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 The integration of renewable energy sources (RES) into microgrids (MGs) is 

becoming increasingly important as the world strives to transition towards 

more sustainable and eco-friendly energy systems. Unfortunately, integrating 

RES such as solar and wind power into MGs poses challenges due to their 

intermittent nature. The batteries need to be integrated into the MG system to 

overcome these challenges and ensure a stable and reliable power supply. 

However, the size of the battery presents another challenge as it affects the 

total operation cost of the MG system. Manta ray foraging optimization 

(MRFO) is used as an optimization technique to minimize the total operation 

cost of the MG system while ensuring optimum battery capacity. This 

algorithm is compared with the particle swarm optimization (PSO), 

differential evolution (DE), and the sine cosine algorithm (SCA). As a result, 

the proposed technique achieved a better solution than the existing algorithms. 
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1. INTRODUCTION 

Energy is an essential ingredient for the socio-economic growth of every country worldwide. The 

demand for renewable energy sources (RES) is rapidly increasing to complement the decreasing supply of 

fossil fuels such as coal, oil, and gas [1]. Additionally, RES offers positive impacts on the social, economic, 

and environmental aspects [2]. RES commonly generate electrical energy from natural resources such as solar, 

wind, hydro, biomass, geothermal and hydrogen [3]. Unfortunately, some of the available RESs are erratic and 

intermittent. Their output depends on weather conditions; hence, they cannot produce energy non-stop as might 

be required. The direct integration of RESs into the grid without proper technical interface could lead to 

instability, unreliability, and power quality problems. 

Microgrid (MG) technology has evolved over the years as a technological platform enabling the 

integration of RESs into the electrical utility grid. It consists of distribution generation (DG), energy storage, 

and load, which can be connected to the national grid or isolated [4]. This system can operate in alternating 

current (AC) and direct current (DC). The nature based of DGs such as PV and WT facilitate the installation 

of energy storage system (ESS) in the MG. These ESS such as flywheel, battery energy storage (BES), or 

supercapacitor (SC) can solve the problem of imbalance between load demand and energy generation by RES. 

https://creativecommons.org/licenses/by-sa/4.0/
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The most promising ESS installed in MG are batteries and SC due to their low cost, high lifetime, reliability, 

and lower environmental impact [5]. Since MG is required to operate parallel with the national grid, many 

problems need to be figured out to ensure the reliability of the entire system. These problems could be due to 

a mismatch between the load, the intermittent nature of the RES, and the introduction of harmonics by the 

power electronic converters [6]. Therefore, MG planning is a complex process that must consider economic, 

technical, environmental and other factors. Conflicts often arise among the planning goals or objectives of the 

MG, leading to the emergence of different optimization problems. 

There are several meta-heuristic optimization techniques to address challenges in MG design and 

operation. These techniques can minimize the net present cost (NPC) [7], sizing storage system [8] and reduce 

operating costs [9]. Additionally, advanced control strategies such as demand response mechanism and energy 

management system (EMS) can be implemented to enhance the MG operation [10], [11]. However, the efficacy 

of meta-heuristic techniques varies, as evidenced by recent studies. Abdullah et al. [12] and Salkuti [13] used 

particle swarm optimization (PSO) and teaching learning based optimization (TLBO) respectively, to optimize 

power generation, improving efficiency and reducing cost. Conversely, Tiwari et al. [14] and Mishra and  

Shaik [15] introduced innovative algorithms like Harris hawks optimization (HHO) and African vulture 

optimization algorithm (AVOA) to solve economic-emission dispatch problems in MG systems. Moreover,  

Trivedi et al. [16] and Soliman et al. [17] expanded on this by integrating environmental dispatch 

considerations with economic objectives, highlighting the multifaceted nature of MG optimization. 

Additionally, Dai et al. [18] and Van Hong and The [19] explored chaos map adaptive annealing PSO and 

symbiotic organisms search algorithm (SOSA) to enhance economic dispatch and storage sizing, showcasing 

the diverse applications of meta-heuristic approaches.  

From the above literature review, the optimized economic dispatch of an MG system is required to 

satisfy the load demand with the integration of ESS. The fluctuating generation of RES such as solar and wind 

necessitates the use of ESS. The main objective of this paper is to identify the optimum BES capacity at the 

minimum operating cost of the MG. The operating cost of MG system is compared with and without the 

installation of BES. The simulation is performed on the MG test system consisting of a fuel cell, microturbine, 

wind turbine, solar photovoltaic and BES using the manta ray foraging optimizer (MRFO) algorithm. The result 

is also compared with other algorithms such as PSO, differential evolution (DE) and sine cosine algorithm (SCA). 

