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 Efficient wind farm development necessitates careful planning of wind 

turbine placement. The primary aim of this optimization process is to 

strategically position turbines to minimize the wake effect. The ongoing study 

seeks to standardize wake losses across all turbines in the wind farm through 

the adoption of a novel diagonal layout. To achieve this objective, an objective 

function has been devised and employed by a genetic algorithm, aiming to 

maximize the energy production of the farm while avoiding the concentration 

of wake on specific turbines. This methodology was applied to the Gasiri wind 

farm using simulation. The results of the optimization show great promise, 

indicating a potential energy increase of 17% following the implementation 

of the optimized layout. Furthermore, the study highlights that the new turbine 

placements, characterized by higher nominal power, are more favorably 

aligned forward, in accordance with the wind direction, compared to their 

original positions. Additionally, a substantial reduction in the mechanical 

fatigue of the turbine blades was noted. 
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1. INTRODUCTION 

In recent years, there has been a growing commitment to expanding global clean energy production 

[1], driven by the urgent need to mitigate environmental degradation and achieve a sustainable balance in 

energy resources [2]. Wind power has emerged as a prominent source of green energy worldwide, with 

governments increasingly investing in wind energy infrastructure. Notably, wind farms constitute a significant 

portion of European investments in renewable energies [3], [4], underscoring their importance in the transition 

towards sustainable energy sources. However, optimizing wind farms remains crucial for maximizing energy 

output and minimizing energy losses, particularly due to wake effects that significantly impact efficiency [5]. 

Previous research has addressed wind farm optimization using various algorithms, including different 

artificial intelligence algorithms [6], [7]. While many studies have focused solely on optimizing energy or  

cost [8], some have combined both criteria, reflecting the complex considerations involved in wind farm design. 

Additionally, recent studies have explored the effects of consolidating nearby offshore wind farms [9], [10], 

highlighting evolving trends in wind energy development. 

Despite advancements in wind farm optimization, challenges persist, especially in smaller wind farms 

where certain turbines may suffer disproportionately from wake effects [11], leading to reduced energy 

https://creativecommons.org/licenses/by-sa/4.0/


      ISSN: 2088-8694 

Int J Pow Elec & Dri Syst, Vol. 15, No. 3, September 2024: 1903-1913 

1904 

production and turbine fatigue. To address these challenges, this paper aims to develop an algorithm that can 

diminish and standardize wake impacts throughout all turbines within a wind farm, with a focus on maximizing 

energy output and mitigating wake effects. The primary contribution of this paper lies in its novel approach to 

wind farm optimization, which considers both energy and cost objectives while addressing wake effects. By 

combining these criteria and incorporating insights from recent studies [12], [13] on offshore wind farm 

consolidation, the paper offers a comprehensive framework for optimizing wind farm layouts. 

The following sections of the paper will detail the methodology employed, starting with the wind farm 

modeling and the employed wake model. Subsequently, the paper will present the objective function and 

outline the optimization algorithm utilized for the Gasiri wind farm. Finally, the paper will conclude with an 

analysis of the results and key insights drawn from the study. In addition to addressing wake effects and 

optimizing wind farm configuration, this study highlights the importance of considering the challenges faced 

by small wind farms. These farms often face disproportionate impacts from wake effects [14], leading to 

increased turbulence, wind turbine blade fatigue [15], [16], and reduced overall energy production. To alleviate 

these challenges, the paper proposes the development of an objective function aimed at maximizing energy 

production while minimizing the detrimental effects of wake turbulence on specific wind turbines [17], [18]. 

By focusing on these smaller-scale wind farms, the research aims to provide information and solutions that can 

improve the efficiency and sustainability of wind energy production in various operational contexts. This 

approach highlights the importance of tailoring optimization strategies to meet the unique characteristics and 

constraints of different wind farm configurations, thereby contributing to a more robust and resilient renewable 

energy infrastructure. 

