
International Journal of Power Electronics and Drive System (IJPEDS) 

Vol. 16, No. 2, June 2025, pp. 851~863 

ISSN: 2088-8694, DOI: 10.11591/ijpeds.v16.i2.pp851-863      851 

 

Journal homepage: http://ijpeds.iaescore.com 

Ensemble learning based fault detection using PMU data in 

imbalanced data condition 
 

 

Kiruthika Krishnan1, Srivani Iyengar2 
1Department of Electrical Engineering, Rajarajeshwari College of Engineering, Bangalore, India 

2Department of Electrical Engineering, R. V. College of Engineering, Bangalore, India 
 

 

Article Info  ABSTRACT 

Article history: 

Received Jan 11, 2024 

Revised Mar 7, 2025 

Accepted Mar 29, 2025 

 

 Significant advancements in the electrical grid include enhanced regulation, 

communication, metering, and customer interaction, driven by information 

communication technologies (ICTs) and cyber-physical systems (CPS). The 

adaptation of synchro phasor devices like phasor measurement units (PMUs) 

enables real-time monitoring and control, aiding in power system security 

assessment. PMUs record voltage and current phasors with GPS time stamps, 

transmitting data to phasor data concentrators (PDCs) for decision-making. 

However, ensuring the stability and security of this method against 

cybersecurity threats is crucial due to its reliance on Internet Protocol (IP) 

networks. Dynamic security assessment utilizes PMU data, reported up to 30–

60 times per second, to evaluate power system safety. To address security 

issues, a Python-based fault detection system employing a stack ensemble 

learning algorithm is developed. This approach consistently outperforms 

traditional methods, producing satisfactory results with superior AUC-ROC 

curves, validated through correctness checks and graphical analysis. The 

dataset includes both natural and man-made security threats, facilitating 

comprehensive assessment and mitigation strategies. The ensemble learning 

algorithm performed better than the individual algorithms by obtaining 95% 

in the AUC-ROC curve. 
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1. INTRODUCTION 

Cyberattacks originating from global hackers have had a substantial impact on the financial well-

being of individuals. In recent times, cyberattacks have emerged as a significant tool for disrupting various 

government agencies. This threat extends to power systems that utilize phasor measurement units (PMUs), as 

these devices are connected to the internet. Notably, machine learning algorithms have displayed a crucial role 

in advancing the detection of cyberattacks within the power system environment. A report on cyber-attack 

suggests that 26% of the incidents of cyber-attacks are based on spear phishing, a way of making the victim 

believe that the mail is coming from the original source, but actually not from the original source [1]. A record 

of 159700 cyber incidents occurred in the year 2017 alone. A cyber-physical system is created by combining 

cyber systems with physical power grids in modern smart grids. Time-synchronized measurement data is 

transmitted to the cyber system from the physical grid by using phasor measurement units (PMUs). By 

returning the required commands to the PMUs, the system operators (SO) at the cyber band evaluate both the 

on and offline formats of the generated data and guarantee the grid's reliability and security. Nevertheless, a 

variety of physical occurrences, including cyberattacks, frequency events, transformer events, and line-to-
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ground failures, can result in deviations in the measurements that the SO receives, which is known as "bad 

data." The SO may then choose the incorrect restorative or mitigation approach as a result of these inaccurate 

data. For the grid to operate safely and optimally, precise bad data detection and identification of the proper 

bad data kind are therefore essential. Microgrid integration with smart infrastructure, such as sensors, 

communication, and monitoring devices, has led to the evolution of the concept of the smart grid (SG), which 

offers additional levels of robustness, dependability, and efficient operation. The physical layer of an MG is 

made up of interconnected components, while the cyber layer is made up of interconnected smart 

communication systems, metering devices, and monitoring equipment. Since the physical layer is constructed 

upon the cyber layer, the entire SG is a cyber-physical system (CPS). Phasor measurement units (PMU), which 

offer quicker reporting rates and more dependable and more secure system monitoring than traditional 

supervisory control and data acquisition (SCADA) systems, are one of the crucial parts of the SG. However, 

the introduction of smart devices like PMUs into MGs necessitates safe data storage and processing techniques 

and increasing reliance on communication linkages across the many CPS levels. Cyberattack risk is increased 

by this reliance on communication channels and data storage systems, especially for vital infrastructures like 

data centers, hospitals, and military installations. The fundamental idea behind the SG is modernization of 

electrical network through integration of artificial intelligence, signal processing, improved automatic control, 

communications, and information technology. Various levels of the grid are monitored by the smart meter, 

FDR, PMU, SCADA, WAMS, and other monitoring and measuring systems. As a result, a smart grid must 

store and distribute enormous amounts of real-time data among users, control centers, and utilities. As a result, 

data analytics will be very helpful for processing and evaluating this enormous volume of power system data [2]. 

