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 Microgrid (MG) is a potential decentralized energy distribution and 

generation technology that is resilient, reliable, and efficient. This small-scale 

power system is reliable and resilient since it connects to the grid or runs 

independently. Renewable energy is difficult to integrate into MG due to 

variable load and unreliable electricity. MG operation relies on an energy 

management system (EMS) to balance electricity demand and supply, reduce 

operational costs, and maximize renewable energy use. Intelligent control 

systems, optimization methods, and machine learning algorithms were used 

for MG EMS. The Harris Hawks optimization with deep learning-assisted 

microgrid energy management (HHODL-MGEM) technique is developed in 

this work. HHODL-MGEM comprises two main stages. In the first step, the 

HHODL-MGEM approach uses the Harris Hawks optimization or HHO 

algorithm to meet load power demands at a low cost while maintaining DC 

bus voltage and protecting the battery from overcharging and depletion. In the 

second step, long short-term memory (LSTM) networks can predict power 

costs. The HHODL-MGEM approach is evaluated using multiple methods. 

The experimental results showed that HHODL-MGEM outperforms other 

methods. 
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1. INTRODUCTION 

To smart and supportable states, an acceptance of clean power formation is increasing suddenly 

globally. The accessibility of distributed energy resources (DER) with renewable energy delivers a good 

solution; to find the energy and climate disaster so the novel technical improvements have produced a great 

decline in electricity bills [1]. As an outcome, smart grid methods were intended to substitute conventional 

power systems and deliver an eco-friendly atmosphere through intellectual distribution methods. The exact 

models in optimum energy resource switch are named multi-microgrids (MMG) that protect the deficiency of 

single microgrids (MGs), and enlarge the possible usage dependent upon cooperative energy organization and  

execution [2]. One of the most significant benefits of MMG is the capability to use DER and energy excess 

between MMG networks rather than generating all the essential energy individually. Furthermore, as an 

outcome of the cooperative device, it minimises the complete functioning price for MMG [3]. Also, the system 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Pow Elec & Dri Syst  ISSN: 2088-8694  

 

Modelling of Harris Hawks optimization with deep learning-assisted … (Kamalakkannan Sivaraman) 

2129 

operators be able to advance in additional features of the process due to cost decrease. For example, improve 

the safety and consistency of the power system [4]. Demand-side energy manufacture is the main for effectual 

energy organization among MMG power plants but, it is built on the method of operation that can able to arise 

as grid-connected mode or standalone MGs [5]. 

MGs can be either DC or AC, while the existing power grid in many locations is AC, many loads like 

computers, lighting methods, and battery chargers are DC. Likewise, renewable energy sources like energy 

storage systems, solar photovoltaic systems, and some others give DC powers [6]. The benefits and drawbacks 

of both kinds of methods and study into the similarities have been enlarged. The energy management system 

(EMS) besides executing energy balance in the MG also generally attempts to achieve other purposes [7]. 

These might be in reductions of operation prices, emissions, and losses between several other points that are 

based on the inspiration behind developing such a system. Numerous management methods also use a mixture 

of these intentions in a multi-objective method [8]. Deep learning (DL) techniques for predicting were assumed 

owing to the following purpose. When equated to classical machine learning (ML) models, the DL techniques 

do not level initial performance [9]. This indicates that with superior accessibility of data and enlarged 

computation power, the connection determined by the DL models will enhance and will not soak, unlike the 

standard techniques that after a definite threshold cannot able to boost the efficiency regardless of the number 

of data and availability of computation power [10]. 

This study develops a Harris Hawks optimization with deep learning-assisted microgrid energy 

management (HHODL-MGEM) approach. The HHODL-MGEM technique involves two major phases of 

operations. In the first stage, the HHODL-MGEM technique relies on the Harris Hawks optimization (HHO) 

algorithm which intends to satisfy the load power needs at a minimal cost with the guarantee of assuring steady 

DC bus voltage and safeguard battery over overcharging and depletion. Next, in the second stage, the long 

short-term memory (LSTM) model can be used to forecast electricity prices. The performance validation of 

the HHODL-MGEM method takes place under various measures. 
 
