 

is illustrated in Figure 4. 

Accounting for data availability and correlation between them plays a vital role when selecting 

variables for predictive modeling. Consequently, a comprehensive statistical analysis was conducted to 

evaluate the relationship between each accessible weather variable and solar photovoltaic power. This 

examination is illustrated in Figure 5, which showcases the correlation coefficients among all five weather 
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parameters and the time of day (denoted as input variables X1 to X6) concerning PVoutput (the output or target 

variable Yt). The analysis encompassed the entire dataset. 

During the analysis, a negative correlation emerged between temperature and humidity. Notably, the 

data highlighted a robust correlation between solar radiation and PVoutput. While a direct and substantial 

connection between time, temperature, and PVoutput was not immediately evident, it became apparent that time 

does exert a considerable influence on temperature. This, in turn, contributes to the correlation with solar 

radiation. As a result, the study incorporated the time of day as an additional input variable, alongside the 

weather parameters. 

In the current study, entire one-year data set was divided into seasonal data, for autumn season data 

considered from 1st October 2021 to 30th November 2021, for winter season from 1st December 2021 to 28th 

February 2022, for summer season from 1st March 2022 to 31st May 2022 and, for rainy season from 1st June 

2022 to 30th September 2022. The data was sampled every 15 minutes and averaged over an hour for the 

prediction of multiple steps ahead with each step equaling to an hour. After data curation, and clustering as per 

the season, by employing different statistical machine learning techniques, forecasting of the solar photovoltaic 

power generation for on1 hour ahead to 4 hours ahead was carried out. The performance of the statistical 

techniques compared and best model offering enhanced accuracy was decided based on the performance 

metrics considered in the following section. 

 

 
Table 1. Description of the data collected every 15 minutes and averaged hourly for the study period.  

Time Temp Hum Wd Ws Rad PVoutput 

Count 2460 2460 2460 2460 2460 2460 2460 
Mean 12.50 30.53 53.48 121.06 2.01 345.41 7.27 

Std 2.87 5.42 26.95 66.05 1.96 183.09 3.91 
Min 8.00 8.85 0.75 1.25 0.00 0.00 0.07 

25% 10.00 27.78 31.75 72.75 0.00 195.95 3.87 

50% 12.50 31.38 50.25 90.94 1.80 351.50 7.31 
75% 15.00 33.65 74.75 182.25 2.70 502.56 10.63 

Max 17.00 44.88 100.00 333.50 12.60 798.50 16.95 

*Study period (October 2021 to September 2022) at 15 minutes’ time resolution averaged hourly 

 

 

  
(a) (b) 

  
(a) (b) 

 

Figure 4. Distribution of different weather parameters presented in violin plots: (a) ambient temperature 

(Temp), (b) radiation (Rad), (c) humidity (Hum), and (d) wind speed (Ws) 
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Figure 5. Heat map of correlation coefficients of input variables with solar photovoltaic power output 

(Pvoutput) using all one-year data 

 

 

4. PERFORMANCE METRICS 

The r2 (R-Squared) coefficient of regression, root mean square error (RMSE) as in (12) and the mean 

absolute percentage error (MAPE) as in (13) were calculated and are used as evaluation criteria to validate the 

error and assess how well the proposed model is performing. Also, skill score too calculated by considered one 

of the statistical models as a reference. Here in this study, SVR is the reference model. 

 

Root mean square error (RMSE): 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑

|𝐴𝑖−𝐹𝑖|

𝐴𝑖

𝑁
𝑖=1  (12) 

 

When conveying model performance to individuals without a background in data analysis, MAPE proves 

superior to RMSE due to its simplicity. Expressed as a percentage, MAPE is more straightforward and 

understandable for end users, rendering it accessible even to those unfamiliar with data concepts. 

 

Mean absolute percentage error (MAPE): 𝑀𝐴𝑃𝐸 =  
1

𝑁
∑

|𝐴𝑖−𝐹𝑖|

𝐴𝑖

𝑁
𝑖=1 . 100% (13) 

 

There is a common argument that measures of forecast accuracy ought to be presented as a skill score (14). 

 

Skill score (SS): 𝑆𝑆 =
𝐴𝑓−𝐴𝑟

𝐴𝑝−𝐴𝑟
 (14) 

 

where 𝐴𝑓 and 𝐴𝑟 denote the accuracy of the forecasting system being evaluated and a reference forecasting 

system, respectively, based on a specific measure. The quantity 𝐴𝑝 represents the persistent model accuracy value 

of the measure; signifying the metric's value if the outcome were perfectly known. When the persistent model 

accuracy 𝐴𝑝 is equal to zero, a different statistical measure can be used to compare the performance of two 

forecasting systems. This measure is defined as relative skill score (15), an alternative to a skill score [26]-[28]. 

