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 This work intends to improve estimates of solar and wind energy generation 

through the application of resilient backpropagation control and substantial 

power evolution strategy (SPES) algorithms. In comparison to particle 

swarm optimization and genetic algorithms, the main goal is to minimize 

predicting mistakes. These methods increase grid reliability by lowering 

total harmonic distortion (THD) and improving power quality when 

integrated with the IEEE-9 bus standard. In order to evaluate the hybrid 

system's transient and steady-state reactions, the study also highlights the 

importance of bolstering operation and control. A revolutionary deep 

learning-based approach is also suggested for predicting wind and solar 

hybrid energy. The power grid's efficiency and dependability in handling 

renewable energy sources have significantly improved, according to the 

results. 
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1. INTRODUCTION 

Greenhouse gas emissions from one of the energy sources that is non-renewable is modern 

difficulties; these emissions have an adverse effect on the environment and raise health concerns in the 

vicinity of power plants. Furthermore, there limited are conventional power sources. To integrate wind power 

into the grid and handle output voltage changes, large wind turbines need mechanical systems and inverters. 

Since solar cells and wind turbines produce rectified AC output, which charges batteries for load supply, 

combining solar and wind energy improves power system reliability [1]-[3]. By 2050, IRENA envisions an 

86% renewable energy share. India targets 175 GW by 2022, including 5 GW small hydro, 60 GW wind, and 

100 GW solar. The IEA forecasts a 50% rise in renewables by 2024, led by solar. Soft computing aids 

accuracy amid resource uncertainties [4]. 

Academics investigate methods of producing solar and wind energy while taking local differences 

into account. Reducing reliance on fossil fuels and emissions is the goal of renewable energy, whereas hybrid 

systems improve sustainability [5], [6]. The techno-economic-environmental (TEE) performance is enhanced 

by the "Integrated Load-Side Management of Hybrid Renewable Energy Systems for Rural Electrification" 

[7]. Remote villages can always have electricity thanks to a standalone microgrid made of solar and wind 

power. We look at energy storage technologies such as seawater-pumped storage systems. Stochastic 

optimization is one method used to tackle problems in renewable energy storage; models such as the neuro-
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fuzzy adaptive inference System are used to improve the accuracy of solar spectrum forecasts [8]-

[10]. Numerous studies explore optimization techniques like loss of load probability for sizing PV systems in 

remote locations, considering load profiles and meteorological variables. Reddy and Ranjan employ artificial 

neural network (ANN) models for precise hourly and monthly solar radiation estimations [11]. 

Kalogirou develops a method using regression relationships to compute monthly low solar radiation for 

various climatic conditions [12]. Karimi et al propose a load-sharing scheme for a PV-based hybrid  

microgrid [13]. Rebollal et al. emphasize the inverter's significance in solar installations [14]. Butt et al. 

discuss smart grid impacts on power distribution [15]. The literature calls for improved coordination and 

synchronization in wind and solar power studies, focusing on hourly resolutions for accurate forecasting and 

addressing energy system inefficiencies [16]-[18]. Researchers prioritize wind and solar energy to meet 

renewable portfolio standards and emission reduction targets, developing comprehensive forecasting models 

considering influencing elements and temporal fluctuations for increased accuracy [19], [20]. Special 

algorithms are employed to optimize energy system forecasts, particularly in the context of novel hybrid 

forecasting models [21], [22]. 

 

 

2. PROPOSED DYNAMIC APPROACH 

Despite wind energy forecasting progress surpassing solar methods, the integration of solar 

electricity from distributed energy resources (DERs) is pivotal for grid operations. Accurate load predictions 

are essential for economic production and grid-dependent load balancing. The grid-tied wind and solar 

system, illustrated in Figure 1 emphasizes the contribution of distributed PV systems to the net load curve [23]. 

Addressing challenges like load variability and uncertainty in solar irradiance forecasting is crucial for 

optimizing economic production and reducing operational costs stemming from PV over generation [24], [25]. 