 

2. RELATED WORKS 

Li et al. [11] developed an edge-cloud-aided federated deep reinforcement learning (FDRL) 

technique. The MG process method first offered edge cloud computing state to enhance energy managing 

tactics with financial profits as an objective. Next, the federated duelling deep Q-network (DDQN) with new 

act search has been presented to solve the issue technique and it is exploited to project a new EMS in MG. 

Alam et al. [12] present an innovative technique for the EMS of a domestic MG combined with a battery ESS 

(BESS). The developed dynamic method incorporates a DL-based analytical method, bidirectional long short-

term memory or BiLSTM, with an optimizer model for optimum energy distribution and planning of a BESS 

by defining the features of spread resource, BESS assets, and consumer’s life routine. 

In research by Khan et al. [13], a hybrid method that combines multi-head attention (MHA)--based deep 

AE with an extreme gradient boosting (XGB) model has been introduced. This layer of edge computing simplifies 

data distribution over fog computing which certifies power balance among providers and users. Also, the structure 

includes numerous power consumption sectors and objects within smart cities like healthcare and transport in 

order to confirm effectual management. In a study by Qayyum et al. [14], an optimum power management method 

is presented for MG energy trade. This method includes recurrent neural networks (RNNs) forecast units to deliver 

valued visions to energy providers. Also, it contains three core optimizer modules optimizing energy trading costs, 

minimizing grid power consumption, and managing ESS power. The projected technique functions in an internet 

of thing (IoT)-orchestrated structure, using Raspberry Pi-based edge technique and IoT devices. 

Deepanraj et al. [15] proposed an intellectual wild geese algorithm with DL-driven short-term load 

forecasting (IWGADL-STLF) approach. This method employs an attention-based BiLSTM attention-fused 

bidirectional long and short-term memory (ABi-LSTM) system which includes the input parameter as a creation 

of commercial and domestic load profiles with MG as an output. In the proposed method, whole genome 

amplification (WGA) is used as a hyperparameter optimizer of ABi-LSTM technique. Kaewdornhan and 

Chatthaworn [16] developed a model-free data-driven system that helped the deep reinforcement learning (DRL) 

method. The deep neural networks (DNNs) technique is projected as a model-free data-driven to evaluate the power 

flow parameter of MG rather than the power loss factor (PLF). To make a particular optimization approach work, 

the majority of EMSs that have been published in the literature depend on using energy systems prediction. Energy 

management systems (EMS) for DC microgrids are presently getting more attention for the purpose of minimizing 

their size and associated costs. Various locations make use of microgrid technology, such as remote islands, military 

outposts, and university campuses. The development of improved steady-state energy management systems for 

microgrids is a major area of study [17]-[21]. Furthermore, the DRL is called a deep deterministic policy gradient 

(DDPG), which has been used as an optimizer algorithm. Furthermore, discovering suitable parameters of the 

DDPG is projected. Likewise, a lower-voltage distribution system was presented as MG. 
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3. THE PROPOSED METHOD 

In this study, we have designed a novel HHODL-MGEM approach. The HHODL-MGEM technique 

involves two major phases of operations such as HHO algorithm and LSTM classifier. Figure 1 depicts the 

entire flow of HHODL-MGEM method. 
 

3.1. Modeling of Harris Hawks optimization (HHO) algorithm 

In the first stage, the HHODL-MGEM technique relies on the HHO algorithm. It intends to satisfy the 

load power needs at a minimal cost with the guarantee of assuring steady DC bus voltage and safeguard battery 

over depletion and overcharging. Alabool et al. introduced the HHO approach based on the capturing and 

hunting of prey of Harris Hawks in nature [22]. Two exploration and four exploitation approaches are the 

fundamental strategies in HHO algorithm. 
 

