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 Energy is one of the most critical and costly resources, playing a vital role in 

our daily lives. As technology advances, the demand for energy also 

increases. This work proposes a model for predicting energy consumption in 

smart homes, consisting of data preprocessing, performance evaluation, and 

application. Once the data is processed, it is fed into the prediction module, 

where various machine-learning algorithms are applied to forecast energy 

consumption. As smart home environments grow in complexity, selecting 

the most effective machine learning algorithm becomes increasingly crucial. 

The persistent challenge lies in manually discerning the best-performing 

algorithm, given their potential variance in efficacy across diverse use cases 

or datasets. In the dynamic landscape of energy conservation and cost-

effective power generation, precise forecasting of energy consumption is 

essential, playing a pivotal role in advancing energy sustainability and 

bolstering economic stability. This introduction explores the intricate terrain 

of predicting energy utilization within smart homes, a domain that has seen 

increased interest due to the integration of machine learning algorithms. The 

primary focus of this exploration is the rigorous evaluation of these 

algorithms, using key performance metrics such as mean absolute error 

(MAE), mean squared error (MSE), and R-squared. 
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1. INTRODUCTION 

Smartgrids (SG) have emerged as a viable solution to meet the growing global energy demand. The 

term "grid" refers to the traditional electrical infrastructure comprising transmission lines, substations, and other 

elements that facilitate the delivery of energy from power plants to homes and businesses [1], [2]. What sets 

Smart Grids apart is their capability for two-way communication between utility providers and consumers, 

coupled with sensing capabilities along the grid lines. Key components of a smart grid include controls, 

computers, automation systems, and other advanced technologies working in tandem to address the rapid surge 

in energy requirements shown in Figure 1. The intelligence embedded in smart grids brings forth various 

benefits. Noteworthy advantages include more efficient energy transmission, enhanced security measures, and 

the ability to mitigate peak demand, consequently leading to a reduction in electricity rates. Smart grids are also 

recognized for their integration of renewable energy sources, aligning with the global push towards sustainable 
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and eco-friendly power generation. Overall, smart grids represent a significant advancement in the energy 

sector, ensuring a more responsive and adaptable infrastructure to meet the evolving needs of our energy-

intensive world [3]-[5]. Efficient energy management systems (EMS) relies heavily on two core pillars: 

prediction and scheduling. These systems play a pivotal role in ensuring the optimal functioning of SG, tasked 

with managing power flow across SG components to minimize costs and enhance overall quality [6]. 

Prediction, particularly of energy consumption by various appliances, is fundamental to the SG 

concept. Energy consumption can be characterized as a nonlinear time series influenced by numerous 

complex factors [7]. As Smart Grids increasingly incorporate renewable energy sources, the accuracy of 

energy prediction methods has improved significantly. Consequently, precise prediction becomes a vital 

element in the strategic planning of the entire smart grid [8]-[10]. Various approaches are employed for 

energy consumption prediction, with machine learning (ML) emerging as the most popular. ML techniques 

contribute to the refinement of energy forecasts, aligning with the evolving landscape of Smart Grids and 

reinforcing their efficiency in managing diverse energy sources [10]-[15]. 

Previous studies examining the integration of a smart grid to realize the concept of a smart city. The 

authors elaborate on energy-related policies essential for implementing a smart city through the smart grid. 

Additionally, they explore prevailing conceptualizations, or "imaginaries," associated with the smart city 

facilitated by the smart grid. These imaginaries encompass economic imperatives, environmental solutions, 

and the experimental challenges inherent in smart grid technology [16]-[20]. In a related discussion, other 

studies emphasize the pivotal roles of the internet of things (IoT) and smart grid in actualizing smart city 

initiatives. The authors underscore the significance of energy across various sectors while addressing diverse 

challenges in smart city development, such as heterogeneity, unplanned urban growth, and the adaptability of 

residents [21], [22]. Other researchers also state that the smart grid as the foundational element and backbone of 

the smart city. The author characterizes the smart grid as an amalgamation of the conventional power grid with 

information and communication technology, emphasizing its pivotal role as the anchor of the smart city [23]-[25]. 

The main contributions of this paper are: i) Conducting a literature review of previous research on 

energy consumption forecasting in smart homes, exploring their contributions and inferences; ii) Providing a 

detailed framework for energy consumption forecasting; iii) Analyzing various methodologies used in home 

energy consumption forecasting from multiple perspectives, discussing their findings and limitations; iv) The 

primary focus of this exploration is the rigorous evaluation of these algorithms, using key performance 

metrics such as mean absolute error (MAE), mean squared error (MSE), and R-squared; and v) This 

comprehensive approach aims to enhance understanding and advance the field of energy consumption 

forecasting in smart homes. 

 

 

 
 

Figure 1. Home energy management system 

 

 

2. ENERGY CONSUMPTION FORECASTING IN SMART HOMES 

Several critical questions persist in the adoption of machine learning approaches for electricity 

usage forecasting. These include determining the optimal number of variables to be measured and recorded, 

specifying the total duration of continuous recording, and establishing the time resolution of the data. The 
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outcomes presented in prior literature are contingent on the specific dataset employed for analysis. Table 1 

compares four public datasets, emphasizing distinctions in their characteristics. Ideally, comprehensive 

model evaluation would be conducted across multiple datasets. However, it is common for results to be 

reported on a single dataset, with model performance assessed through various metrics such as MAE, MSE, 

and R-squared are presented as relative comparisons between different studied approaches shown in Figure 2. 
 