 

 

 
 

Figure 1. Grid-connected solar and wind system's block diagram 

 

 

Accurate forecasts shown in Figure 2 enhance utility by improving reliability, grid parameters, 

frequency stability, and load tracking for economical dispatch. Figure 3 illustrates the block diagram of a 

short-term forecasting system using historical meteorological data from the Technical University Campus in 

Rajasthan, India, using a resilient back propagation neural network. integrated with the IEEE–9 bus network, 

this model mitigates power quality issues, employing the resilient back propagation neural network (RBPN) 

inspired by biological neural networks, capable of tasks like clustering, classification, and regression for 

weather variable forecasting. Multi-layer perceptron (MLP) with back-propagation (BP)outperforms 

traditional methods in predicting dynamic and non-linear weather processes, accurately forecasting variables 

elements including temperature, irradiance, wind speed, and rainfall. The proposed system comprises three 

components: solar forecasting, wind forecasting, and the impact of solar and wind power integration. 

 

2.1. Resilient back propagation neural network for solar forecasting 

Figure 4 depicts the operation and parameters of the algorithm for robust backpropagation neural 

networks. Resilient propagation and backpropagation share similarities, differing primarily within the routine 

weight update. Unlike backpropagation, in resilient propagation, the weight update's direction is established. 
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Figure 2. Depicts forecast applications 

 

Figure 3. Block diagram of proposed system 

 

 

 
 

Figure 4. Resilient back propagation neural network flowchart 

 

 

2.2. Neural network-based resilient backpropagation wind power forecasting 

This section, multilayer RBPN is used to forecast wind power, with particular attention paid to 

temperature and wind speed as key variables to ensure that maintain stability in the electricity market and 

enable effective power system management and energy trading in the dynamic wind energy market, instant 

wind speed forecasts are now a must. A system for wind power forecasting is presented, as shown in Figure 5, 

which minimizes imbalance charges and enhances energy market trading and project efficiency. Wind power 

integration affects voltage management, transient stability, and power quality. Power electronics in turbines 

reduce harmonic distortion and voltage fluctuations. Exciters and conventional generators stabilize voltage and 

frequency, ensuring transient stability. Voltage control issues in induction generators cause problems like 

voltage sag, surge, and flicker, influenced by network impedance, grid strength, and power factor. 
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Figure 5. Block diagram of the forecasting system for wind power 
 
 

3. RESULTS AND DISCUSSION 

The average annual solar irradiation is 5.69 kWh/m2, with daily variations between 4.140 and  

7.440 kWh/m2. In the research area brief shown in Table 1, the monthly wind speed varies from 2.410 to  

4.68 m/s, with a stable yearly average of 3.29 m/s. The suggested system is simulated using MATLAB 

2017a, with simulation parameters detailed in Tables 2-4. Data is sourced from a technical university campus 

in north-western India. 
 

 

Table 1. Solar irradiance and wind speed 
Month Clearness index Average radiation (kW/h/m2) Average wind speed (m/s) 

January 0.651 4.43 2.63 

February 0.691 5.42 3.150 
March 0.692 6.41 2.769 

April 0.676 7.05 3.79 

May 0.673 7.44 4.54 
June 0.585 6.58 4.68 

July 0.478 5.31 4.06 

August 0.477 5.04 3.33 

September 0.619 5.91 3.21 

October 0.706 5.76 2.46 

November 0.686 4.75 2.41 
December 0.654 4.14 2.52 

Annual average 0.634 5.69 3.29 

 

 

Table 2. Comparison between SPES and RBPN for wind power prediction interval forecasts 
Forecast horizon  GA PSO SPES RBPN 

One step ahead MAE (KW) 8.63 6.7 5.22 4.31 

RMSE (KW) 1.72 4.21 5.2 4.61 
One day ahead MAE (KW) 8.26 9.80 10.9 9.87 

 RMSE (KW) 10.1 7.49 6.51 5.7 

Train time  60.1 56.3 40.1 30.1 

 

 

Table 3. Comparing solar power prediction interval 

forecasts with SPES and RBPN 
Forecast horizon  GA PSO SPES RBPN 

One step ahead 
MAE (KW) 5.50 4.07 3.61 3.15 

RMSE (KW) 5.41 4.07 3.86 3.12 

One day ahead MAE (KW) 7.54 7.06 7.81 7.24 
 RMSE (KW) 12.22 11.5 10.23 9.2 

Train time  23.33 21.1 17.15 10.4 
 

Table 4. Reactive power analysis of RBPN with 

existing methods 
Methods Reactive power 3rd 

bus 
Reactive power 5th 

Bus 

GA 20.62 21.50 

PSO 16.13 17.46 
SPES 7.52 8.13 

RBPN 5.12 6.3 
 

 