 

 

2. METHODOLOGY 

The MG system is shown in Figure 1 [20]. It is connected to the national grid and consists of a 

microturbine (MT), fuel cell (FC), PV, WT and lithium-ion BES. The data for power limitations, bid price, 

operation and maintenance (O&M) price, and start-up and shut-down price for power generation in MG system 

are shown in Table 1. The negative value of BES represents the discharging operation of BES while the 

negative value for grid represents the feed-in energy to the grid. 
 
 

 
 

Figure 1. MG system 
 

 

Figure 2(a) illustrates the forecast of power generation by the PV and WT systems over a 24-hours 

period. The PV system starts generating the electricity at 8 am, reaching its peak output of 23.9 kW by 1 pm, 

while the lowest output of 0.2 kW is recorded at 8 am. The total energy generated by PV system is  

91.475 kWh. In contrast, the WT system is projected to generate power thought the day. Its output remains 

steadily at 1.785 kW from 1 am to 5 am, then gradually increase to a maximum of 10.41 kW by 12 pm. 

However, after reaching its peak at 1 pm, the WT output gradually decrease to 1.305 kW by 4 pm and fluctuates 

between 0.915 kW and 1.785 kW from 5 pm to 11 pm before hitting its lowest point of 0.615 kW at midnight. 

Additionally, the load demand and electricity price are shown in Figure 2(b). The load demand starts at 50 kW 
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and continue to increase up to 77.5 kW at 10 am. The load fluctuated before reaching its peak at 87 kW at  

7 pm. Then the load decreased rapidly, reaching 53.5 kW at 12 am. Meanwhile, the price is low, starting 

between 0.12 cents to 0.30 cents from 11 pm to 8 am, reaching the peak price of 4 cents from 10 am to 12 pm 

and at 2 pm. The price then rapidly declines, reaching 0.43 cent from 3 pm to 8 pm. 
 

 

Table 1. The limitation power generation in MG system 
Type Power (kW) Bid price ξ (€/kWh) O&M price (€/kWh) Start-up/shut-down price (€ct) 

MT 6-30 0.457 0.0446 0.96 

FC 3-30 0.294 0.08618 1.65 

PV 0-25 2.584 0.2082 0 
WT 0-15 1.073 0.5250 0 

BES (-30)-30 0.38 - - 

Grid (-30)-30 - - - 

 

 

  
(a) (b) 

 

Figure 2. The forecast analysis of renewable energy sources and load demand:  

(a) forecast output of PV and WT and (b) the load demand and electricity price 
 

 

2.1.  Problem formulation 

2.1.1. Objective function 

The minimization of the operating cost of the MG system is represented in (1)–(21) [21]–[23]. 
 

𝐹𝑚𝑖𝑛 = ∑ 𝐶𝐺𝐸𝑁 + 𝐶𝑂𝑀 + 𝑇𝐶𝑃𝐷𝐵𝐸𝑆
24
𝑡=1  (1) 

 

Where 𝐹𝑚𝑖𝑛 is the total daily operating cost of MG, 𝐶𝐺𝐸𝑁 is the operating cost of the DG, 𝐶𝑂𝑀is the total 

operation and maintenance cost and 𝑇𝐶𝑃𝐷𝐵𝐸𝑆  is the total cost per day of BES. 
 

𝐶𝐺𝐸𝑁,𝑡 = 𝐶𝐺𝑅𝐼𝐷,𝑡 + 𝐶𝐷𝐺,𝑡 + 𝐶𝐵𝐸𝑆,𝑡 + 𝐶𝑆𝑈_𝑀𝑇,𝑡 + 𝐶𝑆𝐷_𝑀𝑇,𝑡 + 𝐶𝑆𝑈_𝐹𝐶,𝑡 + 𝐶𝑆𝐷_𝐹𝐶,𝑡 (2) 
 

Where 𝐶𝐺𝑅𝐼𝐷 is the cost of exchanging power from the grid, 𝐶𝐷𝐺is the cost of DG operation, 𝐶𝐵𝐸𝑆 is the cost of 

BES operation, 𝐶𝑆𝑈_𝑀𝑇,𝑡 , 𝐶𝑆𝑈_𝐹𝐶,𝑡 are the cost of start-up for MT and FC respectively and 𝐶𝑆𝐷_𝑀𝑇,𝑡, 𝐶𝑆𝐷_𝐹𝐶,𝑡 are 

the cost of shut-down for MT and FC respectively. 
 