 

 

2. MODELING OF WIND FARM 

2.1. Wake modelling 

The phenomenon of wake effect alters the wind speed as it passes through the upstream wind turbines 

(WT). The increasing impact is characterized by a decrease in wind speed and an increase in turbulence in the 

windiest area. Notably, wind turbines positioned in the wake zone produce less energy and require more 

maintenance compared to those upstream. Consequently, modeling the wake effect becomes crucial in deciding 

the placement of wind turbines, and it should be given significant consideration during the optimization of 

wind farm design layouts (WFDLO). 

Certainly, various wake models have been employed to illustrate wind speed loss characteristics [19], 

[20]. These models fall into two primary categories: analytical wake models and computational wake models, 

which involve solving the Navier-Stokes equation and offer greater precision compared to other models. 

However, their application in wind farm design layout optimization (WFDLO) is hindered by increased 

computational requirements and higher costs [21]. On the other hand, analytical wake models are built on the 

foundation of analytical wind speed solutions and find extensive use in optimization methods, particularly for 

large wind farms with numerous wind turbines [22], [23]. Among these models, Jensen's wake model is widely 

utilized, incorporating a linear expansion of the wake as an underlying assumption [24]. Figure 1 illustrates the 

principle of the Jensen model developed. These models exhibit high efficiency due to their reliable power loss 

predictions, demonstrating reasonable accuracy compared to alternative models as demonstrated in [24]. 

Consequently, in this study, we opt for the Jensen model to calculate various wind speeds. Thus, the speed 

deficit is expressed as (1). 

 

𝑉𝑑𝑓 = 𝑉𝑓  [(1 − √1 − 𝐶𝑇) (
𝐷

𝐷𝑤𝑎𝑘𝑒
)

2

 (1) 

 

In this given context: 𝐷: represents the rotor diameter, measured in meters; 𝐷𝑤𝑎𝑘𝑒: Denotes the wake 

diameter, measured in meters; 𝐶𝑇: Stands for the thrust coefficient; 𝑉𝑓  : Represents the free incoming wind 

speed, measured in meters per second; and 𝑉𝑑𝑓: Signifies the wind velocity deficit, measured in meters per 

second. It's important to note that the wake diameter is not a constant value but varies based on the rotor 

diameter and a consistent wake minimization coefficient. The detailed calculation of this coefficient can be 

found in references [24] and [18]. 

 

2.2. Energy production modelling  

Estimating energy production in the presence of the wake effect involves computing the power 

generated by each wind turbine. Various expressions, frequently utilized for estimating wind turbine power, 

have been investigated in [24]. Therefore, the approximate calculation of the energy production of each wind 

turbine is conducted as (2). 
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𝑃𝑊𝑇 =
1

2
𝜌𝜋

𝐷2

4
𝐶𝐸𝐹(𝑉𝑓 − 𝑉𝑑𝑓)3 (2) 

 

𝐶𝐸𝐹 denotes the efficiency factor, and it is expressed by (3). 
 

𝐶𝐸𝐹 = 𝐶𝑝𝜂𝑚𝜂𝑔 (3) 
 

In this investigation, the efficiency factor 𝐶𝐸𝐹 is presumed to be 40%. The overall power generated by wind 

turbines operating under the influence of wake effects can be calculated as (4). 
 

𝑃𝑊𝐹=∑ 𝑃𝑊𝑇
𝑁𝑡
𝑖=1  (4) 

 

The efficiency of the wind farm is defined by (5). 
 

 𝜂𝑊𝐹 =
𝑃𝑊𝐹

(
1

2
𝜌𝜋

𝐷2

4
𝐶𝐸𝐹𝑉𝑓

3)
 (5) 

 

To streamline the optimization process of the examined wind farm, the wind turbine positions are 

identified using Cartesian coordinates (x, y). The computation of distances between turbines and the 

determination of the total wind speed deficit, accounting for overlapping zones, are outlined. Preview study 

[18], [25], the expression for the total velocity deficit is articulated as (6). 
 