 

Relative skill score (SS): 𝑆𝑆 =
𝐴𝑓−𝐴𝑟

−𝐴𝑟
 (15) 

 

For calculating skill score/relative skill score in this work, the accuracy parameter used is MAPE over its 

advantages as mentioned above. 

 

 

5. RESULTS AND DISCUSSION 

Figure 6 shows the regression plot for the actual and predicted values forecasted through different 

machine learning techniques (SVM, ANN, DNN and RF) for multiple steps ahead forecasting (i.e., one hour 

ahead, two hours, three hours and four hours ahead forecasting) of solar photovoltaic power for different 

seasons of a typical year with a mention of coefficient of regression r2 values. The model having r2 values 

closer to one is the accurate model. Based on the values of r2, all models are giving best results in winter season, 

followed by summer and/or autumn.  
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Table 2 contains error metrics for different forecasting horizons and various machine learning models 

(random forest-RF, deep neural network-DNN, artificial neural network-ANN, Support vector machine-SVM). 

The error metrics used are: 

- r2 (R-squared): The statistical measure that represents the proportion of variance in the dependent variable 

that is predictable from the independent variable. It indicates how well the model fits the data. Higher values 

indicate a better fit. 

- Mean squared error (MSE): It measures the average squared difference between the actual and predicted 

values. Lower values indicate better model performance. 

- Mean absolute percentage error (MAPE): It measures the percentage difference between the actual and 

predicted values. Lower values indicate better model performance. 

A step ahead (1 hour ahead) forecasting’s plots shown in Figure 6, for different seasons. During 

autumn season, the r2 values are 0.885, 0.885, 0.877 and 0.847 for models RF, DNN, SVM and ANN, 

respectively. The RF model has the highest value and performs better than the other models of the study. During 

winter season, the r2 values are 0.955, 0.949, 0.945 and 0.936 for models RF, DNN, SVM and ANN, 

respectively. The RF model has the highest value and performs better than the other models of the study. During 

summer season, the r2 values are 0.897,0.882,0.876and 0.865 for models DNN, ANN, RF and SVM, 

respectively. The DNN model has the highest value and performs better than the other models of the study. 

During monsoon season, the r2 values are extremely low, but RF model has the highest value and performs 

better than the other models of the study. 

Two steps ahead (2 hours ahead) forecasting’s plots shown in Figure 7, for different seasons. During 

autumn season, the r2 values are 0.866, 0.836, 0.834 and 0.834 for models RF, ANN, SVM and ANN, 

respectively. The RF model has the highest value and performs better than the other models of the study. During 

winter season, the r2 values are 0.921, 0.921, 0.916 and 0.906 for models RF, SVM, DNN and ANN, 

respectively. The RF model has the highest value and performs better than the other models of the study. During 

summer season, the r2 values are 0.845, 0.838, 0.837 and 0.828 for models RF, SVM, ANN and DNN, 

respectively. The RF model has the highest value and performs better than the other models of the study. During 

monsoon season, the r2 values are 0.316,0.311,0.292 and 0.260 for models ANN, RF, SVM and DNN. The 

ANN model has the highest value and performs better than the other models of the study. 

Figure 8 illustrates plots for Three-hour-ahead forecasting across different seasons. In autumn, r2 

values are 0.877, 0.865, 0.844, and 0.811 for DNN, RF, ANN, and SVM models respectively, with DNN 

outperforming others. Winter shows r2 values of 0.931, 0.891, 0.888, and 0.887 for DNN, RF, SVM, and ANN 

models respectively, with DNN again leading. Summer season depicts r2 values of 0.854, 0.831, 0.828, and 

0.816 for RF, DNN, ANN, and SVM models respectively, with RF performing best. Monsoon season presents 

r2 values of 0.384, 0.369, 0.323, and 0.260 for ANN, RF, DNN, and SVM models respectively, with ANN 

exhibiting the highest performance. 

In Figure 9, plots for four-hour-ahead forecasting across different seasons are displayed. In autumn, 

r2 values are 0.875, 0.870, 0.868, and 0.860 for DNN, ANN, RF, and SVM models respectively, with DNN 

demonstrating superior performance. Winter exhibits r2 values of 0.816, 0.810, 0.791, and 0.779 for DNN, 

ANN, SVM, and RF models respectively, with DNN leading again. During summer, r2 values are 0.897, 0.882, 

0.876, and 0.865 for DNN, ANN, SVM, and RF models respectively, with DNN outperforming others. 

Monsoon season shows r2 values of 0.403, 0.368, 0.345, and 0.317 for ANN, RF, DNN, and SVM models 

respectively, with ANN displaying the highest performance. 