Major blackouts that have occurred in several power systems throughout the globe have made it clear 

how valuable PMU data is, and installing PMUs on the networks of power transmission that relate to most 

major power systems has become a crucial present endeavor. This article addresses the applications of wide-

area measurement system (WAMS) and PMU technology for better power network monitoring, protection, and 

control. It also offers a brief introduction to these technologies [3]. The potentials of wide area technologies 

i.e. wide area monitoring, protection, and control, or WAMPAC—are discussed in this study. PMUs must be 

positioned appropriately based on the real-time application as WAMPAC deployment necessitates distributed 

phasor measurements across the system. The purpose of phasor measurement unit (PMU) technology and its 

use in the power system are discussed in this study [4]. This literature presents the results of an experimental 

study that shows how malicious assaults affect the PMUs in smart grids. A simulated attack environment 

architecture is suggested, and a physical test-bed equipped with a network attack environment, complete with 

mainstream PMUs, is established. Tests for cyberattacks are conducted, including deceitful communication 

and interference with GPS signals. The experimental study findings have shown PMU's weaknesses and 

vulnerabilities to malicious assaults.  

Additionally, the foundational research for improving cybersecurity protection for wide area 

measurement systems (WAMS) in smart grids has been established [5]. This work presents a unique density-

based spatial clustering method for data manipulation assaults on PMU measurements, including online 

detection, classification, and data recovery. The suggested approach is entirely data-driven and can handle 

many measurement assaults at once without adding more hardware to the current setup. Additionally, the 

suggested method does not rely on traditional state estimate [6]. Using the subspace identification approach, a 

data-guided design scheme of untraceable fake data-inculcation attacks to cyber-physical systems is initially 

presented in this work. Next, by solving a restricted optimization problem and considering the limitations of 

energy limitation and undetectability, the effects of unnoticeable bad data-inducing assaults assessed. 

Furthermore, coding theory is used to study the detection of planned data-driven fake data-inducing attacks. 

Ultimately, simulations conducted on a flying vehicle model are shown to confirm the efficacy of the suggested 

techniques [7]. Attackers might use the communication flaw in wide-area monitoring systems (WAMS) to 

target WAMS records with malicious data integrity assaults, which could have disastrous results. In response 

to the cybersecurity issues brought to light by WAMS, specific machine learning-based methods have recently 

been created to verify the source information of WAMS data. Most of the methods of source authentication 

now in use aim to verify WAMS data from a limited quantity of sites distributed across an expansive geographic 

region, which could not fully reflect WAMS's operating condition in real-world networks. This study's 

objective is to ascertain if machine learning-based methods can be used to real-world power grids in order to 

develop reliable source authentication of WAMS data. Four machine learning-based "state-of-the-art" 

techniques that combine shallow and deep learning [8]. To make the smart grid completely visible, the not 

many PMUs are arranged in phases in line with intended reinforcement-based learning method. Most 

susceptible buses that have the ability of getting compromised by adjusting the fewest amount of measures are 

identified using a multistage optimum PMU placement method that combines a least-effort attack model with 

a reinforcement learning technique [9]. The literature offers an innovative strategy for creating and identifying 

threats to data integrity in smart grids. Additionally, it offers a way to optimize the creation of FDIA against 
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the control center's state estimation techniques. The technique for generating AC state estimate attacks with 

both entire and partial information is presented together with DC state estimation assaults. It also recommends 

incorporating methods for the voting-based ensemble learning approach (MVCC) to detect FDIA in smart 

grids. Next, a 39 bus New England system and an IEEE 24 bus system are employed as test systems for the 

model, and fictitious data injection attacks are created and detected. The detection approach is compared 

against ensemble methods, classical weighted least squares, and most modern machine learning algorithms 

currently in use [10]. 

A real-time sequential approach for detecting and classifying faulty data was presented in the 

literature. Initially, the Hankel-matrix's low rank characteristic to quickly identify erroneous data is 

implemented. Second, step is to categorize malicious data into two groups: real-world occurrences and online 

attacks. The method utilizes the multi-channel Hankel-matrix's low rank approximation error before to and 

later random column permutations on going physical events. In the improbable event that compromised data 

is discovered to be the result of a cyberattack, our suggested method then moves on to identify the source of 

attacks. Two potential cyberattack routes examined are GPS spoofing and fake data injection attacks (FDIA 

and GSA). To differentiate between them, the approach leverages the rank-1 closeness error of the single-

channel Hankel matrix with unwrapped phase angle data [11]. Applying machine learning-based approaches 

to PMU data is one of the most crucial attack detection measures. Analyzing the residue of the observers and 

estimators is another method. Using PMU data, this study attempts to detect assaults on power systems using 

both techniques. The style of attack, such as man-in-the-middle (MitM) or a potential denial-of-service (DoS), 

is identified using an algorithm. Lastly, the suggested procedure is replicated using an example IEEE power 

system, and encouraging outcomes that confirm the approach's effectiveness is explained in detail [12].  

A new voting-based technique for detection for systemic cyber intrusions is developed within this 

work. The attacker in the cyberattack under examination introduces a span of false data in PMU in an attempt, 

replicate fictitious short circuit occurrences in the system. The suggested spotting procedure makes use of a 

variety of machine learning (ML) techniques, such as ensemble learning, recurrent neural network (RNN), 

feedforward neural network (FNN), decision trees, discriminant analysis, k-nearest neighbors (KNN) 

classification, support vector machine (SVM), and naive bayes. By determining the average output depending 

on detector performance, the voting-based technique may be able to differentiate between FDI attacks and 

actual short circuit failures. To minimize redundancy and enhance relevance, the mechanical and electrical 

components of the system are optimally selected for training objectives [13]. Literature presents an ensemble 

bagged tree for relatively accurate real-time attack and defect detection. This suggested structure is predicated 

on data from the phasor measurement unit (PMU) and relays during normal, cyberattack, and failure conditions. 