𝑉𝑑𝑓𝑡 = √∑ (
𝐴𝑂𝑉

𝐴
) (𝑉𝑑𝑓)2𝑁𝑢𝑝

𝑖=1
 (6) 

 

In this context, 𝐴𝑂𝑉  denotes the overlap area in square meters, A represents the swept area of the wind turbines 

in square meters, and 𝑁𝑢𝑝 signifies the number of upstream wind turbines. 
 

 

 
 

Figure 1. Jensen model [25] 
 

 

3. METHODOLOGY 

The research method entails the assessment of an objective function with the dual purpose of 

maximizing power output and minimizing wake losses within a wind farm through standardization. To 

scrutinize this methodology, we conducted an optimization of our objective function within the Gasiri wind 

farm employing genetic algorithms. It is noteworthy that the computational calculations were executed utilizing 

MATLAB software on a computing system comprising an i7 processor with 16GB of RAM. Comprehensive 

details and data are referenced in the subsequent section. 

 

3.1. Objective function 

The primary goal is to enhance the power output of the wind farm and normalize the wake losses for 

each individual wind turbine within the facility. Certain turbines in a wind farm may experience more 

pronounced wake effects, leading to operational challenges and a shortened lifespan. The proposed objective 

function aims to maximize the energy production of the wind farm while minimizing the standard deviation of 

wake losses experienced by the wind turbines. The objective function, designated as FOBJ, is derived as (7). 
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𝐹𝑂𝐵𝐽 = 𝑚𝑎𝑥 (
𝑃𝑊𝐹

1−√
1

𝑁𝑡
∑ (𝑊𝑎−𝑊𝑖)2𝑁𝑡

𝑖=1

) (7) 

 

3.2. Algorithm for optimization 

Genetic algorithms offer several advantages for the optimization of wind farms. Firstly, their global 

search capability allows them to effectively explore a broad solution space, making them well-suited for finding 

optimal configurations in complex, multi-dimensional problems. Additionally, the parallelism inherent in 

genetic algorithms enables the simultaneous consideration of multiple scenarios, accelerating the optimization 

process. These algorithms exhibit adaptability, dynamically adjusting to changing conditions and uncertainties, 

which is particularly beneficial for addressing variations in wind patterns. Genetic algorithms are also adept at 

handling conflicting objectives, making them suitable for the simultaneous optimization of multiple goals, such 

as maximizing energy output and minimizing wake effects. Furthermore, their ability to function without 

requiring derivative information makes them versatile for scenarios where obtaining derivatives may be 

challenging or computationally expensive. As illustrated in Figure 2 the steps of this algorithm are as follows, 

steps of genetic algorithm for wind farm optimization: i) Initialization: create an initial population of potential 

wind farm layouts; ii) Evaluation: assess fitness based on the objective function; iii) Selection: choose 

individuals for reproduction based on fitness; iv) Crossover: exchange genetic information to create a new 

generation; v) Mutation: introduce random changes to maintain diversity; vi) Evaluation (again): assess fitness 

of the new generation; vii) Elitism: retain the best-performing individuals from the previous generation;  

viii) Termination criteria: check if termination criteria are met; and ix) Repeat: if not met, repeat steps 3 to 8 

until convergence to an optimal solution. 
 

 

 
 

Figure 2. Processing process diagram of GA algorithm 
 

 

Table 1 summarizes key parameters for a genetic algorithm: initial population size, selection pressure, 

crossover probability, mutation probability, and iteration number. Initiating the proposed algorithm 

necessitates essential information about the wind farm's characteristics and the selected model for the current 

study. Table 2 gives the characteristics of the turbines used for the simulation and Table 3 encapsulates the 

requisite data crucial for successfully commencing the genetic algorithm. 
 

3.3. Case study: Gasiri wind farm 

In this section, the emphasis is on optimizing the arrangement of wind turbines within the Gasiri wind 

farm using the previously defined objective function. The outcomes of this study will be juxtaposed with 
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findings from earlier investigations on the same wind farm. The Gasiri wind farm is situated on Jeju Island, 

South Korea, and is illustrated in Figure 3, showcasing the distribution of wind turbines and the wind rose. 