 

 
 

Figure 1. Overall flow of HHODL-MGEM method 
 

 

3.1.1. HHO exploration strategies 

HHO exploits two strategies to perch according to the value of 𝑞 random parameter. The first 

technique is implemented when 𝑞 ≥ 0.5. The (1) and 𝑞 ≥ 0.5 then the second technique is used. In (1), 

𝐻(𝑖𝑡𝑒𝑟 + 1) denotes the Hawk's position in the following cycle, Prey’s location is 𝑖𝑡𝑒𝑟, 𝐻𝑝𝑟𝑒𝑦(𝑖𝑡𝑒𝑟), and the 

solutions’ existing location is 𝐻(𝑖𝑡𝑒𝑟)., 𝑟1, 𝑟2, 𝑟3, 𝑟4, and 𝑞 are all random values in the range of (0,1). The 

highest and lowest values are represented as 𝐿𝑜𝐵𝑜 and 𝑈𝑝𝐵𝑜, correspondingly. 𝐻𝑟𝑎𝑛𝑑𝑜𝑚(𝑖𝑡𝑒𝑟) denotes the 

random solution and 𝐻𝑚 is the average location of an existing swarm of solutions. Using (2), the location of 

the average hawk is evaluated: 
 

𝐻(𝑖𝑡𝑒𝑟 + 1) =

{
 
 

 
 
𝐻𝑟𝑎𝑛𝑑𝑜𝑚(𝑖𝑡𝑒𝑟) − 𝑟1𝐻𝑟𝑎𝑛𝑑𝑜𝑚(𝑖𝑡𝑒𝑟) − 2r2H(iter)
, 𝑞 ≥ 0.5

(𝐻𝑝𝑟𝑒𝑦(𝑖𝑡𝑒𝑟) − 𝐻𝑚(𝑖𝑡𝑒𝑟)) − 𝑟3(𝐿𝑜𝐵𝑜 + 𝑟4(𝑈𝑝𝐵𝑜 − 𝐿𝑜𝐵𝑜))

, 𝑞 < 0.5

 (1) 

 

𝐻𝑚(𝑖𝑡𝑒𝑟) =
1

𝑁
∑ 𝐻𝑖(𝑖𝑡𝑒𝑟)
𝑁
𝑖=1  (2) 

 

Where the overall number of solutions is 𝑁, and the location of each solution in a given iteration is 𝐻𝑖(𝑖𝑡𝑒𝑟). 
Before moving between the different exploitation stages, HHO alternates between the local and global search 

stages. Using (3), prey energy can be evaluated: 
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𝐸 = 2𝐸0 (1 −
𝑖𝑡𝑒𝑟

𝑎ll−𝑖𝑡𝑒𝑟
) (3) 

 

In (3), the power of the prey is 𝐸, all-iter indicates the overall count of cycles, and 𝐸0 indicates the initial energy 

that changes randomly within (−1,1) at all the cycles. 

 

3.1.2. HHO exploitation strategies 

There are four different exploitation strategies in the HHO. Consider that the possibility for the prey 

to successfully evade is (𝑟 < 0.5) and that the possibility of prey being unsuccessful in evading is (𝑟 ≥ 0.5). 
˗ 𝑆𝐵: 𝑟 ≥ 0.5 and 𝐸 ≥ 0.5. 

From the equations (4) and (5), where the difference between the prey and existing position in cycle 

iteration is 𝛥𝐻(𝑖𝑡𝑒𝑟), 𝑟5 is a random integer within (0,1), and the random jumping strength of the prey is 𝐽 =
2(1 − 𝑟5). The 𝐽 value randomly changes within each cycle. 

 

𝐻(𝑖𝑡𝑒𝑟 + 1) = 𝛥(𝐻(𝑖𝑡𝑒𝑟) − 𝐸𝐽𝐻𝑝𝑟𝑒𝑦(𝑖𝑡𝑒𝑟) − 𝐻 (4) 

 

𝛥𝐻(𝑖𝑡𝑒𝑟) = 𝐻𝑝𝑟𝑒𝑦(𝑖𝑡𝑒𝑟) − 𝐻(𝑖𝑡𝑒𝑟) (5) 

 

˗ HB: 𝑟 ≥ 0.5 and 𝐸 < 0.5. In (6), 

 

𝐻(𝑖𝑡𝑒𝑟 + 1) = 𝐻𝑝𝑟𝑒𝑦(𝑖𝑡𝑒𝑟) − 𝐸𝛥𝐻(𝑖𝑡𝑒𝑟) (6) 

 

˗ SB‐PRD: 𝐸 ≥ 0.5 but 𝑟 < 0.5. The Levy’s flight (𝐿𝑒𝐹1) is utilized in (7). 