𝐶𝐺𝑅𝐼𝐷,𝑡 = {

𝜉𝐺𝑅𝐼𝐷,𝑡 ×  𝑃𝐺𝑅𝐼𝐷,𝑡

(1 − 𝑡𝑎𝑥)𝜉𝐺𝑅𝐼𝐷,𝑡 ×  𝑃𝐺𝑅𝐼𝐷,𝑡

0

𝑖𝑓 𝑃𝐺𝑅𝐼𝐷 > 0
𝑖𝑓 𝑃𝐺𝑅𝐼𝐷 < 0

𝑖𝑓 𝑃𝐺𝑅𝐼𝐷 = 0
} (3) 

 

Where 𝜉𝐺𝑅𝐼𝐷 is a bid of the grid and 𝑃𝐺𝑅𝐼𝐷,𝑡 is the power of grid. 
 

𝐶𝐷𝐺,𝑡 = 𝜉𝑀𝑇,𝑡 × 𝑃𝑀𝑇,𝑡 × 𝛾𝑀𝑇,𝑡 + 𝜉𝐹𝐶,𝑡 × 𝑃𝐹𝐶,𝑡 × 𝛾𝐹𝐶,𝑡 + 𝜉𝑃𝑉,𝑡 × 𝑃𝑃𝑉,𝑡 + 𝜉𝑊𝑇,𝑡 × 𝑃𝑊𝑇,𝑡 (4) 
 

Where 𝜉𝑀𝑇 , 𝜉𝐹𝐶 , 𝜉𝑃𝑉, 𝜉𝑊𝑇  are the bids of MT, FC, PV and WT and 𝑃𝑀𝑇 , 𝑃𝐹𝐶 , 𝑃𝑃𝑉, 𝑃𝑊𝑇  are the power generation 

of MT, FC, PV and WT respectively, and 𝛾𝑀𝑇, 𝛾𝐹𝐶  are the status of MT and FC, where 0 indicates OFF and 1 

indicates ON. 
 

𝐶𝐵𝐸𝑆,𝑡 = 𝜉𝐵𝐸𝑆,𝑡 × 𝑃𝐵𝐸𝑆,𝑡 (5) 
 

Where 𝜉𝐵𝐸𝑆 is bid of BES and 𝑃𝐵𝐸𝑆 is power of BES. 
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𝐶𝑆𝑈_𝑀𝑇,𝑡 = 𝑆𝑈𝑀𝑇 × 𝑚𝑎𝑥(0, 𝛾𝑀𝑇,𝑡 − 𝛾𝑀𝑇,𝑡−1) (6) 

 

𝐶𝑆𝐷_𝑀𝑇,𝑡 = 𝑆𝐷𝑀𝑇 × 𝑚𝑎𝑥(0, 𝛾𝑀𝑇,𝑡−1 − 𝛾𝑀𝑇,𝑡) (7) 

 

𝐶𝑆𝑈_𝐹𝐶,𝑡 = 𝑆𝑈𝐹𝐶 × 𝑚𝑎𝑥(0, 𝛾𝐹𝐶,𝑡 − 𝛾𝐹𝐶,𝑡−1) (8) 

 

𝐶𝑆𝐷_𝐹𝐶,𝑡 = 𝑆𝐷𝐹𝐶 × 𝑚𝑎𝑥(0, 𝛾𝐹𝐶,𝑡−1 − 𝛾𝐹𝐶,𝑡) (9) 

 

Where 𝑆𝑈 is the start-up cost for MT/FC, 𝑆𝐷 is the shut-down cost for MT/FC.  

 

𝐶𝑂𝑀 = (𝑂𝑀𝑀𝑇 + 𝑂𝑀𝐹𝐶 + 𝑂𝑀𝑃𝑉 + 𝑂𝑀𝑊𝑇)  × 24 (10) 

 

Where 𝑂𝑀 is the operation and maintenance cost of MT, FC, PV, and WT respectively. 

 

𝑇𝐶𝑃𝐷𝐵𝐸𝑆 =
𝐶𝐵𝐸𝑆_𝑀𝐴𝑋

365
(

𝜎(1+𝜎)𝜀

(1+𝜎)𝜀 𝐶𝑖𝑛𝑠 + 𝐶𝑂𝑀_𝐵𝐸𝑆) (11) 

 

Where 𝐶𝐵𝐸𝑆_𝑀𝐴𝑋 is the maximum BES capacity, 𝜎 is the interest rate, 𝜀 is the lifetime of BES, 𝐶𝑖𝑛𝑠  is the 

installation cost of BES and 𝐶𝑂𝑀_𝐵𝐸𝑆 is the maintenance cost of BES. 