Consisting of 13 wind turbines categorized into three types (HS50-750 kW, U50-750 kW, HJWT77-1500 kW), 

the turbines are positioned in a grid pattern oriented towards the NNW direction, recognized as the predominant 

wind direction at the Gasiri wind farm. Implementing the optimization of the wind farm requires a MATLAB 

code utilizing the wind data outlined in Figure 3, Table 1, Table 2, and Table 3. 
 
 

Table 1. Prescribed factors in a genetic algorithm 
GA parameter Size of initial population Selection pressure Crossover probability Mutation probability Iteration number 

Value 150 3 0.75 0.25 355 

 
 

Table 2. Fundamental details about three distinct types of wind turbines 
Power rating (kW) U50 HJWT77 HS50 

Hub height (meters) 750 1500 750 

Rotor diameter (meters) 50 70 50 
Cut-in wind speed (m/s) 50 77 50 

Rated wind speed (m/s) 3 3.5 3.5 

Cut-out wind speed (m/s) 12.5 13 12 
Power rating (kW) 25 25 25 

 

 

Table 3. Information provided as input for the genetic algorithm 
Site characteristics Wind speed and direction Wf size Roughness 

Variables matrix Arrangement Constrain the distance between Design variables for wind turbine 

Models Wake model Power model WT design variables 

 
 

 
 

Figure 3. Current position of turbines in the Gasiri wind farm 
 

 

The computed results of the annual energy production (AEP) energy production are compared with 

actual electricity production data collected from the Gasiri wind farm, as depicted in Figure 4. While there is a 

minor variance between the real data and the calculated results, the accuracy is notably improved compared to 

previous literature results [25] obtained using alternative algorithms. The disparity primarily stems from the 

choice of the wake model used and the specific operational characteristics of each wind turbine. Notably, 750 

kW wind turbines are excluded from the calculation due to their low recovery rate based on the collected data. 

Figure 5 provides a summary of the collected and computed results. 

The annual production of the wind farm is computed under the assumption of a 365-day operational 

year, equivalent to 8760 hours. The formula for calculating the annual production is stated as (8). 
 

𝐴𝐸𝑃 = 8760 ∑ ∑ ∑ 𝐹(𝑈𝑖𝑗𝑘
𝑁𝑠
𝑘=1

𝑁𝑑
𝑗=1

𝑁𝑡
𝑖=1 )𝑃(𝑈𝑖𝑘) (8) 

 

Here, 𝐹(𝑈𝑖𝑗𝑘) represents the likelihood of wind blowing within speed category k for turbine i within direction 

sector j, denoted as 𝑃(𝑈𝑖𝑘) , represents the power generated by turbine i at wind speed category 𝑘. 𝑁𝑑 and 𝑁𝑠 
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represent the partitioning by direction interval of the total bearing and the value obtained by dividing the wind 

speed range (3-25 m/s) by the range of wind speed, respectively. 

 

 

 
 

Figure 4. Contrast in annual energy productions (AEPs) derived from the Gasiri wind farm between the 

observed values and the computed AEPs 

 

 

 
 

Figure 5. Discrepancy in annual energy output between the measured and calculated energy values 

 

 

4. RESULTS AND DISCUSSION 

Starting with Figure 6, which illustrates the fluctuation of the objective function, we observe a notable 

enhancement and convergence in algorithm performance after 350 iterations, with the objective function 

reaching a value of 0.85. This increase signifies progress towards optimizing the layout, showcasing the 

efficacy of our methodology. Compared to previous studies, our approach demonstrates superior performance 

in optimizing the layout, resulting in enhanced energy production, and minimized wake losses. The 

convergence indicates that our algorithm effectively navigates through various layouts, converging towards an 

optimal solution. 

Figure 5 illustrates the difference in annual energy output between the observed and computed values. 

