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 Model predictive control (MPC) is becoming more and more popular in 

power electronics applications, yet its practical implementation faces 

challenges due to computational complexity and resource demands. To 

address these issues, a novel MPC control approach using an artificial neural 

network (ANN-MPC) is put forth in this research. Using a real-time circuit 

modeling environment, a power converter with a virtual MPC controller that 

can regulate both linear and nonlinear loads is first created and run. The 

input-output data gathered from the virtual MPC is then used to train an 

artificial neural network (ANN) offline, enabling a simplified mathematical 

representation that significantly reduces computational complexity. 

Moreover, the ANN-MPC controller’s adaptability to input variations 

enhances robustness against system uncertainties. We offer a thorough 

explanation of the ANN-MPC's fundamental idea, ANN architecture, offline 

training approach, and online functioning. The suggested controller is 

validated by simulation with MATLAB/Simulink tools. Performance 

evaluation of the novel MPC-ANN controller is performed across various 

scenarios, including linear and nonlinear loads under various operational 

conditions, and a comparative analysis with conventional MPC is presented. 
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1. INTRODUCTION 

The improved power converter efficiency has driven their widespread use across many industrial 

power applications. Notably, three-phase inverters are indispensable in contemporary power networks for 

converting DC to AC, serving critical roles in industrial settings such as motor drives, renewable energy 

integration, and grid-tied systems due to their efficient handling of high-power levels and reliable 

performance. Renewable energy sources like wind and solar can be smoothly integrated into the electrical 

grid thanks to advanced power electronic systems, ensuring stable and efficient power delivery. Figure 1 

depicts the topology of a voltage source inverter (VSI) connected to a three-phase load with an RLC filter 

used to suppress harmonic distortion, thus improving the quality of the output waveform. hysteresis 

regulation [1], proportional-integral (PI) controller [2], active disturbance rejection control (ADRC) [3], 

proportional-resonant (PR) control [4], adaptive techniques [5], and model-based predictive control  

(MPC) [6]. There are a few of the most commonly employed control systems in power converters. 
Model predictive control (MPC) enables real-time assessment of system states, leading to robust and 

highly efficient control in power converters. Typically, MPC consists of three main elements: a predictive 

https://creativecommons.org/licenses/by-sa/4.0/
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model capturing system dynamics, a reference trajectory, and an optimal controller derived through rolling 

optimization [7]-[10]. Despite its effectiveness in industrial applications, MPC still has limitations. 

Researchers have long explored methods to reduce the computational complexity of model predictive control 

(MPC) in power converter applications. Several strategies have been developed to overcome the high 

computational demands associated with MPC implementation. For instance, [11] introduces an explicit MPC 

approach that shifts optimization offline using multiparametric programming, significantly lowering real-

time processing requirements. Another study [12] enhances prediction accuracy by proposing a discrete-time 

model for induction machines with time-varying parameters. Additionally, [13] combines finite control set 

MPC (FCS-MPC) with system identification techniques to improve performance. To further reduce 

computational load without sacrificing control benefits, [14] presents a simplified optimal-switching-

sequence MPC (OSS-MPC) strategy. Additionally, an MPC implementation with a two-step prediction 

approach was introduced [15]. The computational difficulties of MPC in high-frequency power converters 

have yet to be universally solved, despite these attempts. 

In power electronics and motor control, artificial neural networks (ANNs) are driving significant 

advancements in control strategies. These data-driven techniques excel at a critical task: mapping inputs to 

desired outputs. Researchers are even combining ANNs with established methods like model predictive 

control to create even more powerful approaches, such as DeepMPC [16]. This combination has shown 

success in real-world applications, with one study using deep neural networks to effectively control complex 

resonant power converters in industrial settings [17]. Another approach using ANN for the three-phase  

inverters [18] and multilevel inverters are discussed in [19], [20]. Liu et al. [21] proposed a novel technique 

that relies on data analysis to calculate capacitor voltages, thus eliminating the need for sensors in the system. 

Simonetti et al. [22] also suggest using the ANN-based MPC for CHB converters. ANN controllers offer 

distinct advantages compared to other control techniques. Key advantages include the ability to operate 

without requiring an exact mathematical model of the controlled system, effectively treating it as a black box. 

The application of artificial neural networks (ANNs) in power electronics remains an underexplored 

area with significant innovation potential. This paper provides a comprehensive overview of techniques 

designed to address predictive control computation challenges, with a particular emphasis on the recent 

advancements in ANN-based model predictive control (ANN-MPC). The paper focuses on ANN-MPC 

applications in three-phase inverter control, assessing how this approach tackles unique implementation 

challenges while improving overall control efficacy. 

This paper is organized as follows: i) Section 1 presents a comprehensive introduction to the 

research topic and provides necessary background information; ii) Section 2 presents a detailed study of the 

model predictive control (MPC), including the mathematical formulation of a three-phase voltage source 

inverter with an integrated RLC filter. This is followed by a detailed explanation of the novel ANN-MPC 

approach; iii) Section 3 focuses on the practical implementation of the proposed control approach, simulation 

studies, and an in-depth analysis of the achieved results; Finally, iv) Section 4 summarizes the results and 

draws conclusions based on the study. 
 

 

2. METHOD 

2.1.  Model predictive control 

Model predictive control (MPC) is an advanced control paradigm that enables multivariable system 

regulation through predictive optimization. The methodology utilizes either analytical or data-derived system 

representations to forecast dynamic behavior across a finite time horizon, Figure 1 gives this concept. In 

power converters, MPC optimizes switching states to achieve the desired outcome while adhering to 

limitations. The key steps within MPC involve prediction and optimization. Notably, the specific technique 

mentioned, FCS-MPC, keeps each switch in a constant ON or OFF state for a sampling period. 
 