 

 
 

Figure 2. Process flow diagram for load forecasting 
 

 

3. ERROR METRICS AND COMPUTATIONAL PERFORMANCE 

Root mean squared error or RMSE and MAE serve as prevalent metrics for assessing model 

accuracy. However, these measures exhibit a scale-dependency, rendering the results incomparable across 

time series of varying magnitudes. To address this limitation, an accuracy metric known as the mean absolute 

scaled error (MSE) was introduced by [25]. MSE scales the error relative to a naive forecast, providing a 

more standardized evaluation that allows for meaningful comparisons between different time series datasets 

shown in (1) and (2). 
 

MSE=
1

𝑁
∑ (𝑦𝑖 –

𝑁
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Where MAE is the mean absolute error, a commonly used accuracy metric. 
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- R-squared error 

R-squared (R²), commonly referred to as the coefficient of determination, measures the fraction of 

variability in the dependent variable that can be accounted for by the independent variables in a regression 

model. It serves as an assessment of how well the model conforms to the dataset. The R² is determined by 

dividing the explained variance by the total variance, providing insight into the model's effectiveness in 

capturing the data's patterns shown in (3). 
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- N Number of observations 
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4. RESULTS AND DISCUSSION 

The performance metrics bar graph provides a comprehensive visual representation of the evaluation 

results for three different regression models: linear regression, decision tree regressor, and random forest 

regressor. The graph encompasses MAE, MSE, and R-squared values, crucial indicators for assessing the 

models' predictive accuracy. In the subplot for each regression model, scatter plots depict the relationship 

between actual and predicted values, offering insight into the models' overall performance. Notably, the 

random forest regressor stands out for its effectiveness in capturing the underlying patterns, as reflected in 

the tight clustering of points around the diagonal. The fourth subplot consolidates the performance metrics in 

a bar graph format. Each model is represented by a distinctive color—blue for linear regression, orange for 

decision tree, and green for random forest. The bar graph reveals specific values for MAE, MSE, and R-

squared, allowing for a direct comparison of the models' performance across these key metrics. 

In conclusion, the graphical presentation effectively communicates the comparative performance of 

the regression models, aiding in the selection of the most suitable model based on the outlined metrics. 

Figure 3 shows the performance of the linear regression model, serving as a baseline but with limitations in 

capturing complex patterns. Figure 4 illustrates the decision tree regressor, which improves on Linear 

Regression by handling non-linear relationships but still exhibits higher MAE and MSE values. Figure 5 

provides a comparison of all three models, while Figure 6 highlights the random forest regressor's superior 

performance with significantly lower MAE and MSE and a higher R-squared value. This demonstrates the 

effectiveness of Random Forest in improving predictive accuracy, as detailed in Table 1. 

 

 

Table 1. Performance evaluation metrics 
Sl.no Model MAE MSE R-squared 

1 Linear regression 52.544733 8312.759514 0.169313 

2 Decision tree regressor 39.447682 8486.242716 0.151977 
3 Random forest regressor 32.851355 4704.308789 0.529902 

 

 

 
 

Figure 3. Linear regression 

 
 

Figure 4. Decision tree regressor 

 

 

Figure 7 showcases violin plots that depict the relative performance of the different forecasting 

methods. Each method is represented in a different color, with the thickness of the plot indicating the 

frequency of errors at a given value. The violin plots further emphasize the random forest regressor's superior 

performance, showing a more concentrated distribution of lower errors, thereby reinforcing its effectiveness 

in delivering more accurate and reliable predictions compared to both the linear regression and decision tree 

regressor models. 
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Figure 5. Performance metrics 
 

Figure 6. Random forest regressor 
 
 

 
 

Figure 7. Violin plot of predicated values by different algorithms 

 

 

5. CONCLUSION 

The evaluation of three regression models linear regression, decision tree regressor, and random 

forest regressor reveals varying levels of predictive accuracy. The linear regression model presents a MAE of 

52.54, a MSE of 8312.76, and an R-squared value of 0.17. This indicates a relatively modest performance 

with a limited ability to explain the variance in the data. The decision tree regressor shows some 

improvement, with an MAE of 39.45 and an R-squared of 0.15, although its MSE of 8486.24 suggests higher 

variability in its predictions compared to linear regression.  

In contrast, the random forest regressor demonstrates superior performance across all metrics. It 

achieves an MAE of 32.85, significantly lower than the other models, and an MSE of 4704.31, indicating 

more precise predictions. Furthermore, its R-squared value of 0.53 highlights a substantially better fit to the 

data, explaining more than half of the variance. These results underscore the random forest model's ability to 

deliver more accurate and reliable predictions, making it the preferred choice for this regression task. Its 

ensemble approach leverages multiple decision trees, enhancing its robustness and predictive power over the 

other evaluated models. 
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