The most significant findings from the results presented above are: 

- Across all forecasting horizons (1 to 4 hours ahead) and seasons, the random forest (RF) model consistently 

outperforms other models, exhibiting higher R-squared (r2) values. This indicates that RF provides a better 

fit for the data and yields more accurate predictions compared to support vector machine (SVM), artificial 

neural network (ANN), and deep neural network (DNN) models. 

- Seasonal variation significantly impacts the performance of the models, with autumn and winter seasons 

generally resulting in higher r2 values and lower error metrics, indicating better predictability and accuracy. 

In contrast, the summer season shows lower r2 values and higher error metrics, while the monsoon season 

exhibits the lowest r2 values and highest error metrics, suggesting decreased predictability and accuracy 

during these periods. 

- Despite the challenging conditions presented by the monsoon season, the Random Forest model 

consistently demonstrates superior performance, highlighting its robustness and effectiveness in handling 

seasonal variations and providing accurate forecasts for solar photovoltaic power. Additionally, the findings 

underscore the importance of considering seasonal dynamics when developing and evaluating forecasting 

models for renewable energy applications. 
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Forecasting one hour ahead 
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Figure 6. Regression plots for (a) SVM, (b) ANN, (c) DNN, and (d) RF for different seasons for one step 

ahead (1 hour ahead forecasting) 
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 Forecasting two hours ahead 
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Figure 7. Regression plots for (a) SVM, (b) ANN, (c) DNN, and (d) RF for different seasons for two steps 

ahead (2 hours ahead forecasting) 
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 Forecasting three hours ahead 
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Figure 8. Regression plots for (a) SVM, (b) ANN, (c) DNN, and (d) RF for different seasons for three steps 

ahead (3 hours ahead forecasting) 
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 Forecasting four hours ahead 
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Figure 9. Regression plots for (a) SVM, (b) ANN, (c) DNN, and (d) RF for different seasons for four steps 

ahead (4 hours ahead forecasting) 
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Interpretation of the results based on error metrics: 

- r2: Across all forecasting horizons and seasons, Random Forest consistently performs well and obtains high 

r2 values, indicating that it provides a good fit for the data. Deep neural networks (DNN) and artificial 

neural networks (ANN) also perform well, while SVM has slightly lower r2 scores. 

- MSE: Random Forest again shows satisfactory performance, consistently achieving the lowest MSE across 

all forecasting horizons and seasons. DNN and ANN also perform competitively, though sometimes with 

higher MSE values compared to Random Forest. SVM tends to have higher MSE values, indicating less 

accurate predictions. 

- MAPE: For most cases, random forest and ANN have the lowest MAPE values, indicating better prediction 

accuracy in terms of percentage errors. DNN and SVM are also competitive but occasionally show higher 

MAPE values. 

Seasonal variation: 

- Autumn and winter seasons have higher r2 values and lower error metrics (MSE, MAPE, MAAPE), 

indicating better predictability and accuracy of the models during these seasons. 

- Summer season shows lower r2 values and higher error metrics, suggesting that the models' performance 

may decrease during this season. 

- Monsoon season exhibits the lowest r2 values and highest error metrics, indicating that the models struggle 

the most to make accurate predictions during this season. 

- Overall, random forest performs consistently well across different forecasting horizons and seasons. 

Across the results detailing the performance of different forecasting models across seasons and 

forecasting horizons, it's evident that random forest (RF) consistently outperforms other models such as support 

vector machine (SVM), artificial neural network (ANN), and deep neural network (DNN). This superiority is 

primarily attributed to RF's ensemble learning approach, which combines multiple decision trees to produce 

robust and accurate predictions. Moreover, RF's ability to handle nonlinearity, interaction effects, and noisy 

data allows it to effectively capture the complex relationships between weather variables and solar power 

output. Additionally, RF provides valuable insights into feature importance, aiding in the understanding of 

which variables influence the forecast the most. Overall, RF's ease of implementation, scalability, and ability 

to maintain high performance across different seasons and forecasting horizons make it the preferred  

choice for solar power forecasting applications, consistently outperforming other models in terms of accuracy 

and reliability. 
 

 

Table 2. Performance metrics for different seasons and forecasting horizons for various ML techniques 
Forecasting 

horizon 
1 hour ahead 2 hours ahead 3 hours ahead 4 hours ahead 

Error 

Metric

s 

Mode

l 
RF 

DN

N 

AN

N 

SV

M 
RF 

DN

N 

AN

N 

SV

M 
RF 

DN

N 

AN

N 

SV

M 
RF 

DN

N 

AN

N 

SV

M 

r2 Autumn 0.885 0.885 0.847 0.877 0.866 0.834 0.836 0.834 0.865 0.877 0.844 0.811 0.868 0.875 0.870 0.860 