 

There is more unpredictability in the power system as a result of the increase in variable energy 

generation, particularly from solar and wind power. A model for short-term forecasting (STF) of solar and 

wind power is developed using the resilient back propagation neural network (RBPN) in order to overcome 

this difficulty. RBPN integrates with the IEEE-9 bus system to minimize total harmonics distortion (THD) and 

address power quality concerns in MATLAB Simulink simulations. The suggested technique for predicting 

solar and wind power in grid-connected situations is shown in Figure 6. Comparative results in Table 2 and 

Figure 7 reveal RBPN's superior performance over genetic algorithm (GA), particle swarm optimization 

(PSO), and substantial power evolution strategy (SPES) in one-step and one-day ahead wind forecasting. 
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Figure 6. A forecasting method for grid-connected solar and wind power is proposed 
 
 

 
 

Figure 7. Evaluation of wind power prediction interval forecasts using SPES and RBPN in comparison 
 

 

Table 3 and Figure 8 illustrate the root mean squared error (RMSE) and mean absolute error (MAE) 

value comparison of the SPES model with alternative models for solar power forecasting, showcasing 

superior performance for both one-day and 10-minute ahead predictions. SPES achieves the lowest RMSE 

values (3.76 and 10.21) and MAE values (3.71 and 7.798) compared to GA, PSO, and RBPN across forecast 

horizons. Figure 9 shows the direct application of the RBPN forecasting method on the IEEE-9 bus reveals 

improved power quality, with THD values of 2.21% and 0.45% for the 3rd and 5th buses, surpassing GA and 

PSO methods. Table 4 showcases the superior performance of SPES and RBPN algorithms in reactive power 

analysis, surpassing existing methods, with SPES revealing values of 7.52 and 8.13 in the 3rd and 5th buses, 

and RBPN exhibiting values of 5.12 and 6.30. 

Table 5 demonstrates the superior performance of SPES and RBPN algorithms in voltage magnitude 

analysis, surpassing existing methods, with SPES exhibiting values of 0.968 (pu) and 0.961 (pu) in the 3rd 

and 5th buses, and RBPN showing 0.986 (pu) and 0.985 (pu). In Table 6, SPES and RBPN methods exhibit 

significantly reduced line loss, with SPES recording 1.6 (pu) and 1.52 (pu), and RBPN showing 0.62 (pu) and 

0.81 (pu) in the 3rd and 5th buses. 
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Figure 8. Comparison of prediction interval forecast of solar power using SPES and RBPN 
 
 

 
 

Figure 9. Power quality analysis of IEEE-9 bus with PV and wind using SPES and RBPN 
 

 

Table 5. Analysis of voltage magnitude of RBPN 

with existing methods 
Methods Voltage magnitude (pu) 

3rd bus 

Voltage magnitude (pu) 

5th bus 

GA 0.861 0.876 
PSO 0.853 0.846 

SPES 0.968 0.961 

RBPN 0.986 0.985 
 

Table 6. Analysis of line loss with RBPN vs existing 

methods 
Methods Voltage magnitude (pu) 

3rd bus 

Voltage magnitude (pu) 

5th bus 

GA 2.06 2.13 
PSO 2.42 2.25 

SPES 1.6 1.52 

RBPN 0.62 0.81 
 

 

 

4. CONCLUSION 

In comparing PSO and GA to SPES and RBPN for solar and wind energy forecasting, the study 

demonstrated higher accuracy in minimizing mistakes. Reactive power was optimized for increased grid 

stability and decreased THD by integration into the IEEE-9 bus system, which also increased voltage (RBPN: 

0.986 pu and 0.985 pu) and decreased line losses (0.62 pu and 0.81 pu). Deep learning integration will be the 

focus of future research to enable more accurate projections of renewable energy and sophisticated control 

techniques. By lowering dependency on conventional energy and increasing the efficiency of solar and wind 
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resources, SPES and RBPN promote sustainability. Economic viability analyses, which take investment 

returns and lifespan costs into account, are essential for the wider deployment of RBPN and SPES. Hybrid 

renewable energy systems benefit greatly from the combined efforts of SPES and RBPN, which calls for 

further development and widespread implementation to advance energy infrastructures. 
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