 

𝑦 = 𝐻𝑝𝑟𝑒𝑦(𝑖𝑡𝑒𝑟) − 𝐸𝐽𝐻𝑝𝑟𝑒𝑦(𝑖𝑡𝑒𝑟) − 𝐻(𝑖𝑡𝑒𝑟) (7) 

 

The 𝐿𝑒𝐹1is utilized as in (8). 

 

𝑍 = 𝑦 + 𝑆𝑖𝑧𝑒 × 𝐿𝑒𝐹𝑙(𝐷𝑖𝑚) (8) 

 

Where the dimensionality of the problem is 𝐷𝑖𝑚 and 𝑆𝑖𝑧𝑒 is a random vector by 1 × 𝐷𝑖𝑚 and the levy flight 

function is represented as 𝐿𝑒𝐹1 as (9). 

 

𝐿𝑒𝐹𝑙(𝑥) = 0.01 ×
𝑢×𝜎

𝑈

1
𝛽

, 𝜎 = (
𝛤(1+𝛽)×sin(

𝜋𝛽

2
)

𝛤(
1+𝛽

2
)×𝛽×2

(
𝛽−1
2 )
)

1

𝛽

 (9) 

 

In (9), two random numbers within (0,1) are 𝑢 and 𝑢; this random variable takes value within [0,1]. Consider 

𝛽 as constant by allocating it a mathematical value of 1.5; in (10), 𝑦 and 𝑍 are attained by (7) and (8). 

 

𝐻(𝑖𝑡𝑒𝑟 + 1) = {
𝑦 𝑖𝑓𝐹(𝑌) < 𝐹
𝑍 𝑖𝑓𝐹(𝑍) < 𝐹

 (10) 

 

˗ HB‐PRD 

 

If |𝐸| < 0.5 and 𝑟 < 0.5, then (11) is employed: 

 

𝐻(𝑖𝑡𝑒𝑟 + 1) = {
𝑦 𝑖𝑓𝐹(𝑌) < 𝐹
𝑍 𝑖𝑓𝐹(𝑍) < 𝐹

 (11) 

 

Where 𝑦 and 𝑍 are calculated in (12) and (13). 

 

𝑦 = 𝐻𝑝𝑟𝑒𝑦(𝑖𝑡𝑒𝑟) − 𝐸𝐽𝐻𝑝𝑟𝑒𝑦(𝑖𝑡𝑒𝑟) − 𝐻𝑚(𝑖𝑡𝑒𝑟) (12) 

 

𝑍 = 𝑦 + 𝑆𝑖𝑧𝑒 × 𝐿𝑒𝐹𝑙(𝐷𝑖𝑚) (13) 

 

Where 𝐻𝑚(𝑖𝑡𝑒𝑟) is calculated in (2). 
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The power shortage was supplemented by the BESS, the grid power, and the fuel cell, following the 

EMS if the power required exceeds the generated photovoltaic power [23]. The MG switched to the grid 

operational mode, with the maximum load being provided by the MG. This occurred when the operating costs 

closely related to utilizing the power resource were considerably greater or when the load power surpassed the 

capacity of the power resource. The main purpose is to reduce the costs closely related to the operation as 

shown in (14): 

 

𝐶𝑜𝑠𝑡 = ∑ (𝑇
𝑡=1 𝐶𝐹𝐶(𝑃𝐹𝐶(𝑡) + 𝐶𝐵𝑎𝑡(𝑃𝐵𝑎𝑡(𝑡)) + 𝑃𝐺𝑟𝑖𝑑(𝑡) × 𝐸𝑃(𝑡)𝛥𝑇) (14) 