This study compares the effectiveness of the recommended method against several machine learning methods 

and validates it in a MATLAB/Simulink testing environment [14]. Literature has conducted a comprehensive 

investigation of big data analytics applications, current issues, and solutions [15].  

Intrusion detection systems (IDS) are critical to oversee the security of cyber-physical energy and 

power systems present in SG with increasing machine-to-machine connections. Still, IDS is finding it very 

challenging to reliably differentiate between benign and malevolent events due to the many-sourced, large, 

linked, and often noise-containing unwanted data that saves a range of concurrent cyber and physical activity. 

To deal with these and similar issues, here, a robust start-to-finish framework in line with the ensemble machine 

learning and stacked denoising autoencoder (SDAE) to extract new characteristic sets informed by attacks and 

noise from cyber-physical system data and integrate multiple information sources for authentic event 

categorization. The put forwarded methodology influences stochastic difference of anomaly extraction (SDAE) 

to first provide smaller-dimensional attributes that permit the restoration of a clutter-free input from clutter-

damaged perturbations. Novel characteristics that will maintain and update information as normal, fault, and 

attack events against a range of synthetic attack data, with the goal of improving categorization by integrating 

attack and noisy inputs. In addition, ensemble learning-based multi-classifier classification, considering the 

heterogeneous nature of the inputs such as PMU measurements, system logs, and IDS alerts, and classifying 

the specimens based on the SDAE-extracted characteristics using the extreme gradient boosting (XGBoost) 

technique, is developed. Moreover, normalization and oversampling were used to enhance the data's balance 

and homogeneity. The present SDAE+XGBoost approach attains more than 90% classification correctness on 

a practical dataset comprising 37 sub-types of normal, fault, and attack obtained via co-simulations on a 

hardware-in-the-loop (HIL) testbed security testbed [16]. Specifically, in the context of cyber threats, a unique 

"greedy" method for PMU placement is developed. According to this research, cyber risk may greatly raise a 

power system's unobservability risk, necessitating the inclusion of PMU allocations [17].  

To develop a complete architecture that is resistant to cyberattacks and uses strategically positioned 

phasor measurement units (PMUs) to counteract structural weaknesses in smart grids, a brand-new hybrid 

betweenness centrality (HBC) metric is put forth that successfully pinpoints a system's most crucial lines. A 

distinct objective function is created with the purpose of deliberately inserting PMUs into the system in order 

to strengthen its defenses against any attacks by bogus data injection on these susceptible lines. Finding the 
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best PMU location results in the fewest sets of measurements required to defend the state variables against all 

kinds of attacks on data integrity. This design's effectiveness is illustrated with the IEEE 14-bus system [18]. 

Data-driven hacking techniques like the fake data injection attack (FDIA) seriously jeopardize the states of the 

grid. Literature [19] presents an effective formulation method for blind FDIA that requires exact measurement 

subspace information. In order to allay this worry, efficient implementation of new, robust, nonlinear deep 

learning models that can, in addition to effectively detecting the existence of blind attack intrusions in real 

time, pinpoint their precise locations is to be implemented. These versions can work in conjunction with 

conventional bad data detectors to offer a practical and affordable solution. By identifying the discrepancy with 

the co-occurrence dependency of the attack vectors added to the raw data, these neural network models also 

demonstrate a multilabel classification technique. Moreover, it is demonstrated that these deep learning 

structures are model-free, suggesting that assaults might be identified without requiring statistical knowledge 

of the grid. On the standard IEEE test bench, the suggested framework's performance is assessed under a range 

of assault and noise scenarios [19].  

One of the biggest risks to the safety, dependability, and cost-effective operation of power systems 

nowadays is cyberattacks. It is challenging to identify and classify various cyberattacks while maintaining the 

stability and security of the power infrastructure. An automated technique based on the convolutional neural 

network for the recognition and categorization of various cyberattacks to address this problem. The 

convolutional neural network collects temporal information and spatial interactions between various nodes 

from the prior operational state of the sent data packets. The suggested structure's capsules have significant 

effects on preserving the measurement matrix's topological consistency. Additionally, the suggested approach 

eliminates the influence of uncertainty in system characteristics on detection performance and is model-free. 

In this study, many types of common cyberattacks are examined and modeled, such as replay, denial of service, 

bogus data injection, time-delay, and deception assaults. The suggested solution may achieve 99.97% detection 

accuracy on a single cyberattack and 96.25% detection accuracy on multiple cyberattacks, according to 

numerical findings on the IEEE 39-bus test system. The results of comparison show that the suggested approach 

performs better than conventional neural networks. The issue of multiple attacks detection and categorization 

is resolved by this technique [20]. Literature aims to carefully explain several techniques and processes for 

cyber-security in energy systems and examine relevant solution approaches. Additionally, a technical 

examination and debate of the traits and relevance of several cyber-attack models is carried out. The most 

recent research topics are discussed, along with cutting-edge cyber security methods for power systems and 

super grids, such blockchain and quantum computing. The talk covers essential protection mechanisms and 

problem-solving strategies. Finally, some thoughts on SGs' cyber-security in the future are expressed [21]. The 

new power system will face significant risk and security concerns because of the extensive integration of cyber 

and physical systems. To tackle this issue, a game-theoretic optimum defense resource allocation strategy is 

put forth to proactively guard against possible cyberattacks on smart grids. Using this technique, an ideal 

resource allocation for a 2-layer game model is produced. While the other tier involves several defense nodes 

in a noncooperative game, the first layer involves attackers and defensive nodes in an evolutionary game. After 

analyzing the offensive and defensive evolution outcomes of every scenario, a solution to the multi-node 

resource allocation problem is generated. In contrast to earlier research, the attacker's constrained rationality is 

considered based on the integrity, usability, and confidentiality indices. To measure player gains, quantum 

response equalization is added in the interim. Lastly, algorithms are used to show that the approach suggested 

in this research is both practical and efficient [22]. 

