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ABSTRACT

State-of-charge (SOC) estimation is particularly important as it provides infor-
mation about the remaining energy capacity of the battery, allowing for better
planning and utilization. Accurate SOC estimation is challenging because it can-
not be directly measured from the battery. Instead, it is estimated by analyzing
measurable variables such as current and voltage. To address this challenge, a
discrete-time observer-based SOC estimation approach is proposed in this paper.
This approach utilizes a second-order equivalent circuit model and a piecewise
linear approximation to represent the relationship between SOC and open circuit
voltage (OCV). The proposed observer-based approach utilizes these models to
estimate the SOC with assured asymptotic stability under specific assumptions
to simplify the design process. Simulations in Python are conducted to eval-
uate the performance of the designed observer. In the simulations, the SOC
estimation under various conditions, such as model uncertainty, disturbances,
and measurement noise, is also covered. In addition, three different observer
gains are considered in the simulations. Lastly, simulation studies indicate that
the estimated SOC values converge to the real SOC values, with some different
behavior depending on the regarded situations.
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1. INTRODUCTION
In recent years, the development of electrical vehicles (EVs) has been rapidly growing, which has led

to the widespread utilization of batteries as energy storage devices. As technology continues to advance, the
demand for higher energy density and faster charging capabilities in lithium-ion batteries (LIBs) has become
increasingly vital for the widespread adoption of electric vehicles. LIBs are recognized as the most preferred al-
ternative for EVs due to their numerous benefits, including their high energy storage capacity and long lifespan.
[1]-[4]. When using LIBs, monitoring and regulating the charge and discharge operation is crucial since the
batteries must be ensured to function as intended, e.g., prevent overcharging and overdischarge, and have a long
lifespan [5]-[7]. The LIBs are then complemented with an electronics module known as a battery management
system (BMS) to manage these tasks [8]-[12].
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The battery monitoring and regulation function in the BMS involves an important variable called state-
of-charge (SOC) [3], [13]-[15]. However, this variable cannot measured directly by a sensor. Instead, the SOC
must be estimated through measurable variables, i.e., current and (terminal) voltage–the electrical potential
difference between two battery polarities. An algorithm for estimating the SOC employs a mathematical model
of the battery that accommodates a nonlinear dynamic behavior [16]. A popular model used for it is the
equivalent circuit model (ECM). ECM is an electrical circuit dynamic model as an analog to the nonlinear
dynamic behavior of a battery [17]. In addition, it models several essential properties of the battery, including
internal resistance, resistive-capacitive (RC) time constant, open-circuit voltage (OCV)–the battery’s electrical
potential difference between two polarities that are disconnected from any load–and nominal capacity [18],
[19]. Additionally, ECM is so popular for SOC estimation in BMSs because it meets the computational capacity
constraints of BMSs [20].

Many SOC estimation algorithms have been proposed in [21], [22]. However, many of them lack
stability guarantees as well as exact rules for determining tuning gains. Therefore, in this study, we propose an
observer design based on one first proposed by Luenberger [23] for LIBs SOC estimation with a guarantee of
stability from a control theory perspective. In addition, we present some numerical simulations involving the
appearance of model uncertainties and disturbances that exist in real-world applications. The preliminary work
of this study has been presented and published in [24].

The rest of the paper is organized as follows. Section 2 discusses the battery model, covering the
ECM description and the nonlinearity relationship between OCV and SOC. The main results, comprising the
observer, stability analysis, numerical simulations, and discussion, are presented in section 3. Lastly, we sum-
marize our study in section 4.

2. METHOD
2.1. Equivalent circuit model

In this study, we use an equivalent circuit model (ECM) with two RCs. This model is well-known
as a 2-RC ECM or second-order ECM. Figure 1 illustrates this model. The ordinary differential equation of
the 2-RC ECM is presented in (1), (2), (3), and (4), where time t ≥ 0 and V̇1, as an instance, denotes the first
time-derivative of V1.

V̇1(t) = − 1

R1C1
V1(t) +

1

C1
I(t) (1)

V̇2(t) = − 1

R2C2
V2(t) +

1

C2
I(t) (2)

VT (t) = VOC(ξ(t))−RSI(t)− V1(t)− V2(t) (3)

Where VOC(ξ(t)), or simply VOC , is a nonlinear function representing the relationship between OCV and SOC.
While the dynamic equation of the SOC is represented in (4), where Qξ is the battery capacity [Ah] and η is
Coulombic efficiency–it describes how efficiently a battery transfers electrons during charging and discharging.
This form is well-known as a continuous-time version of Coulomb counting.

