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ABSTRACT

In this paper, we introduce a comprehensive design and control strategy for an
energy storage system based on compressed air to enhance both electrical en-
ergy quality and operational flexibility. The formulation of this control structure
involved extensive calculations and computer simulations, which now require
experimental validation. We describe the specifically designed test benches for
this purpose and present an analysis of the experimental results. The paper be-
gins with a brief overview of the didactic bench used to test the pure pneumatic
conversion system, followed by the presentation and discussion of the initial
practical results of the maximum energy point tracking (MEPT) strategy derived
from this bench.
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1. INTRODUCTION
In the majority of remote locales, the primary source of electrical power is typically represented by

diesel generators. Within these particular regions, the cost associated with expanding the conventional elec-
tricity grid is deemed prohibitive, further compounded by the significant escalation in fuel prices due to the
isolation factor [1]. The sustained decrease in the cost of renewable energy-based generator systems, along
with the steadily improving dependability of these technologies, has facilitated a heightened adoption of re-
newable energy sources for electricity generation within remote regions [2], [3].

In Morocco, as an illustrative case, alongside the burgeoning adoption of wind and solar energy,
primarily through the establishment of large-scale facilities integrated with centralized distribution networks,
the provision of electricity to remote locations through diesel generators continues to present considerable
technical and financial challenges [4], [5]. This method of electricity generation is characterized by its inherent
inefficiency, exorbitant cost, and substantial greenhouse gas (GHG) emissions [3], [6].

The combination of wind and solar (joint energy systems (JES)) within these self-contained networks
shows promise for alleviating operational deficiencies. Nevertheless, the economic sustainability of JES rests
on reaching a large penetration rate of wind or solar energy, a feat feasible only through the deployment of
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energy storage systems. In this work, a comprehensive solution is provided that matches with both technical
and budgetary demands, enabling the dependable distribution of electricity to remote places.

This concept comprises the development of a hybrid wind-photovoltaic system equipped with com-
pressed air storage. Hence, revolutionary concepts in compressed air energy storage (CAES) have recently
developed, establishing CAES as an appealing storage technology for the seamless integration of renewable
energy sources into the power grid [2], [7], [8]. As a notable development, small-scale compressed air en-
ergy storage (SSCAES) systems have been created, with a focus on their implementation in rural areas and
developing countries [9], [10]. Air is stored in tanks or containers in these small systems [2], [11].

The compressed air is then used to power an air motor or turbine, which in turn moves an electric
generator that generates power for users. The charging and discharging procedures of SS-CAES entirely rely
on clean air as an energy source, making it an attractive alternative for usage with renewable energy sources [1],
[12], [13]. Comparing SS-CAES to more widely recognized energy storage devices, such as lithium batteries
[10], it becomes evident that SS-CAES exhibits lower energy density. However, it is important to note that
batteries generate toxic waste and are susceptible to potential overheating and explosions arising from their
internal resistance. Consequently, the implementation of a battery management system is imperative for their
safe operation [14], [15].

In this study, as illustrated in Figure 1 the pneumatic-to-electrical conversion process can be reduced
into two independent processes. Firstly, mechanical energy is generated by the employment of an air motor.
Subsequently, the mechanical energy is further turned into electrical energy via a standard direct current (DC)
machine. It is vital to note that this research primarily focuses on the discharge process, and as such, it includes
the employment of a tiny DC generator. This technique provides an easy and speedy control of the electro-
mechanical conversion process [2], [16]. To manage and regulate the system’s operation and attain the desired
output power conditioning, a Buck converter is employed in this paper.

The algorithm used in this paper is capable of ensuring the correct direction of speed adjustments in
response to transient fluctuations in input power. The system’s behavior is analyzed through the utilization of a
small signal model. A digital speed regulator is specifically engineered to manage the output power of the DC
generator, thereby achieving the targeted maximum power point tracking (MPPT). Subsequently, the MPPT
algorithm is subjected to simulation and experimental implementation.

Figure 1. Pneumatic energy conversion principle using volumetric air machine

2. MAXIMUM POWER POINT TRACKING STRATEGY IMPLEMENTATION FOR THE STUD-
IED SYSTEM

The work presented in [17] highlights the power characteristics of the compressed air motor [1],
[18], [19]. The analysis reveals the existence of a critical operational point where maximum power output is
achieved. This maximum power output is crucial, particularly during peak demand scenarios, underscoring the
necessity for precise control of the motor’s speed to ensure optimal power delivery [2], [5]. Various maximum
power point tracking (MPPT) monitoring strategies have been proposed in the literature, including methods
such as perturb and observe (PO), incremental conductance (IC), and fuzzy logic, among others [20], [21].

In this article, we apply the incremental conductance (CI) technique to track the greatest power point.
This approach relies on the observation that the power curve of the pneumatic motor shows a zero slope at the
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maximum power point (MPP), with increasing slopes to the left and decreasing slopes to the right [2], [3]. This
relationship can be expressed as in (1).