Distributed denial-of-service (DDoS) assaults are one kind of cyberattack that frequently targets smart 

grid networks. Furthermore, synchro phasor technology shields the wide-area measurement system (WAMS) 

from complicated difficult situations by managing several concerns in a grid. Because of communication 

protocols, vendor restrictions, and the complexity of the assault, detecting DDoS attacks is difficult. For 

measurement PMU data, attackers target the phasor data concentrator (PDC) database in WAMS. Nevertheless, 

design makes sure that the end application makes use of the regular PDC data stream even during the intrusion. 

PMU-generated data in WAMS is quickly verified using the suggested attack detection technique. Various 

machine learning algorithms are employed to identify DDoS assaults; yet the most effective detection model 

remains unclaimed. This study aims to determine (a) the best machine learning method for detecting DDoS 

attacks and (b) the accuracy of the algorithms that are taught. This study offers a hybrid approach based on 

machine learning that yields 83.23% accuracy. The suggested model is created using the Python compiler, and 

the outcome demonstrates how effectively the suggested detection technique raises the accuracy of DDoS 

assault detection [23]. The research suggests a novel approach combining data monitoring and fuzzy machine 

learning model classification to identify smart grid problems. Here, data from the smart grid has been tracked 

using improved smart sensor metering, which runs in the cloud at the edge of the network. Afterwards, the 

monitored data was categorized using an adversarial neural network with fuzzy reinforcement encoder. 

Throughput, mean average precision, accuracy, scalability, and dependability are all taken into consideration 
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while doing experimental study. Improved monitoring and prediction approaches can boost the existing grid's 

potential utilization while reducing fault frequency. The suggested method achieved 93% accuracy, 94% 

throughput, 81% dependability, 89% mean average precision, and 94% scalability [24]. The literature [25] 

offers an aggregated integer linear programming method utilizing micro-synchro phasor unit placement for 

machine learning to accomplish complete observability of the automated smart grids, keeping in mind that the 

distribution systems are reconfigurable. The suggested stochastic approach provides a multi-stage mechanism 

for micro-synchro phasor unit placing depending on the demand and load size of the system, in addition to pre-

planned sectionalizing and tie switches. This method may also be used to apply the no-injection limits of the 

representation to narrow finding space for the issue. In addition, a new approach derived from the whale 

optimization technique (WOM) is presented for finding best design for every phase while concurrently 

increasing the reliability indices and lowering the expenses associated with customer disruptions and power 

outages. The WOM heuristic serves as the foundation for the restructuring process, and an integer linear 

programming framework is used to arrange the micro-synchro phasors. To manage the uncertainty effects, a 

stochastic framework derived from on point estimation is constructed, accounting for prediction error or 

metering device uncertainty. 

The suggested approach ensures distinctness of the distribution network both before and after 

rearrangement within allotted time limit, as confirmed by simulation and numerical results on an actual system. 

Additionally, the results demonstrate that even when the system is subjected to various reconfigurations and 

topologies, system observability may be assured at varying load levels [25]. The anomaly detection and 

identification module (ADIM), a unique component proposed in the study, is designed to identify anomalies 

or erroneous data points before the state estimation process begins. We provide a deep learning technique that 

demonstrates exceptional precision in detecting irregularities within an ongoing data stream. Comprehensive 

testing on a range of test scenarios that effectively cover a variety of network topologies, transformer types, 

and load conditions demonstrates the capability of ADIM. It is demonstrated that anomalies may be efficiently 

found and recognized with ADIM, hence lowering the requirement for the component that detects faulty data 

and enhancing state estimation's overall responsiveness. Our study establishes the groundwork for creating an 

anomaly system for power system measurements that is based on detection and identification [26]. The data 

sources and SG architecture are briefly summarized in the paper's first part. Furthermore, examples of 

fraudulent data attacks and data security requirements are shown. The most recent ML-based detection methods 

are then summarized using the three primary detection scenarios: non-technical losses, state estimation, and 

load forecasting. Finally, considering the limitations of the current machine learning-based techniques, we 

investigate additional research opportunities at the conclusion of the project. We specifically cover intrusion 

detection against hostile assaults, a cooperative and decentralized detection framework, privacy-preserving 

detection, and a few possible cutting-edge machine learning algorithms [27]. A hybrid deep learning system 

that targets denial-of-service assaults on the Smart Grid's communication network. The gated recurrent unit 

and convolutional neural network approaches hybridize the suggested approach. The benchmark cyber security 

dataset from the Canadian Institute of Cybersecurity Intrusion Detection System is used in simulations. With 

a comprehensive accuracy rate of 99.7%, the simulation results show that the suggested approach works better 

than the existing intrusion detection systems [28]. 