The collective annual energy production of the wind turbines amounts to 23.51 units. However, a minor 

disparity of 0.03 units is observed when comparing the collected production data (23.48 units) with the 

calculated value. This deviation can be attributed to the simplifying assumptions and uncertainties inherent in 

the wake model employed in our analysis. While the overall agreement between observed and calculated values 

is reasonable, this slight deviation underscores the need for further refinement and validation of the wake model 

to improve the accuracy of our predictions. 

The computation domain for our wind farm, as delineated in Figure 7, is meticulously constrained. 

By enforcing a minimum spacing of 3 times the rotor diameter (3 * D) between turbines, we have established 
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a separation of 230 m. This strategic spacing is critical for minimizing wake interference and optimizing energy 

production. Furthermore, to augment the flexibility in wind turbine placement, we have subdivided the 

designated area into 120 by 110 cells, each measuring 10 m by 10 m. This meticulous division accounts for 

restricted zones where turbine placement is prohibited, ensuring a comprehensive and efficient layout. 

However, while this approach enhances flexibility and accommodates various constraints, further refinement 

may be necessary to address potential limitations in capturing site-specific dynamics and optimizing energy 

production to its fullest potential. 
 
 

 
 

Figure 6. Assessment of the objective function (FOBJ) through the application of a genetic algorithm (GA) 
 

 

 
 

Figure 7. Geographical positions of the wind turbines within the Gasiri wind farm 
 
 

The optimization procedure for the Gasiri wind farm, as depicted in Figure 8, is executed and 

subsequently juxtaposed with the current layout. Notably, wind turbines of the HJWT77 type, renowned for 

their high-rated power, display a proclivity to shift forward along the wind direction. This observation can be 

attributed to the minimized wake losses in forward positions, as visually illustrated in Figure 8. While this 

phenomenon aligns with theoretical expectations, it raises concerns regarding potential wake effects on 

downstream turbines and overall energy production efficiency. Additionally, our analysis reveals that lower-

capacity wind turbines deviate from their initial positions in the existing configuration to align with the 

prevailing wind, consistent with prior studies employing simulated annealing algorithms for optimization, as 

documented in [24]. However, while this alignment may optimize individual turbine performance, it could lead 

to increased wake interference and reduced overall energy production efficiency. 

Furthermore, it is worth noting that our proposed optimization technique demonstrates superior 

accuracy in terms of annual production levels compared to the findings presented in [22]. While this indicates 

progress in optimizing wind farm layouts, it is crucial to interpret these results with caution. Factors such as 

variations in wind conditions, terrain, and wake models can significantly influence the accuracy and reliability 

of production estimates. Overall, while our optimization approach shows promise in improving energy 

production efficiency, further refinement and validation are necessary to address potential shortcomings and 
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ensure the robustness of our findings. Additionally, future studies should consider integrating more 

sophisticated optimization algorithms and comprehensive validation methods to enhance the reliability and 

applicability of wind farm layout optimization strategies. 

In Figure 9, the increased annual energy production resulting from turbine repositioning underscores 

the superiority of our optimization technique compared to existing approaches. Turbines 7, 8, 9, 10, 11, 12, 

and 13 show notable increases in energy production, ranging from 0.35 to 0.95 units, while turbine 1 

experiences a decrease of 0.1 units. While previous studies may have utilized similar optimization algorithms, 

our methodology demonstrates superior accuracy and effectiveness in achieving higher energy yields. The 

redistribution of turbines based on the optimization process leads to enhanced energy production across the 

wind farm. 
 

 

 
 

Figure 8. Results of the optimization for the layout of the Gasiri wind farm achieved through the utilization 

of the objective function 
 

 

 
 

Figure 9. Annual energy yield for the existing arrangement versus the optimized layout, computed through 

the implementation of the objective function 
 
 

Table 4 provides quantitative evidence of the improvement in net annual energy production between 

the current and optimized layouts. The notable disparity of 5.68 units underscores the success of the 

optimization approach in maximizing energy production. However, it’s important to interpret these results in 

the context of trade-offs between energy production, wake losses, and other factors, such as land use and cost. 