P =
π

30
(MN) = M1N (1)

With: P: power of pneumatic motor; M: torque of pneumatic motor; and N: mechanical rotational speed of
pneumatic motor. Thus, it can be inferred as in (2) that if:

dP

dN
=

M1N

dN
= M1 +N

M1N

dN
(2)
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The actual point is the MPP.
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The actual point is on the left of the MPP.

∆M1
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>

M1

N
The actual point is on the right of the MPP. The MPP can be identified by comparing the

instantaneous conductance with the incremental conductance (IC), as illustrated in the flowchart in Figure 2.

Figure 2. Incremental conductance algorithm

2.1. MPPT strategy simulation results
The provided Figure 3 depicts the theoretical outcomes of simulations conducted using MATLAB

software. This graphical representation portrays the operational curve of the maximum power point tracking
(MPPT) algorithm [11]. It is discernible from the graph that the analytically determined reference speed closely
corresponds to the speed of the simulated motor. This alignment serves as empirical evidence supporting the
efficacy and accuracy of the previously introduced MPPT algorithm [9], [10].

The discharging process demonstrates the attainment of maximum air motor power through the use of
an MPPT algorithm, even a midst varying pressure conditions. The actual speed aligns with the optimal speed
of the air motor, derived from the motor’s maximum power as a function of pressure [22]. It is evident that
the MPPT algorithm effectively facilitates a controlled reduction in speed adjustments, achieving an accuracy,
while maintaining a smooth ripple speed of t = 5s to optimize power conversion as the pressure transitions
from 6 bar to 4 bar, and subsequently to 2 bar. Furthermore, the analysis indicates that the dynamic response of
the air motor is influenced by variations in the rate of power relative to changes in both duty cycle and speed.
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2.2. Dimensioning and design of the boost converter
The boost converter is a unidirectional parallel DC converter, a voltage step-up converter, consisting

of an inductor Lb, a power switch (transistor), a diode, and an output capacitor Cb. It converts the input
voltage Vin from the three-phase rectifier into an output voltage denoted as Vout. The conversion is achieved
by controlling the transistor with a periodic signal using pulse width modulation (PWM) with a duty cycle and
a frequency fb (period: Tb) [9]-[12]. In the design phase of the boost converter, the following assumptions will
be accepted: i) All components are perfect (without losses); ii) The plan will be assumed to be established; and
iii) The output voltage is considered constant during the period.

After all mathematical calculation done, we denote req as the equivalent resistance seen at the input
of the converter, and RL as the resistance seen at the output of the converter. The relationship between these
two resistances can be determined by (3) [14], [23].

Req = (1− α)2RL (3)

The equivalent resistance Req allows adjusting the amount of power transmitted to the load RL. It
determines the current delivered by the DC generator and thus its resisting torque Te, consequently affecting its
rotational speed ωm. The duty cycle will be adjustable to maximize the extracted power (achieved through the
MPPT control) [24], [25]. The advantage of this structure lies in the simplicity of power control, as it involves
a simple pulse width modulation (PWM) signal at the boost converter level, without directly controlling the
DC generator [10], [20].

Figure 3. Theoretical results of simulation from MATLAB/Simulink

2.2.1. Determining boost converter parameter values
- Calculation of the value of the output capacitor: Cb

During phase 1, the output capacitor Cb is the only element that supplies energy to the load at the
output of the boost converter. Assuming that the current is constant, the amount of charge exchanged with the
load during this period, which lasts for α.Tb , is (4) [17], [26].

∆Q = Iout.α.Tb (4)

During this period, the output voltage ripples expressed in (5).

∆Vout =
△Q

Cb
(5)

Then we deduce to (6).
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Cb =
Iinv αTb

∆Vout
(6)

The final form of voltage ripples is given by (7).

∆Vout = ESR.(
α Iinv
1− α

) +
∆ i

2
(7)

Here are the data for the boost converter: power: 25 W; input voltage (Vin): 12 V; output voltage (Vout): 24 V;
output current (Iout): 1.2 A; duty cycle: 0.25; inductance (Lb): 0.1 mH; capacitor (Cb): 400 µF ; and equivalent
series resistance (ESR): 270 mΩ; switching frequency (fb): 8 kHz.
- Calculation of the value of the inductor: Lb

The inductor remains the most delicate element to determine. If the inductance is over sized, it will
cause significant power losses due to joule heating [22], [23]. On the other hand, if the inductance is undersized,
it will act like a resistor because of its saturation. Based on (7), we find (8) [7], [27], [28].

Lb =
αV in

△i.fb
(8)

fb: represents the frequency of the pulse width modulation (PWM) control signal of the boost converter. Figure
4 shows the experimental implementation of a boost converter with a 12V input and a 24V output.