There are several obstacles to the cyber security of the smart grid, most of them stem from malevolent 

assaults on devices connected to the system. These attacks could try to jeopardize the privacy of PMU and IP 

camera sensor data, or they might try to undermine the power supply to specific customers. Therefore, using 

security measures like network intrusion prevention systems (NIPS) and firewalls equipped with each 

distributed system linked into the grid is the easiest method to prevent such cyber-attack issues. The grid is 

nearly impenetrably protected from hackers thanks to several attack and defense mechanisms. Thus, employing 

FDI and MitM attack scenarios, the aim of this study is to give an analysis of PMU and IP camera sensor 

assaults at the component level when coupled to an IEEE 13-node system. Grid Attack Analyzer, a smart grid 

attack analysis tool, is used to collect data and simulate the research [29]. Such attacks are concealed by 

covertly modifying the SCADA and PMU metrics. This paper investigates cyber-physical assaults that are 

covert and target power systems. By flicking the corresponding switches or circuit breakers, one or many lines 

and buses can be interrupted during one of these assaults. The research develops a framework based on the 

non-linear power flow model to characterize such attacks and suggests a method for spotting such cyber-

physical attacks using switching transients. The detection technique takes use of the fact that a physical 

separation will result in a high transient rate for the system. These PMU-observed transient components are 

utilized to detect covert line disconnection and bus blackout assaults, as well as to validate the correctness of 

the steady-state values of SCADA and PMU measurements. The suggested method may be able to identify 

cyber-physical assaults that mask frequent line disconnections and bus failures under various load scenarios, 

according to experiments conducted on the IEEE 30 bus system [30]. 

The literature discusses the challenge of guaranteeing precise online transient stability prediction in 

contemporary power systems, which rely increasingly heavily on smart grid technologies and are thus more 
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vulnerable to cyberattacks. Despite the rapid growth of technology, machine learning algorithms for stability 

prediction presently lack the resilience needed to effectively resist the complex and ever-evolving nature of 

cyberattacks. The study also evaluates the impact of topological modifications and the incorporation of 

renewable energy on these machine learning-based techniques, as well as cyberattacks. Transient stability 

prediction techniques used online are essential for tracking and predicting power system behavior in real time 

during disruptions. To assess the robustness of the proposed algorithms in the context of the potential for 

attackers to disrupt communication and hence affect the power system, the study reproduces many scenarios. 

The results show that machine learning algorithms perform worse during cyberattacks, resulting in a large drop 

in the correctness of transient stability forecasts when compared to normal working settings. This demonstrates 

how vital it is to have cutting-edge cybersecurity defenses to maintain power systems' capacity for prediction 

[31]. Today's cyber-physical grids are heavily integrating cost-effective communication networks and the 

internet of things (IoT), which has led to serious security problems. More specifically, network security 

becomes more vulnerable due to wireless communication technology. In addition to the well-researched 

cybersecurity challenges, we also need to consider physical layer security. As a result, a lot of work has gone 

into creating a solution to cope with cybersecurity problems. But there hasn't been much work done on creating 

encroachment finding systems for physical security. This work provides a sharp model that detects and 

classifies assaults using a combination of machine learning techniques, including identifying the kind of attack 

at the physical band. Additionally, the suggested method localizes the attack or vulnerability to certain system 

parameters or attributes, which can assist cybersecurity specialists in reducing the effect of attacks on 

communication grids. 

The proposed model is compared with conventional machine learning classifiers using an SG dataset 

that is simulated at Oak Ridge National Laboratories. By dividing the data and calculating the comparison 

between the confined metrics generated by the suggested model, the confinement of errors and attacks is 

verified. When contrast to peer methodologies, the results show how good this method is at classifying threats 

and confining them [32]. The latest wave of resilient fake data injection attack methods necessitates a deep 

comprehension of the associated power grid network's structure. This study suggests three methods that are 

independent of network architecture for introducing fictitious data into the smart grid. These methods include 

delta thresholds, linear regression, and linear regression with timestamp. It is intended to close the gaps in real-

time data measurements, hence increasing the probability that tampered data won't be detected. Modern defense 

strategies like AC state estimation, temporal behaviors based on false data detection, bad data detection, and 

SVM demonstrate the resilience of the suggested attack approaches [33]. 

Based on the attacker’s perspective and using the PMU as the attack-defense target in the power system, 

a multi-level game model for FDIA is suggested. In a multi-stage game, special attention is paid to data 

manipulation, strategic modifications, and multi-path attacks. The PMU setup from the intruder’s view is used 

to generate fake data, the strike range is optimized, and the attack repercussions are assessed. Second, the Nash 

equilibrium point may be established by using the ideas of two-player zero-sum game theory and accounting for 

both total income and multi-path attacks in multi-stage games to determine the best attack-defense combination. 

Lastly, a discussion of the experiment findings for both single- and multi-stage games follows. 