 

2.1.2. Constraints 

The minimization operation cost is subjected to the following constraints: 

- Balance load demand 

The power generation in the MG system by MT, FC, PV, WT, and grid must be equal to the load 

demand. 

 

𝑃𝐿𝑂𝐴𝐷,𝑡 = 𝑃𝑀𝑇,𝑡 ∙ 𝛾𝑀𝑇,𝑡 + 𝑃𝐹𝐶.𝑡 ∙ 𝛾𝐹𝐶,𝑡 + 𝑃𝑃𝑉,𝑡 + 𝑃𝑊𝑇,𝑡 + 𝑃𝐺𝑅𝐼𝐷,𝑡 (12) 

 

Where 𝑃𝐿𝑂𝐴𝐷,𝑡 is the load demand at time, t. 

- Operating power generation 

The power generation of MT, FC, PV, and WT could be within the minimum and maximum range of 

their generation. 

 

𝑃𝑀𝑇_𝑚𝑖𝑛 ≤ 𝑃𝑀𝑇,𝑡 ≤ 𝑃𝑀𝑇_𝑚𝑎𝑥 (13) 

 

𝑃𝐹𝐶_𝑚𝑖𝑛 ≤ 𝑃𝐹𝐶,𝑡 ≤ 𝑃𝐹𝐶_𝑚𝑎𝑥 (14) 

 

𝑃𝑃𝑉_𝑚𝑖𝑛 ≤ 𝑃𝑃𝑉,𝑡 ≤ 𝑃𝑃𝑉_𝑚𝑎𝑥 (15) 

 

𝑃𝑊𝑇_𝑚𝑖𝑛 ≤ 𝑃𝑊𝑇,𝑡 ≤ 𝑃𝑊𝑇_𝑚𝑎𝑥 (16) 

 

- Battery operation 

The BES operation must operate between the range of BES state of charge (SOC). The cumulative 

BES capacity must be considered with the range of capacity minimum and maximum. The charging and 

discharging mode operation of the BES influences the battery capacity. 

 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑡 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 (17) 

 

𝑃𝐵𝐸𝑆_𝑚𝑖𝑛 ≤ 𝑃𝐵𝐸𝑆,𝑡 ≤ 𝑃𝐵𝐸𝑆_𝑚𝑎𝑥 (18) 

 

𝐶𝐵𝐸𝑆_𝑚𝑖𝑛 ≤ 𝐶𝐵𝐸𝑆,𝑡 ≤ 𝐶𝐵𝐸𝑆_𝑚𝑎𝑥 (19) 

 

- Grid operation 

In MG system, energy can be imported and exported to the grid within a certain limit. Negative values 

represent exported power, while positive values are imported power. 

 

𝑃𝐺𝑅𝐼𝐷_𝑚𝑖𝑛 ≤ 𝑃𝐺𝑅𝐼𝐷,𝑡 ≤ 𝑃𝐺𝑅𝐼𝐷_𝑚𝑎𝑥 (20) 
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- Operating reserve 

Operating reserve is the sum of the balance capacity between maximum generation and dispatchable 

output power for each DG, excluding RES. The amount of power can be calculated as: 
 

𝑂𝑅𝑡 +  𝑃𝐿𝑂𝐴𝐷,𝑡 ≥ (𝑃𝑀𝑇_𝑚𝑎𝑥 ∙ 𝛾𝑀𝑇,𝑡 + 𝑃𝐹𝐶_𝑚𝑎𝑥 ∙ 𝛾𝐹𝐶,𝑡 + 𝑃𝐵𝐸𝑆_𝑚𝑎𝑥 + 𝑃𝐺𝑅𝐼𝐷_𝑚𝑎𝑥) (21) 
 

2.2. Manta ray foraging optimizer 

Manta ray foraging optimizer (MRFO) is a novel meta-heuristic algorithm technique proposed by 

Zhao et.al. [24] in 2020. It is inspired by the foraging behaviors of manta rays, specifically their methods for 

obtaining plankton. It has shown promising results across various applications such as energy and power, image 

processing, PID control, PV parameter optimization, feature selection, scheduling, and other fields [25]. This 

algorithm incorporates three main strategies: chain foraging, cyclone foraging, and somersault foraging.  