ξ̇(t) =
η

3600 ·Qξ
I(t) (4)

The other parameters and variables of the 2-RC ECM are explained as follows:
− I denotes the battery current [A]. It has positive polarity when charging and negative polarity when dis-

charging.
− VT denotes the terminal voltage [V ]. It represents the real voltage available for utilization from the battery.

The terminal voltage is measured across the terminals when a load is attached to the battery.
− (R1, C1) and (R2, C2) represent the first and second RC models of the 2-RC ECM, respectively. These

relate to the diffusion dynamics [25].
− RS is also internal resistance [Ω] of the the 2-RC ECM.
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Figure 1. 2-RC equivalent circuit model

Furthermore, an equivalent 2-RC ECM model can be expressed in (5) and (6). This model has a state
variable x(t) and an output y(t) which is nonlinear. Note that (x(t)) consists of VOC(ξ(t)), which is generally
a nonlinear function. It will be elaborated on in the following subsection.{

ẋ(t) = Ax(t) + Bu(t),

y(t) = C(x(t)) + Du(t)
(5)

Where 

x(t) =

V1(t)

V2(t)

ξ(t)

 ,

y(t) = VT (t),

u(t) = I(t),

A =


− 1

R1C1
0 0

0 − 1

R2C2
0

0 0 0

 , B =


1

C1
1

C2η

3600 ·Qξ

 ,

C(x(t)) = VOC(ξ(t))− V1(t)− V2(t), D = −Rs

(6)

A discrete-time version of the 2-RC ECM can be realized using Euler’s discretization, as indicated in
(7) and (8) with the same model parameters A, B, and D as in (6), where h > 0 is sampling period [s] and
k = 0, 1, 2, ... is the sample sequence.{

x(k + 1) = (I+ hA)x(k) + hBu(k)

y(k) = C(x(k)) + Du(k)
(7)

Where 

x(k) =

V1(k)

V2(k)

ξ(k)

 ,

y(k) = VT (k),

u(k) = I(k),

C(x(k)) = VOC(ξ(k))− V1(k)− V2(k),

I =

1 0 0

0 1 0

0 0 1


(8)
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In real-world applications, obtaining the exact model of a battery is a difficult task. This is because of
the presence of model uncertainty, which corresponds to the gap between the known model and the actual/real
battery model. Besides, the existence of measurement noise at the output and disturbances that affect the input
may not be avoided. The model uncertainty and disturbances are accommodated in the following model.{

x(k + 1) = (I+ h(A+∆A(k)))x(k) + h(B+∆B(k))(u(k) + w(k))

y(k) = C(x(k)) + (D+∆D(k))(u(k) + w(k)) + v1(k)
(9)

Where ∆A, ∆B , and ∆D represent the gaps between the battery’s known and true parameters. w(k) and v1(k)
represent the input disturbance and output measurement noise, respectively.

2.2. Relationship between open circuit voltage and state-of-charge
As described in the previous subsection, the OCV as a function of SOC, VOC(ξ), is generally a

nonlinear function. This nonlinear function can be represented using polynomials. Instead, in this paper, we
approximate it with a piecewise linear function. We adopt it from Xu et al. in [26]. The piecewise linear
function of VOC(ξ) is depicted in Figure 2. The curve in Figure 2 is plotted based on the linear function (10),
whose parameters are listed in Table 1. In this paper, we assume the known and the real VOC(ξ) function is
exactly the same.

VOC(ξ) = ai · ξ + bi (10)

Figure 2. An approximation of the nonlinear relationship between OCV and SOC with a piecewise
linear curve

Table 1. Piecewise linear function parameters of VOC(ξ)
i SOC ai bi i SOC ai bi
1 0 ≤ ξ < 0.1 0.59 3.5052 6 0.5 ≤ ξ < 0.6 0.6 3.4199

2 0.1 ≤ ξ < 0.2 0.49 3.5188 7 0.6 ≤ ξ < 0.7 0.82 3.2864

3 0.2 ≤ ξ < 0.3 0.39 3.5397 8 0.7 ≤ ξ < 0.8 0.8 3.3004
4 0.3 ≤ ξ < 0.4 0.28 3.5728 9 0.8 ≤ ξ < 0.9 0.9 3.2232
5 0.4 ≤ ξ < 0.5 0.36 3.5416 10 0.9 ≤ ξ < 1 0.99 3.1364

3. MAIN RESULTS AND DISCUSSION
3.1. Proposed observer

Considering (7), A consists of (R1, C1) and (R2, C2). Suppose we have a sampling period and battery
parameters that satisfy the following properties:

0 < h
1

R1C1
< 1

0 < h
1

R2C2
< 1
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Therefore, we propose the observer as given in (11):{
ȳ(k) = C(x̄(k)) + Dū(k)

x̄(k + 1) = (I+ hA)x̄(k) + hBū(k) + hK̄(y(k)− ȳ(k))
(11)

where
− ū(k) and y(k) are obtained from sensors, where ū(k) = u(k) + v2(k) and a couple (u(k), y(k)) is repre-

sented in (9).