The simulation's findings show that attackers can more effectively and efficiently employ the suggested 

multi-stage game approach [34]. Literature presents a realistic bi-level mixed-integer linear programming 

(BMILP) model to replicate fraudulent data injections (FDIs), which attempt to overload several lines of 

transmission and create a collapse of power supply in very big grids. In contrast to previous studies, this model 

accounts for the possibility that attackers may only have restricted access to measurement buses and simulates 

problems on certain lines that are overlooked by current DC state estimation. Furthermore, it is demonstrated 

that stealthy FDIs may be identified using an observation framework based on recursive weighted least-squares 

(WLS) state estimation, but classical WLS estimation is unable to detect FDIs. This helps protect the system 

against many kinds of threats. Two benchmarks are utilized to verify the efficacy of the suggested attack model 

and detection system on the real grid: the IEEE 118-bus benchmark and a 2000-bus artificial grid that mimics 

the Texas, USA, electrical network [35]. Literature [36] proposes a machine learning method that uses point of 

common coupling (PCC) sensors alone to identify cyberattacks in photovoltaic (PV) farms. First, a thorough 

cyber-attack model for a photovoltaic farm is created, considering the variety of operational circumstances. Two 

cyberattack kinds that are often harder to identify are particularly included in the attack model.  

We present and contrast a convolutional neural network (CNN) using micro-phase measurement units 

(μ PMU) and raw electric waveform with figures of merit in relation to existing machine learning techniques. In 

the end, a distributed grid consisting of IEEE 37 buses and solar farms is established as a testbed for cyber-

physical security. A framework for real-time simulation, detection, and visualization is created to show how the 

suggested approach works in an actual setting. The findings demonstrate that the suggested machine learning 

techniques are capable of achieving sufficient resilience and detection accuracy in a range of assault situations 

[36]. Literature [37] builds an IEEE-118-node power network and a 200-node scale-free information network 



Int J Pow Elec & Dri Syst  ISSN: 2088-8694  

 

Ensemble learning based fault detection using PMU data in imbalanced … (Kiruthika Krishnan) 

857 

using the concept of an intricate grid to create a self-sustaining model. Following the process of information 

cataloguing for detecting and ranking the network's junctions, a vulnerability analysis is conducted, and a stream 

model of the power cyber-physical system is built based on the node carrying capacity. Simulation demonstrates 

that intentional assaults cause the system structure to break down more quickly than random attacks do, and that 

failures may be successfully stopped from spreading by raising the node threshold. [37]. Literature [38] put 

forward a “quantum dwarf mongoose optimization with ensemble deep learning based intrusion detection 

(QDMO-EDLID) technique “in the context of CPS. The QDMO-EDLID method that is being discussed uses 

ensemble learning and feature selection (FS) to identify intrusions. The QDMO algorithm is used by the QDMO-

EDLID method to choose feature subsets. Additionally, a mix of deep belief networks (DBN), convolution 

residual networks (CRN), and deep autoencoder (DAE) models is utilized to categorize intrusions. Using 

benchmark intrusion datasets, the QDMO-EDLID technique's experimental results were evaluated. 

The simulation's outcomes demonstrated the QDMO-EDLID approach's increased effectiveness in 

relation to several performance metrics [38]. It is evident from the preceding paper that a large body of research 

has demonstrated how the SMOTE and Ensemble learning algorithms enhance categorization. The subject of 

cyberattack detection and classification is addressed in this paper by the application of the ensemble learning 

method and the SMOTE sampling strategy. The ensemble learning algorithm is used to compare a variety of 

methods, including logistic regression, multilayer perceptron modeling, support vector classifiers, and decision 

tree classifiers. The technique of ensemble learning uses SVC, MLP, logistic regression, and decision tree 

algorithms as core classifiers, with logistic regression serving as the metaclassifier. Several machine learning 

algorithms are implemented and contrasted with the stack ensemble learning strategy. An ensemble learning-

based technique for identifying PMU cyberattacks is put forward in this paper. The specified ensemble learning 

approach is contrasted with the outcomes of many single learning techniques, such as logistic regression, decision 

trees, MLP classifiers, and support vector machines. PMU information on the issue and normal operations is 

collected. Preprocessing is done on the dataset to remove missing values and outliers. The ensemble learning 

algorithm is compared in an unbalanced environment with other single learning techniques, including logistic 

regression, decision trees, MLP classifiers, and support vector machines, in order to detect PMU cyberattacks. 

 

 

2. ENSEMBLE LEARNING-BASED PMU CYBER ATTACK DETECTION USING SMOTE 

SAMPLING 

A collection of data called "PMU cyber-attack Detection" was created specifically to help machine 

learning models identify allegations of cyberattacks. A variety of PMU data observed at various places in the 

power network are included in the dataset. In addition, only few re-searches have tested the isolation and 

location of assaults, which is crucial for defenders to implement the appropriate countermeasures to ensure the 

system continues to function normally even in the face of cyberattacks should be both fault- and attack-tolerant, 

so that even in the worst-case scenarios, it can continue to function as intended. Therefore, to increase the 

resilience of smart grids, the defenders must leverage fault-tolerant control. Thus, a device that can reliably 

detect or anticipate an attack is desperately needed. Figure 1 (see Appendix) [39] contains generators G1 and 

G2 are used. intelligent electronic devices (IEDs) R1 to R4 can turn on and off the breakers. The labels on 

these breakers are BR1 to BR4. There are double lines as well. Lines 1 and 2 extend from BR1 to BR2 and 

BR3 to BR4, respectively. One breaker is automatically controlled by each IED. Consequently, R1 governs 

BR1, R2 governs BR2, and so forth. The IEDs relay on a faraway protection technique that trips the breaker 

on detected faults since they lack inner validation to discern between real and counterfeit faults. Operators can 

manually instruct the IEDs R1 through R4 in addition to manually tripping the breakers BR1 through BR4. 

When doing repairs on the lines or other system parts, the manual override is employed. 
 