The increased net annual energy production indicates the effectiveness of our optimization method in achieving 

higher energy yields. 

In Figure 10, the reduction in wake losses for the optimized layout is visually evident, with a decrease 

of -18.67%. This reduction surpasses the wake loss reduction achieved in previous studies, highlighting the 

effectiveness of our methodology in optimizing wind farm layout design. However, it’s essential to 

acknowledge potential uncertainties and variability in wake modeling, which may influence the accuracy and 

reliability of the results. The decrease in wake losses signifies improved efficiency and reduced energy losses 

across the wind farm. 
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Figure 11 further explores the consistency of wake losses across turbines in the optimized layout. This 

uniformity mitigates disparities in energy losses within the wind farm, surpassing the results of previous 

studies. The minimal variance in wake loss results in the optimized layout suggests a more consistent pattern, 

indicating a significant improvement over existing optimization technique. Consistent wake losses contribute 

to stable energy production and improved overall performance of the wind farm. 

Table 5 quantifies the differences in wake loss percentages between the current and optimized layouts, 

revealing a notable decrease of -18.67%. This reduction surpasses the wake loss reduction achieved in previous 

studies, highlighting the effectiveness of our methodology in optimizing wind farm layout design. The 

significant decrease in wake losses indicates improved efficiency and reduced energy losses, leading to 

enhanced energy production and overall performance of the wind farm. 
 

 

Table 4. Contrast in annual energy output between the current arrangement and the optimized layout 
Wind turbine  

identification number 

Net AEP/gross AEP 

Current configuration Enhanced configuration 

1 1.49/1.54 1.44/1.61 

2 1.62/1.71 1.76/1.82 
3 1.45/1.52 1.49/1.55 

4 1.53/1.57 1.64/1.73 

5 1.40/1.53 1.43/1.58 
6 1.39/1.55 1.51/1.63 

7 3.65/4.05 4.00/4.80 
8 3.48/4.02 4.45/5.05 

9 3.32/3.97 4.20/4.95 

10 3.35/3.98 4.25/4.80 
11 3.46/4.02 4.10/4.85 

12 3.36/3.90 4.03/4.48 

13 3.38/3.88 4.08/4.70 
Total 32.95/37.55 38.4/43.70 

Difference (+)5.86 

 

 

 
 

Figure 10. Differences in wake losses between the existing and optimized layouts 
 
 

 
 

Figure 11. Consistency of wake losses in the optimized layout 
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Table 5. Differences in wake loss percentages between the current layout and the optimized arrangement 
Wind turbine  

identification number 

Percentage of wake loss 

Current configuration Enhanced configuration 

1 5.16 10.02 

2 5.72 8.10 

3 6.13 9.02 
4 2.32 9.8 

5 8.13 9.06 

6 10.06 7.05 
7 10.39 8.50 

8 13.87 8.3 

9 16.17 12.1 
10 17.83 11.13 

11 13.04 7.09 

12 13.87 10.17 
13 14.38 8.06 

Total 137.07 118.4 

Disparity (-)18.67 

 

 

5. CONCLUSION 

This article presents a novel approach to optimizing a wind farm, employing an objective function 

through a genetic algorithm to refine the layout of wind turbines. The primary goal is to optimize energy 

generation while mitigating wake losses across all turbines within the wind farm. The application of this 

method to the Gasiri wind farm has yielded promising results, not only in the reduction of wake losses but also 

in their uniform distribution across the turbines in the farm. 

The optimized arrangement indicates that wind turbines with greater rated power are typically situated 

ahead, aligning with the direction of the wind. Moreover, findings from the simulation in this research exhibit 

a noteworthy 17% enhancement in energy output relative to the current layout, along with a considerable 

decrease in estimated wake losses by around 18%. The optimization of the layout investigated in this study 

revolves around a cost function focused on minimizing wake losses. Future research endeavors aim to explore 

the relationship between wind turbine arrangement, utilizing a multi-objective function, and the associated 

costs involved in such optimization. 
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