− x̄(k) =

V̄1(k)
V̄2(k)
ξ̄(k)

 is the estimated state, where ξ̄ is the estimated SOC.

− K̄ =

00
κ

 is the observer gain that satisfies the condition: κ > 0 such that 0 < h κ āmax < 1, where

0 < h < 1. In addition, āmax is the maximum coefficient of the linear lines of VOC that refers to value ai
in Table 1.

Figure 3 shows a flowchart of the state-of-charge estimation using our observer. Additionally, it
is worth noting that the proposed observer (11) the model with known parameters (7). Besides, to avoid
confusion for readers, it is also worth noting that the model in (9) is for numerical simulation purposes. In
addition, regarding the properties of (R1, C1) and (R2, C2) stated above, it is reasonable since the parameters
of batteries found in various papers satisfy those properties.

Figure 3. SOC estimation flowchart

3.2. Stability analysis
In this subsection, the stability proof of the proposed observer is elaborated. Now, recall V̄OC(ξ) in

(10) and y(k) in (7). Since VOC(ξ̄(k)) = āi(k)ξ̄(k) + b̄i(k), hence we have the following:

C(x̄(k)) = H̄(x)x̄(k) + b̄i(k) (12)

where

H̄(k) =
[
−1 −1 āi(k)

]
(13)

In order to reduce the complexity of observer design, we apply the following assumptions:
− For all k ≤ 0, ξ(k) and ξ̄(k) can be not equal, but both are always on the same piece of a linear line of

the VOC − SOC curve. For example, (ξ, ξ̄) = (0.31, 0.35) is on the same piece of a linear line, while
(ξ, ξ̄) = (0.31, 0.55) is not on the same piece of a linear line.

− ∆A(k), ∆B(k), and ∆D(k) are all zero. In other words, the real battery parameters are assumed to be known
exactly.

− It is assumed that there is no disturbance and noise, i.e., w(k), v1(k), and v2(k) are also zero.
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Note that these assumptions reflect that the actual battery used for stability analysis is identical to the
model battery employed in the observer, namely the model in (7). Let define the estimation error ex̄(k) (14):

ex̄(k) = x(k)− x̄(k) =

ex̄1(k)ex̄2(k)
ex̄3(k)

 (14)

Regarding the assumption above that ξ and ξ̄ are on the same piece of a linear line of the OCV-SOC curve, we
have the following.

ex̄(k + 1) = (I+ hA)ex̄ − hK̄
(
y(k)− ȳ(k)

)
= (I+ hA)ex̄ − hK̄H̄(k)ex̄(k)

=
(
I+ hA− hK̄H̄(k)

)
ex̄(k) (15)

Next, motivated by the structure of the nonlinear observer gain in [16], i.e., K̄ =

00
κ

, we consider

the following facts:

− The sampling period h is less than 1s, i.e., 0 < h < 1.

− Entries of matrix A satisfy 0 <
1

R1C1
< 1 and 0 <

1

R2C2
< 1.

− The coefficient āi satisfies 0 < āi ≤ āmax < 1.

Now, consider the following Lyapunov function candidate (16) and its forward difference (17).

V (k) = ex̄1(k)
T ex̄1(k) > 0, ∀ex̄1(k) ̸= 0 (16)

∆V (k) = V (k + 1)− V1(k)

=

(
1− h

1

R1C1

)2

ex̄1(k)
2 − ex̄1(k)

2

=

((
1− h

1

R1C1

)2

− 1

)
ex̄1(k)

2 < 0 provided that 0 < h
1

R1C1
< 1 (17)

These facts imply that ex̄1(k) approaches 0 as k approaches infinity. In addition, we can use a similar analysis

to prove ex̄2(k) also approaches 0 as k approaches infinity, if it satisfies 0 < h
1

R2C2
< 1.