 

3. METHODOLOGY 

The dataset used for classification and the different classes are as given in the following: Table 1 

provides an explanation of the 128 characteristics. Every phasor measurement unit (PMU) has 29 different 

kinds of measurements. A PMU or synchro phasor is a device that computes the electrical waves on an energy 

grid by synchronizing with a usual time source. Our system has four PMUs measuring 29 attributes, or 116 

PMU measurement columns in total. 

The events that need to be predicted using machine learning algorithms are natural events that occur 

in the power system, which are shown in Table 2, like the single line to ground (SLG) fault and line 

maintenance. The normal operation, as shown in Table 3, is due to the load changes in the power system. Table 

4 details the different attack event scenarios in the power system due to a cyber-attack, which include data 

injection to trip the relay and remote tripping of the relay. These data are used to train the machine learning 

models for fault and non-fault conditions. 
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Table 1. PMU data specifications 
Feature  Description 

PA1:VH- PA3:VH Voltage phase angle for A, B, and C phases 
PM1:V- PM3:V Voltage magnitude for A, B, and C phases 

PA4:IH- PA6:IH Current phase Angle for A, B, and C phases 

PM4:I- PM6:I Current magnitude for A, B, and C phases 
PA7:VH- PA9:VH Voltage phase angle for positive, negative, and zero sequence components 

PM7:V- PM9:V Voltage phase magnitude for positive, negative, and zero sequence components 

PA10:VH- PA12:VH Current phase angle for positive, negative, and zero sequence components 
PM10:V- PM12:V Current phase magnitude for positive, negative, and zero sequence components 

F Relay frequency 

DF  Relay frequency delta (dF/dt) 
PA:Z Relay appearance impedance 

PA:ZH Relay angle of appearance impedance 

S Relay status flag 

 

 

Table 2. Natural event scenarios 
Scenario Natural events (SLG faults) 

1 Line1 SLG fault from 10-19% 

2 Line1 SLG fault from 20-79% 
3 Line1 SLG fault from 80-90% 

4 Line2 SLG fault from 10-19% 

5 Line2 SLG fault from 20-79% 
6 Line2 SLG fault from 80-90% 

 Natural events (line maintenance) 

13 Line1 maintenance 
14 Line2 maintenance 

 

 

Table 3. No event scenarios 
Scenario No events (normal operation) 

41 Normal operation due to load changes 

 

 

Data was entered into the ARFF format for the initial multiclass dataset, which included fifteen 

datasets with around 5,000 data items per. The 128 aspects or variables that make up these data are mostly 

derived from synchro phasors or phasor measuring units (PMUs). The data was evaluated at 120 samples per 

second, and each scheme was simulated for 17 seconds [39]. Due to various capacity problems that are specific 

to each approach, generalization suffers in independent machine learning techniques.  The generalization 

problem is mostly resolved by an algorithm that can combine the benefits of many machine learning techniques. 

An effective anomaly detection technique is the isolation forest algorithm. An improved implementation of the 

extended isolation forest technique for anomaly identification is included. The general execution particulars of 

suggested approach are shown in Figure 2. There are four main components to the implementation of fault 

prediction. data preprocessing automation, outlier detection and feature engineering, training and testing, 

model evaluation. 

Figure 2 illustrates how the whole data preparation process is automated, leading to a machine learning 

paradigm with no need for human participation. The SVM learning method increases the generality of the 

learning process. Anomaly detection, data cleaning, and data classification into balanced and unbalanced data 

are all included in the automation of data preparation. This establishes the sample plan for the proposed 

implementation. Using the mean value as a stand-in, automatic impurity cleaning and missing value imputation 

are performed on the categorized data. As the most significant electrical applications are fault prediction 

algorithms, the primary factor influencing the research done in this way is the prediction algorithm's reliability. 

For a method to handle millions of data points, it must have higher generality and highly orthogonal input. In 

order to increase prediction performance, more sophisticated feature engineering techniques could be required 

if there is a larger connection between the sample data. It is challenging to acquire the data-aware preprocessing 

program as the recommended aim. The block diagram requires that the chosen fault diagnostic problem be 

subjected to an extended isolation procedure. When the extended isolation forest is used for fault diagnosis, 

the outlier identification shows improved orthogonality. The entire dataset is divided into training and testing 

datasets, each including the aforementioned CSV files. PMU cyber-attack training data has the information on 

whether there is attack or not which can be used as the target variable. The target attribute is fixed to whether 

the measured PMU data is cyber-attack or not since the machine learning algorithm has to predict the same. 
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Table 4. Attack event scenarios 
Scenario Attack type 

 Data injection 
 Attack Sub-type (SLG fault replay) 

7 Line1 with tripping command from 10-19% 

8 Line1 with tripping command from 20-79% 
9 Line1 with tripping command from 80-90% 

10 Line2 with tripping command from 10-19% 

11 Line2 with tripping command from 20-79% 
12 Line2 with tripping command from 80-90% 

 Remote tripping command Injection 

 Attack sub-type (command injection against single relay) 
15 R1 relay command injection 

16 R2 relay command injection 

17 R3 relay command injection 
18 R4 relay command injection 

 Attack subt-type (command injection against single relay)  

19 Relay1 and Relay2 command injection 

20 Relay3 and Relay4 command injection 

 Relay setting change 

 Attack sub-type (disabling relay function-single relay disabled and fault 
21 Line1 SLG fault from 10-19% R1 disabled and fault 