Figure 4. Boost converter realization

3. EXPERIMENTAL RESULTS AND DISCUSSION
3.1. Test bench description

Initial experiments into the increase of pneumatic energy storage required the employment of a solely
pneumatic conversion system employing a volumetric air machine. The MEPT technique was then devised to
enhance the performance of this machine by including speed control. A schematic illustration of the experimen-
tal test rig built for this purpose is commented upon in the Figure 5, each number explains: i) compressed-air
tank and pressure regulator, ii) compressed-air motor, iii) DC generator, iv) incremental encoder speed sen-
sor, v) boost converter and gate driver circuit, vi) resistive load, vii) Arduino Due board, and viii) interface
human-machine (PC).

The study and experimental validation employed ATLAS COPCO’s LBZ14R-005 air motor, the char-
acteristics of which were delineated in [9]. The investigation utilized compressed air sourced from a 10 bar
compressed air reservoir employed as a storage apparatus, with a maximum pressure constraint of 7 bar, align-
ing with the recommended operational parameters for the motor. A diminutive 1 KW direct current (DC)
electric machine was employed to facilitate the conversion of mechanical energy into electrical energy. The
selection of a DC machine was motivated by its capacity to streamline energy conversion processes and facili-
tate speed regulation. For the purpose of speed control and power conditioning, a DC-DC boost converter was
harnessed. The pulse width modulation (PWM) signals emitted by the Arduino Due driver board exhibited a
voltage level of 0/3.3 V, while the switching transistors (MOSFETs) within the power converters necessitated
logic level voltages of 0/15 V. This requisite was fulfilled through the implementation of TLP250 drivers.

3.2. Experimental results
The upcoming section will focus on the experimental validation of the maximum power point tracking

(MPPT) technique, as elaborated in section 2. It is crucial to note that the functions affecting speed control
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and adjustment of the DC bus voltage are executed through the Arduino Due board. Notably, the determination
of airflow relies on pressure and speed measurements, applying the variable pressure model defined in (2).
Likewise, mechanical torque is determined from the same set of observations, applying as (2).

Figures 6(a) and 6(b) in the presentation display the experimental plots capturing the startup behavior
of the compressed air motor while operating at a constant pressure of 5 bar. It is noteworthy that the system
achieves precise alignment with the setpoint value approximately one second after the initiation of the reservoir
valve, primarily attributable to the utilization of the maximum power point tracking (MPPT) technique and
the proportional integral (PI) control of the boost. This time delay exhibits variability due to the stochastic
fluctuations in the initial torque associated with the pneumatic motor equipped with pallets within the specified
configuration.

Figures 7(a) and 7(b) present the findings derived from experimental trials conducted within a dy-
namic pressure range spanning from 3 bar to 6 bar. In Figure 7(a), the graphical representation illustrates the
presence of output voltage ripples, measuring approximately 23.7 V, primarily attributable to the influence of
elevated pressures. This phenomenon is an inherent characteristic associated with the utilization of the incre-
mental conductance (IC) technique for tracking the maximum power point (MPPT). As for the speed response,
Figure 7(b) illustrates that the system attains synchronization with the predetermined setpoint signal within
approximately 0.03s, it is noteworthy that this rapid response is a commendable attribute of the system.

Figure 5. Experimental setup for the discharging process with MPPT algorithm
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Figure 6. Experimental results: (a) variation of speed in a constant pressure system and (b) variation of
voltage in a constant pressure system
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Figure 7. Experimental results: (a) variation of speed in a variable pressure system and (b) variation of voltage
in a variable pressure system
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The dynamic response of the system illustrated in Figure 7 demonstrates that the hybrid MPPT method
incorporates a calculated speed command. Through speed regulation within the cascade proportional-integral
(PI) controller, the system achieves a reference speed. The optimal speed of the air motor is analyzed based on
maximum power point (MPP) considerations relative to the measured pressure. It is evident that the dynamic
response of the air motor’s speed corresponds closely to maximizing power output using the MPPT algorithm
during the discharging process under varying pressure conditions. The convergence of the air motor’s speed
aligns with the characteristic air motor speed at different pressure levels corresponding to the MPP. So, we can
conclude that a comparative analysis between these empirical outcomes and the simulated curves reveals a high
degree of conformity, affirming the accuracy, and reliability of the implemented system.

4. CONCLUSION
In this paper, we initiated our discourse by furnishing an exposition on the diverse constituents com-

prising the devised and realized test platform. Subsequently, we expounded upon the empirical substantiation
of the examined algorithms employed for the extraction of the maximum power point (MPPT). The outcomes
elucidated that the algorithm we proposed exhibits commendable attributes such as swift initialization and adept
tracking capabilities. A comparative analysis between the empirical data and the simulated curves revealed a
noteworthy concurrence between the two, affirming the robustness of our proposed algorithm.
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