 

2.2.1. Chain foraging 

The mathematical model represents the chain behavior of manta rays as in (22). 

 

𝑥𝑖
𝑑(𝑡 + 1) = {

𝑥𝑖
𝑑(𝑡) + 𝑟 ∙ (𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡)) + 𝛼 ∙ (𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡))  𝑖 = 1

𝑥𝑖
𝑑(𝑡) + 𝑟 ∙ (𝑥𝑖−1

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡)) + 𝛼 ∙ (𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡))  𝑖 = 2

 (22) 

 

𝛼 = 2 ∙ 𝑟 ∙ √|log (𝑟)| (23) 
 

Where, 𝑥𝑖
𝑑(𝑡) is the position of ith individual at time t in dth dimension, α is a weight coefficient, 𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) 

represents the plankton with high concentration, r is the random number in [0,1]. 
 

2.2.2. Cyclone foraging 

The mathematical model represents the cyclone behavior of manta rays as in (24) and (25). 

 

𝑥𝑖
𝑑(𝑡 + 1) = {

𝑥𝑏𝑒𝑠𝑡
𝑑 + 𝑟 ∙ (𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡)) + 𝛽 ∙ (𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡))  𝑖 = 1

𝑥𝑏𝑒𝑠𝑡
𝑑 + 𝑟 ∙ (𝑥𝑖−1

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡)) + 𝛽 ∙ (𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡))  𝑖 = 2

 (24) 

 

𝑥𝑖
𝑑(𝑡 + 1) = {

𝑥𝑟
𝑑 + 𝑟 ∙ (𝑥𝑟

𝑑(𝑡) − 𝑥𝑖
𝑑(𝑡)) + 𝛽 ∙ (𝑥𝑟

𝑑(𝑡) − 𝑥𝑖
𝑑(𝑡))  𝑖 = 1

𝑥𝑟
𝑑 + 𝑟 ∙ (𝑥𝑖−1

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡)) + 𝛽 ∙ (𝑥𝑟

𝑑(𝑡) − 𝑥𝑖
𝑑(𝑡))  𝑖 = 2

 (25) 

 

𝑥𝑟
𝑑 = {: 𝐿𝐵𝑑 + 𝑟 ∙ (𝑈𝐵𝑑 − 𝐿𝐵𝑑) (26) 

 

𝛽 = 2𝑒𝑟1
𝑇−𝑡+1

𝑇 ∙ sin (2𝜋𝑟1) (27) 
 

Where, 𝑥𝑖
𝑑(𝑡) is the position of ith individual at time t in dth dimension, 𝛽 is a weight coefficient, 𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) 

represents the plankton with high concentration, 𝑟1 is the random number in [0,1]. 
 

2.2.3. Somersault foraging 

The mathematical model represents the somersault behavior of manta rays as in (28). 

 

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑(𝑡) + 𝑆 ∙ (𝑟2 ∙ 𝑥𝑏𝑒𝑠𝑡
𝑑 − 𝑟3 ∙ 𝑥𝑖

𝑑(𝑡)), 𝑖 = 1, … , 𝑁 (28) 
 

Where S is the somersault factor that decides the somersault range of manta rays and S=2, 𝑟2 and 𝑟3 are two 

random numbers in [0,1]. 

 

 

3. RESULTS AND DISCUSSION 

3.1. Test system description 

This system consists of MT, FC, PV, WT and Li-ion BES. The BES capacity design is set between 

50 kWh and 500 kWh. The maximum BES capacity, CBES_max is designated as a variable to optimize the 

economic dispatch in the MG. The random value of CBES_max is set at 10 increaments for each step to identify 

the logical numbers of BES sizing capacity. The depth of discharge (DoD) is set to 10% with a 90% BES state 

of charge (SoC). In other words, the minimum BES capacity is set at 10% of the maximum BES capacity, 
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CBES_max. The fixed and maintenance cost for BES is assumed to be 4.65 €/kWh and 0.15 €/kWh 

respectively. The BES lifetime is 3 years, while the interest rate for financing is 6%. The tax is assumed to be 

10% in this study. The algorithm has been implemented using MATLAB software and executed on a personal 

computer with 1.8 GHz CPU and 2 GB VRAM. The number of search agents used in this research is 100 with 

the maximum number of iterations is 1000. The results of this paper are compared with PSO, DE and SCA to 

verify the performance of MRFO. Table 2 shows the parameter tuning for all algorithms involved in this study. 

Three different cases have been considered in this paper to identify the optimum BES capacity to minimize the 

operation cost of the MG system. Figure 3 shows the flowchart of minimizing operation cost in MG using the 

MRFO algorithm. 
 