 Line1 SLG fault from 20-79% R1 disabled and fault 
 Line1 SLG fault from 10-49% R2 disabled and fault 

 Line1 SLG fault from 50-79% R2 disabled and fault 

 Line1 SLG fault from 80-90% R2 disabled and fault 
 Line2 SLG fault from 10-19% R3 disabled and fault 

 Line2 SLG fault from 20-79% R3 disabled and fault 

 Line2 SLG fault from 10-49% R3 disabled and fault 
 Line2 SLG fault from 50-79% R4 disabled and fault 

 Line2 SLG fault from 80-90% R4 disabled and fault 

 

 

 
 

Figure 2. Overall block diagram of data preprocessing automated SVM learning 
 

 

4. RESULTS AND DISCUSSION 

Python is used in conjunction with the Scikit-learn (sklearn), synthetic minority oversampling 

technique (SMOTE), and Pandas toolboxes to create cyber-attack prediction. Using MLP, SVM, and decision 

tree algorithms as the base classifiers and logistic regression as the meta classifier, an ensemble learning code 

is created to find cyber attacks. Figure 3 displays the graph that was created to illustrate the various input 

variables. Since there is a noticeable disparity between the amount of cyberattack data and regular data, the 

data appears to be unbalanced. 

The individual and ensemble learning paradigms are used to design the categorization issue. Data is 

resampled, and data imbalance is verified. Numerous attributes that are not necessary for categorization are 

removed from the dataset prior to resampling. The significant characteristics from the dataset remain after the 

insignificant features have been eliminated. Table 5 lists the parameters for the various machine learning 

algorithms utilized in the ensemble learning technique. An ML approach called ensemble learning combines 

many base classifiers to produce a more powerful prediction model. The decision tree algorithm, multi-layer 

perceptron (MLP), and support vector classifiers (SVC) are the base classifiers in this instance. Training each 

base classifier separately on the training set of data is the first stage in the ensemble learning process. For the 

test data, every base classifier will provide a unique set of predictions. A meta-classifier will be used to 

aggregate these predictions and provide a final prediction. In this instance, logistic regression serves as the 

meta classifier. It generates a final prediction by using the input predictions from each of the base classifiers. 

In order to generate the most accurate prediction possible, the meta-classifier integrates the knowledge gained 
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from the basis classifiers' predictions. Combining the meta-classifier's predictions with the basic classifiers' 

predictions yields the final ensemble model. 

The way this combination is used optimizes the forecast accuracy. An ensemble learning approach 

can boost the model's accuracy by combining the benefits of many basic classifiers. The drawbacks of separate 

classifiers can be mitigated by combining the benefits and drawbacks of each fundamental classifier. All things 

considered, the ensemble learning algorithm is an important machine learning technique that may yield 

extraordinarily accurate predictions. It employs logistic regression as a meta-classifier and SVC, MLP, and 

decision tree algorithms as base classifiers. Figure 3 displays the graphs of various input variables represents 

Figure 3(a) voltage phase angle for C phase, Figure 3(b) voltage magnitude for B phase, Figure 3(c) voltage 

phase angle for B phase, and Figure 3(d) voltage magnitude for A phase. Figure 4 represents an AUC-ROC 

curve that was produced by the individual and group learning (stack distribution) technique. On comparison 

with other distinct machine learning techniques, the stack distribution approach yields the highest AUC-ROC 

curve performance. Out of all the algorithms, logistic regression demonstrated good performance. All the 

separate methods are outperformed by the ensemble learning algorithm. Given that the SMOTE algorithm was 

utilized as the sampling technique, it is concluded that the implementation's accuracy is good. Since there are 

several SMOTE methods available, the diversity of SMOTE implementation on up-sampling may be used to 

enhance the accuracy and AUC-ROC curve for the up-sampled input characteristics. 
 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 3. Input variables from the PMU (4 among the 128 variables): (a) voltage phase angle for C phase, 

(b) voltage magnitude for B phase, (c) voltage phase angle for B phase, and (d) voltage magnitude for A phase 
 

 

Table 5. Ensemble learning parameters 
Machine learning model Parameters 

MLP classifier Activation = "relu", alpha = 0.1, hidden_layer_sizes = 30, learning_rate = "invscaling", max_iter 

= 50000, random_state = 1000 
Decision tree classifier max_depth = 5, max_features = "auto", min_samples_leaf = 0.005, min_samples_split = 0.005, 

random_state = 2000 

SVC C=85, degree = 15, gamma = .8, kernel = "rbf", probability = True 
Logistic regression random_state = 42 
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Figure 4. AUC-ROC curve for individual and stack ensemble learning algorithms 
 

 

5. CONCLUSION 

This research develops an ensemble learning-based method for cyberattack detection. We investigated 

how different ensemble techniques performed and contrasted with different single-learning algorithms. Our 

findings show for attack detection, the ensemble learning strategy performs much better than single learning 

algorithms. With a 95.4% accuracy rate, our method shows promise for effective cyberattack detection in the 

domain. Future research will examine different ensemble learning methods and expand the methodology to 

new fields. The outcomes of our experiments demonstrate that when it comes to cyberattack detection, the 

ensemble learning strategy performs noticeably better than single learning algorithms. 
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Figure 1. Proposed system with PMU [39] 
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