 

where the electricity pricing in the market at 𝑡 time is resented by the variable 𝐸𝑃(𝑡). 𝛥𝑇 denotes the sample 

time. 𝑇 characterizes the overall amount of power resources. 𝑁 signifies the total time intervals, and the cost 

related to the 𝑖𝑡ℎ fuel cell (𝐹𝐶), battery energy storage system, and distributed generation (𝐷𝐺) are 𝐶𝐹𝐶 , 𝐶𝐵𝐸𝑆𝑆, 

and 𝐶𝑖 correspondingly. The function encountered several shortcomings, like limited power equilibrium and 

power generation capacity. When the loss of the MG is omitted, then it is crucial for the power produced by 

the resource to be equivalent to the power expended by the load at 𝑡 time. The analysis is shown in (15). 

 

𝑃𝐿 = 𝑃𝑃𝑉 + 𝑃𝐵𝐸𝑆𝑆 + 𝑃𝐹𝐶 + 𝑃𝐺  (15) 

 

Based on the rules of the EMS, the MG is used to share BESS. However, few researchers encouraging 

an economic EMS failed to integrate 𝑆𝑜𝐶 of the battery (state of charge) within the EMS. Thus, EMS should 

incorporate the 𝑆𝑜𝐶 as a key element within the fitness function to alleviate the adverse effects of overcharging 

or excessive battery drain. From the (16), the variable 𝑆𝑜𝐶(𝑡)𝑜𝑝𝑡 indicates the optimum value of the 𝑆𝑂𝐶. 

 

𝐹𝐶𝑜𝑠𝑡 = min (∑ (𝑇
;=1 𝐶𝐹𝐶(𝑃𝐹𝐶(𝑡)  

+𝐶𝐵𝑎𝑡 . 𝑃𝐵𝑎𝑡( ) (𝑆𝑜𝐶(𝑡) − 𝑆𝑜𝐶(𝑡)𝑜𝑝𝑡)
2 + 𝑃𝐺𝑟𝑖𝑑(𝑡) × 𝐸𝑃(𝑡)𝛥𝑇)) (16) 

 

3.2. LSTM based prediction 

In the second stage, the LSTM model can be used to forecast electricity prices. Currently, RNNs are 

mostly dependent upon LSTM which has attained notable performance in dissimilar areas [24]. In LSTM, 𝑥𝑡 
refers to the input signal, ℎ𝑡 signifies the hidden layer (HL) and 𝑡 denotes the time frame. At timeframe 𝑡 − 1, 
𝐶𝑡−1 signifies the memory cell state. 𝑏f, 𝑏𝑖, 𝑏𝑐 , 𝑏𝑜 and 𝑤𝑓 , 𝑤𝑖 , 𝑤

𝑜, 𝑤𝑐 represents the biases and weights, 

correspondingly. 𝑡𝑎𝑛ℎ and 𝜎 refer to the activation function. Figure 2 depicts the architecture of LSTM. At an 

initial stage, the LSTM computes the preceding data from the cell state 𝐶𝑡−1 just by employing a forget gate as (17). 
 

𝑓𝑡 = 𝜎(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏f) (17) 
 

Here, 𝑓𝑡 can be 0 or 1 to signify the entire block and transfer of the data. Next, the LSTM computes the future 

data that have to be kept by utilizing a dual‐stage procedure. The 1st part controls the parameter to be employed 

over the (18). 
 

𝑖𝑡 = 𝜎(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (18) 
 

The 2nd part defines an optimum state value 𝐶̃ by employing the (19). 
 

𝐶̃𝑡 = 𝑡𝑎𝑛𝑏(𝑤𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (19) 
 

Then in 3rd part, the LSTM defines the existing state 𝐶𝑡 by utilizing the given expression as (20). 
 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡 (20) 
 

the filtered form of the compressed cell state 𝑡𝑎𝑛ℎ(𝐶𝑡) indicates the output of HL ℎ𝑡. The data must be kept 

and intended by employing the activation function of sigmoid o𝑡 that is concluded as per the (21). 
 

𝑜𝑡 = 𝜎(𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (21) 
 

Finally, the last HL output ℎ𝑡 was expressed as (22). 