Now, consider the first Lyapunov function candidate expressed by (18) as follows:

Ṽ(k) = ex̄3(k)
T ex̄3(k) > 0, ∀ex̄3(k) ̸= 0 (18)

in addition, its forward difference is given as (19):

∆Ṽ (k) = Ṽ (k + 1)− Ṽ (k)

= (ex̄3(k) + hκex̄1(k) + hκex̄2(k)− hκāiex̄3(k))
2 − ex̄3(k)

2 (19)

in the previous description, we know that ex̄1(k) and ex̄2(k) approach 0 as k approaches infinity; hence, we
have the following:

∆Ṽ (k) = (ex̄3(k)− hκāiex̄3(k))
2 − ex̄3(k)

2

=
(
(1− hκāi)

2 − 1
)
ex̄3(k)

2 < 0 provided that 0 < hκāi < 1 (20)

to be more generally applicable, the condition becomes 0 < hκāmax < 1. It completes the stability analysis.
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3.3. Numerical simulation and discussion
Simulations run adopt LIB parameters in [27], for RS , (R1, C1) and (R2, C2, and in [28], for Qξ. All

simulations regard that the Coulombic efficiency η is 1 (see (4)). These are shown in Table 2. We utilize Python
3.12.1 for the simulations.

In the first simulation, we show how the situation represents a simplified case as described in the
stability analysis above. In this situation, the real and estimated SOC values are on the same piece of a linear line
of the VOC curve; the initial conditions of real SOC and estimated SOC values are 0.98 and 0.91, respectively.
Besides, the discharge current u = I is set to a constant value, i.e., −0.49A. Three values of the observer gain
κ are used for comparison of the performance. Figure 4 shows the simulation result. We can notice that the
higher observer gain gives a faster estimated SOC approach to the real SOC. Nevertheless, all estimated SOC
values tend to provide zero estimation error. Next, it is of interest to see how observers could perform in more
practical scenarios.

Table 2. Battery parameters
Ω F Ah

R1 0.015 C1 1000 Qξ 4.9

R2 0.0015 C2 2500

RS 0.024

Figure 4. SOC estimation result based on the simplified situation meets the asymptotically stable guarantee

In the second simulation, we set the initial conditions of real SOC and estimated SOC are 0.98 and 0,
respectively. Another difference from the previous simulation is that we use the disturbance w and the noise
(v1, v2), which are the normal random numbers whose maximum amplitude is 0.001. Each normal random
number that represents the disturbance and noise is generated uniquely. Figure 5 shows the simulation result.
All estimated SOC values tend to reach the real SOC with the same speed as in the first simulation. However,
we could identify that the higher observer gain implies a higher distortion amplitude. In addition, at about
2800− 3000s there are jumps (drops and lifts) in the estimated SOC values. It might relate to the nonlinearity
of the relationship between OCV and SOC (see Figure 2). However, the important fact is that this indicates
there is an error in SOC estimation due to noisy sensor data.

The third simulation includes the uncertainties ∆A, ∆B , and ∆D. These values vary by a maximum
10% of the known parameters (A, B, C). It is implemented by, for example, ∆B = B × 0.1S∆, where S∆ is
sine wave with the frequency is 5× 10−5Hz. This simulation result is shown in Figure 6. The result is similar
to the previous situation, except that, compared to Figure 5, there is a shift between the real SOC line and the
estimated SOC line. It is noticeable at about 2800s in the area where the estimated SOC values jump.

Next, we consider using a different profile of the current discharge. It is in the form of pulse width
modulation (PWM) whose frequency, duty cycle, and amplitude are 1×10−3Hz, 10%, and -4 A, respectively. It
is called the multiple step test (MST) [29]. The other situations in this simulation are the same as the previous
one. The simulation result is depicted in Figure 7. We could notice there are jumps in every occurrence of
sudden discharge current. However, the shape is not as similar as the jumps in the previous figures. In this
simulation, it appears that there are additional overshoot and undershot properties that usually appear in the
step response of a control system. However, it indicates that the observer failed to provide a perfect SOC
estimation when a sudden discharged current occurs.
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Figure 5. SOC estimation result using the model suffers from disturbance and noise

Figure 6. SOC estimation result using the model suffers from disturbance, noise, and model uncertainty

Figure 7. SOC estimation result using the model suffers from disturbance, noise, and uncertainty with a PWM
discharge current

4. CONCLUSION
A discrete-time Luenberger observer-based to estimate a Lithium-ion battery’s state-of-charge is pre-

sented. Some assumptions are used in the stability analysis in order to prevent complexity in the observer
design. The observer has an asymptotically stability guarantee. Multiple simulations are conducted to assess
the observer’s performance. The simulations also consider the situation that corresponds to a realistic situation,
such as the unknown initial value of the real battery’s state of charge as well as the appearance of disturbance,
noise, and model uncertainties. Based on the simulation results, some challenging problems could be consid-
ered for further research. One aspect is to utilize a higher observer gain to quickly achieve the actual SOC and
a lower observer gain to minimize distortion.
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