 

 
 

Figure 3. Flowchart of minimization operation cost in MG using MRFO algorithm 

 

 

Table 2. Parameter tuning of compared algorithm 
Algorithm Parameter tuning 

Particle swarm optimization (PSO) c1 = 2, c2 = 2, wmin = 0.2, wmax = 0.9 

Differential evolution (DE) PCr = 0.8, F = 0.85 

Sine cosine algorithm (SCA) a = 2 
Manta ray foraging optimization (MRFO) S = 2 
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For case study 1, the MG system is considered without BES. Figure 4(a) shows the convergence of 

four different algorithms (PSO, DE, SCA, and MRFO) to optimize the total operation cost. The MRFO 

algorithm identifies the lowest cost for €820 with converging to approximately €850 within the first 200 

iteration. PSO also performs well, stabilizing around €870 before reaching its lowest result at €842 and slightly 

above MRFO. SCA and DE show higher and erratic convergence patterns with SCA stabilizing around €900 

and DE around €950 respectively. Based on the result in case study 1, MRFO is the most efficient algorithm 

followed by PSO, SCA, and DE. Figure 4(b) coordinated the dispatch of DERs and grid for MRFO.  

 

 

  

(a) (b) 

 

Figure 4. Case study 1 results: (a) convergence characteristics of PSO, DE, SCA, and MRFO algorithms for 

optimizing MG operation cost without BES and (b) coordinated dispatch of DERs and grid for MRFO 

 

 

For case study 2, the MG system is evaluated with zero initial BES capacity. Figure 5(a) illustrates 

the convergence result of PSO, DE, SCA and MRFO. The MRFO algorithm shows the fastest and most 

significant reduction in operation cost and stabilizing approximately €600 within the first 200 iteration before 

reaching the lowest value at €517. DE and SCA also show good performance, achieving costs below €700 with 

DE reaching stability at €613 and SCA at €660 respectively. PSO exhibits the slowest convergence and 

stabilizes at a higher cost around €750. Overall, MRFO proves to be the best algorithm in terms of both 

convergence speed and final operation cost achieved. Figure 5(b) represents the coordinated DER dispatch and 

grid for MRFO with optimum BES capacity of 190 kW. 

 

 

 
 

(a) (b) 

 

Figure 5. Case study 2 results: (a) convergence characteristics of PSO, DE, SCA, and MRFO algorithms for 

optimizing MG operation cost with zero initial BES capacity and (b) coordinated dispatch of DERs and grid 

for MRFO with an optimum BES capacity 

 
 



      ISSN: 2088-8694 

Int J Pow Elec & Dri Syst, Vol. 15, No. 4, December 2024: 2535-2544 

2542 

For case study 3, the MG system is considered with full initial BES capacity. Figure 6(a) shows the 

comparative convergence results for the PSO, DE, SCA, and MRFO algorithms in optimizing the total operation 

cost in MG system. Based on the results, the MRFO algorithm demonstrates the fastest and most significant 

reduction in operation cost, stabilizing below €600 within the first 200 iterations. DE and SCA also show good 

performance as well, converging to costs around €700 with DE reaching stability slightly earlier at €568 compared 

to SCA at €619. PSO is identified as having the slower convergence and stabilizing at €650. Overall, MRFO 

outperforms the other algorithms in both convergence speed and minimizing the operation cost, indicating its 

superior efficiency for MG systems integrated with a BES at full initial condition. Figure 6(b) shows the 

coordinated of DERs dispatch and grid using the MRFO algorithm with the best BES capacity being 310 kW. 

 

 

  
(a) (b) 

 

Figure 6. Case study 3 results: (a) convergence characteristics of PSO, DE, SCA, and MRFO algorithms for 

optimizing MG operation cost with full initial BES capacity and (b) coordinated dispatch of DERs and grid 

for MRFO with the best BES capacity of 310 kW 
 

 

4. CONCLUSION 

This paper presents the effectiveness of MRFO algorithm in solving the minimization of operation 

costs in the MG system. The total operation cost in the MG system is reduced by 37.0% for zero initial BES 

and 45.2% for full initial BES capacity. It shows the benefits of BES integrated into the MG system. Based on 

the convergence result for case studies 1, 2, and 3, the performance of the MRFO algorithm is compared to 

PSO, DE, and SCA. Therefore, this proves that the MRFO is one of the most robust algorithms to solve the 

minimization problem in this MG system.  
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