 

ℎ𝑡 = 0𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) (22) 
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Figure 2. LSTM structure 

 

 

4. EXPERIMENTAL VALIDATION 

This section inspects the performance of the HHODL-MGEM technique with existing models.  

Table 1 presents a comparative result of the HHODL-MGEM technique with recent models on the training 

process [25]. Figure 3(a) shows that the HHODL-MGEM technique enhanced performance with a maximum 

R2 of 96.35% whereas the artificial neural network (ANN), support vector regression (SVR), and online 

regularized extreme learning machine (OR-ELM) models obtain reduced R2 values of 88.93%, 91.73%, and 

95.68%, correspondingly. Also, Figure 3(b) illustrates that the HHODL-MGEM method improved 

performance with decreased mean absolute percentage error or MAPE of 1.71% while the ANN, SVR, and 

OR-ELM algorithms get higher MAPE values of 6.29%, 4.17%, and 2.05%. Meanwhile, Figure 3(c) displays 

that the HHODL-MGEM system has excellent performance with a minimized time of 0.590 s but the ANN, 

SVR, and OR-ELM algorithms obtain increased time values of 0.916 s, 4.862 s, and 0.802 s, respectively. 

Table 2 demonstrates a comparative outcome of the HHODL-MGEM method with other algorithms 

during the testing process. Figure 4(a) showcases that the HHODL-MGEM system improved performance with 

increased R2 of 94.98% while the ANN, SVR, and OR-ELM methods get decreased R2 values of 87.41%, 

90.83%, and 93.79%, respectively. Meanwhile, Figure 4(b) shows that the HHODL-MGEM techniques have 

better performance with lessened MAPE of 2.67% while the ANN, SVR, and OR-ELM algorithms get higher 

MAPE values of 8.47%, 6.88%, and 4.92%. Besides, Figure 4(c) shows that the HHODL-MGEM method has 

exceptional performance with a decreased time of 0.052s but the ANN, SVR, and OR-ELM systems provide 

improved time values of 0.065s, 0.903s, and 0.089s, correspondingly. 

Table 3 and Figure 5 portray a comparative root mean square error (RMSE) result of the HHODL-

MGEM technique under varying k-folds. With 1-fold, the HHODL-MGEM technique offers reduced RMSE 

of 6.709 while the OR-ELM, SVR, and ANN methods attain increased RMSE of 7.503, 7.289, and 8.113, 

correspondingly. Also, based on 3-fold, the HHODL-MGEM system gives decreased RMSE of 2.100 although 

the OR-ELM, SVR, and ANN techniques accomplish boosted RMSE of 2.772, 3.199, and 3.901. In line with 

5-fold, the HHODL-MGEM system provides a diminished RMSE of 1.398 however, the OR-ELM, SVR, and 

ANN algorithms get increased RMSE of 2.345, 2.833, and 2.802. Meanwhile, based on 7-fold, the HHODL-

MGEM system obtains minimized RMSE of 0.971 while the OR-ELM, SVR, and ANN approaches achieve 

higher RMSE of 1.826, 2.314, and 2.680. Moreover, with 9-fold, the HHODL-MGEM method offers a reduced 

RMSE of 0.849 while the OR-ELM, SVR, and ANN methods gain raised RMSE of 1.948, 2.345, and 2.711. 

Finally, based on 10-fold, the HHODL-MGEM technique gives decreased RMSE of 0.818 whereas the OR-

ELM, SVR, and ANN models attain increased RMSE of 1.917, 2.161, and 2.528, correspondingly. 