Winter 0.955 0.949 0.936 0.945 0.921 0.916 0.906 0.921 0.891 0.900 0.887 0.888 0.857 0.889 0.876 0.862 

Summer 0.876 0.897 0.882 0.865 0.845 0.828 0.837 0.838 0.854 0.831 0.828 0.816 0.779 0.816 0.810 0.791 

Monsoo

n 

0.253 0.191 0.214 0.209 0.311 0.260 0.316 0.292 0.369 0.323 0.384 0.270 0.368 0.345 0.403 0.317 

MSE Autumn 2.054 2.057 2.744 2.202 2.231 2.765 2.725 2.757 1.955 1.771 2.253 2.726 1.987 1.875 1.957 2.101 

Winter 0.835 0.952 1.201 1.018 1.563 1.661 1.868 1.569 2.157 1.966 2.231 2.216 2.639 2.042 2.291 2.552 

Summer 1.326 1.107 1.270 1.444 1.501 1.666 1.588 1.573 1.406 1.628 1.657 1.768 2.325 1.933 1.998 2.201 

Monsoo

n 

9.703 10.521 10.219 10.282 9.316 10.002 9.250 9.568 8.962 9.614 8.741 10.363 7.585 7.858 7.158 8.198 

MAPE Autumn 0.173 0.224 0.259 0.226 0.186 0.256 0.273 0.287 0.145 0.168 0.227 0.230 0.225 0.168 0.203 0.269 

Winter 0.275 0.304 0.348 0.322 0.279 0.278 0.321 0.286 0.284 0.269 0.295 0.320 0.321 0.290 0.250 0.368 

Summer 0.161 0.165 0.178 0.188 0.141 0.172 0.161 0.150 0.125 0.135 0.139 0.153 0.192 0.170 0.188 0.226 

Monsoo

n 

0.727 0.759 0.707 0.671 0.629 0.584 0.624 0.623 0.578 0.585 0.595 0.564 0.600 0.577 0.585 0.578 

Relativ

e Skill 

Score 

based 

on 

MAPE 

Autumn 0.234 0.008 -0.147 0.000 0.352 0.109 0.049 0.000 0.370 0.269 0.015 0.000 0.164 0.376 0.247 0.000 

Winter 0.146 0.057 -0.080 0.000 0.024 0.029 -0.124 0.000 0.112 0.158 0.076 0.000 0.128 0.212 0.320 0.000 

Summer 0.143 0.125 0.054 0.000 0.060 -0.150 -0.074 0.000 0.186 0.116 0.094 0.000 0.153 0.249 0.170 0.000 

Monsoo

n 

-

0.08

3 

-0.130 -0.053 0.000 -

0.00

8 

0.063 0.000 0.000 -

0.02

4 

-0.036 -0.054 0.000 -

0.03

8 

0.001 -0.013 0.000 

 

 

6. CONCLUSION 

An ensemble random forest technique for multiple steps ahead of hourly solar power forecasting that 

improves prediction accuracy for the site of study interest is presented in this study. The performance of the 

proposed approach has been evaluated for 1 hour to 4 hours ahead prediction with 15-minute intervals sampled 

data averaged hourly, i.e., for up to 4 steps (each step refers to an hour) in the forecast horizon. For evaluation, 
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the proposed approach was implemented for four different machine learning algorithms (SVM, ANN, DNN 

and RF), and use 1 year data from the rooftop PV system installed at the study location. Simulation results 

show that our proposed approach achieves significant improvement in prediction accuracy over other models 

in comparison. For the present study, support vector machine is considered as the reference model for 

evaluation of forecasting relative skill score. Based on the performance metric MAPE as base, and SVM as 

reference model, the relative skill core reveals that the accuracy of forecasting is improved. Forecasting 

accuracies were increased between 14 to 23%, 2 to 35%, 11 to 37% and 21 to 37% for forecasting one hour 

ahead, two, three and four hours ahead respectively over seasons autumn, winter, and summer. Therefore, 

random forest technique is best suitable for the forecasting of solar photovoltaic power for the selected site 

with an increased accuracy over the existing and widely used machine learning SVM, ANN and DNN models.  

This research justifies the adoption of an ensemble random forest technique for multiple-step-ahead 

hourly solar power forecasting, demonstrating significant improvements in accuracy compared to existing 

models. Through rigorous evaluation across different seasons and time horizons, the study establishes the 

superiority of the random forest method, offering a robust solution for enhancing renewable energy 

management. The specific factors driving Random Forest's consistent superiority, possibly through in-depth 

feature importance examinations, addressing the challenge of lower predictability in season monsoon, 

refinement of existing models or novel techniques tailored to these conditions could be explored in future 

studies. Additionally, investigating ensemble methods or hybrid models integrating Random Forest with other 

algorithms might enhance predictive accuracy across varying seasonal dynamics. 
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