 

 

Table 1. Comparative results of the HHODL-MGEM 

model with other approaches under the training process 
Forecast model R2 MAPE (%) Time (s) 

ANN 88.93 6.29 0.916 

SVR 91.73 4.17 4.862 

OR-ELM 95.68 2.05 0.802 

HHODL-MGEM 96.35 1.71 0.590 
 

Table 2. Comparative outcome of HHODL-MGEM 

system with other methods under testing process 
Forecast model R2 MAPE (%) Time (s) 

ANN 87.41 8.47 0.065 

SVR 90.83 6.88 0.903 

OR-ELM 93.79 4.92 0.089 

HHODL-MGEM 94.98 2.67 0.052 
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Figure 3. Training process: (a) R2, (b) MAPE, and (c) time 
 

 

 
(a) 
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Figure 4. Testing process: (a) time, (b) R2, and (c) MAPE 
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Finally, the predictive outcomes of the HHODL-MGEM technique are compared with recent systems 

and reported in Table 4 and Figure 6. Based on 14 hours and actual price of 2.503 cents/KWh, the HHODL-

MGEM technique predicted the closer value of 2.643 whereas the OR-ELM, SVR, and ANN models provide the 

predicted values of 2.223, 2.457, and 2.036, correspondingly. Additionally, based on 48 hours and actual price of 

2.714 cents/KWh, the HHODL-MGEM system forecast the reasonable value of 2.947 while the OR-ELM, SVR, 

and ANN techniques offer the predicted values of 3.228, 2.527, and 3.929. Followed by, 96 hours and actual price 

of 2.643 cents/KWh, the HHODL-MGEM method predictable the closer value of 2.807 although the OR-ELM, 

SVR, and ANN systems provide the predicted values of 2.480, 2.667, and 3.345. Furthermore, based on 144 hours 

and actual price of 3.648 cents/KWh, the HHODL-MGEM system predicted the considerable value of 3.859 then, 

the OR-ELM, SVR, and ANN techniques offers the predicted values of 3.461, 2.620, and 2.947. At last, based on 

168 hours and actual price of 2.246 cents/KWh, the HHODL-MGEM algorithm predicted the closer value of 

2.363 but, the OR-ELM, SVR, and ANN methods achieves the predicted values of 2.340, 2.457, and 3.017, 

respectively. Thus, the HHODL-MGEM technique can be applied for effectual management of MGs. 
 
 

Table 3. RMSE outcome of HHODL-MGEM method 

with recent algorithms under various k-folds 
RMSE (Cents/KWh):10-folds cross-validation for RMSE 

k-folds HHODL-MGEM OR-ELM SVR ANN 

1 6.709 7.503 7.289 8.113 

2 3.901 4.084 4.390 4.969 
3 2.100 2.772 3.199 3.901 

4 1.795 2.528 2.833 3.077 

5 1.398 2.345 2.833 2.802 
6 1.307 2.161 2.436 2.589 

7 0.971 1.826 2.314 2.680 

8 1.063 1.917 2.161 2.589 
9 0.849 1.948 2.345 2.711 

10 0.818 1.917 2.161 2.528 
 

Table 4. Local marginal pricing (LMP) outcome of 

HHODL-MGEM model with other methods under 

various hours 
LMP (Cents/KWh) 

Hours Actual real  

price 

HHODL- 

MGEM 

OR- 

ELM 

SVR ANN 

0 2.480 2.690 2.270 2.784 2.340 
14 2.503 2.643 2.223 2.457 2.036 

48 2.714 2.947 3.228 2.527 3.929 

72 3.999 4.139 3.905 3.999 2.643 
96 2.643 2.807 2.480 2.667 3.345 

120 2.433 2.550 2.667 2.363 2.760 

144 3.648 3.859 3.461 2.620 2.947 
168 2.246 2.363 2.340 2.457 3.017 

 

 

 

  
 

Figure 5. RMSE outcome of HHODL-MGEM 

technique under various k-folds 

 

Figure 6. LMP outcome of HHODL-MGEM system 

under various hours 
 
 

5. CONCLUSION 

In this study, we have designed a novel HHODL-MGEM approach. The HHODL-MGEM technique 

involves two major phases of operations. In the first stage, the HHODL-MGEM technique relies on the HHO 

algorithm which intends to satisfy the load power needs at a minimal cost with the guarantee of assuring steady 

DC bus voltage and safeguard battery over overcharging and depletion. Next, in the second stage, the LSTM 

model can be used to forecast electricity prices. The performance analysis of the HHODL-MGEM technique 

takes place under various measures. The experimental values highlighted that the HHODL-MGEM method 

obtains optimal performance over other approaches. 
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