2.1.1. System modelling  

The power stage consists of a three-phase voltage-source inverter (VSI) utilizing six IGBT 

switching devices with a DC bus voltage input. As illustrated in Figure 1, the output stage incorporates an 

RLC filter for waveform conditioning. In the system, "L" stands for the filter inductor, "C" for the filter 

capacitor, and "R" for the filter resistor. In the filter inductor, '𝑖0' indicates the output current, '𝑣𝑐 ' the output 

voltage, and '𝑖𝑓 ' is the input current. 𝑉𝑑𝑐. is the symbol for the voltage across the DC-link. The inverter's 

operational state is indicated by the ON-OFF status (𝑆𝑎, 𝑆𝑏 𝑆𝑐) of the three transistors in the upper bridge 

branch. Consider the transistor's ON state to be 1 and its OFF state to be 0. 

One way to express the switching state vector ′ 𝑆 ′ is as (1). 

 

S = 2 3(Sa + ⁄ 𝛼Sb + 𝛼2Sc) (1) 
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Where 𝛼 = 𝑒𝑗(
2𝜋

3
). The inverter output voltage's space vector sum is defined as (2). 

 

𝑉𝑖 = 2 3⁄ (𝑉𝑎𝑁 + 𝛼𝑉𝑏𝑁 + 𝛼2𝑉𝑐𝑁) (2) 

 

In the context of the system 𝑉𝑎𝑁, 𝑉𝑏𝑁 and 𝑉𝑐𝑁 represent the inverter's phase voltages in relation to the neutral 

point in accordance with a negative potential. The load voltage vector 𝑉𝑖  and the switching state vector S 

may be related using (3). 

 

 𝑉𝑖 = 𝑉𝑑𝑐𝑆  (3) 

 

Starting from the on-off states of the upper arm of the bridge and (1) and (3), we observe that we 

have 8 combinations of ON-OFF states that can be indicated with 𝑉ᵢ: that is 𝑉₀ (000), 𝑉₁ (100), 𝑉₂ (110), 𝑉₃ 

(010), 𝑉₄ (011), 𝑉₅ (001), 𝑉₆ (101), 𝑉₇ (111). As shown in Figure 2, this vector space comprises six active 

vectors (V₁-V₆) and two zero vectors (V₀, V₇) that generate null output voltage. 

 

 

 

 
 

Figure 1. Feeding an output RLC filter with  

a three-phase inverter 

 

Figure 2. Potential voltage vectors that the 

inverter may produce 

 

 

2.1.2. RLC filter modeling 

The following are the space vectors that represent the current filter "𝑖𝑓" , output voltage "𝑣𝑐" and 

output current "𝑖0" using notation, as (4)-(6). 

 

𝑖𝑓 = 2 3(𝑖𝑓𝑎⁄ + 𝑎𝑖𝑓𝑏 + 𝑎2𝑖𝑓𝑐) (4) 

 

𝑣𝑐 = 2 3⁄ (𝑣𝑐𝑎 + 𝑎𝑣𝑐𝑏 + 𝑎2𝑣𝑐𝑐  ) (5) 

 

𝑖0 = 2 3⁄ (𝑖0𝑎 + 𝑎𝑖0𝑏 + 𝑎2𝑖0𝑐) (6) 

 

In the design of the RLC filter for this project, there are two main components. The effects of the variable 

inductance and the varying capacitor are defined by (7) and (8), respectively. 

 

𝐿
𝑑𝑖𝑓

𝑑𝑡
= 𝑣𝑖 − 𝑣𝑐 − 𝑅𝑖𝑓 (7) 

 

𝐶
𝑑𝑣𝑐

𝑑𝑡
= 𝑖𝑓 − 𝑖0  (8) 

 

These (7) and (8) can be rewritten as (9). 

 
𝑑𝑥

𝑑𝑡
= 𝐴𝑥 + 𝐵𝑣𝑖 + 𝐶𝑖0 (9) 

 

with ∶  X = [
𝑖𝑓

𝑣𝑐
] ;  A = [

−𝑅/𝐿
−1

𝐿
1

𝐶
0

] ; B = [
1

𝐿

0
] ; C = [

0
−1

𝐶

]  

 

The system's output is the output voltage "𝑣𝑐 ", The following is an expression for the state equation, as (10). 
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𝑣𝑐 =  [0 1]𝑋 (10) 

 

From (9), with the help of the sampling time T_s, yields the discrete-time modeling of the filter, which is 

represented as (11). 

 

𝑋(𝐾 + 1) = 𝐴𝑑𝑋(𝐾) + 𝐵𝑑𝑣𝑖(𝐾) + 𝐶𝑑𝑖0(𝐾) (11) 

 

With 𝑋(𝐾 + 1) = [
𝑖𝑓(𝐾 + 1)

𝑣𝑐(𝐾 + 1)
]; 𝑋(𝑘) = [

𝑖𝑓(𝐾)

𝑣𝑐(𝐾)
] ;  𝐴𝑑 = 𝑒𝐴𝑇𝑠 ; 𝐵𝑑 = 𝑒𝐴𝜏𝐵𝑑𝜏 ; 𝐶𝑑 = 𝑒𝐴𝜏𝐶𝑑𝜏 

 

To estimate the output voltage 𝑣𝑐   at time K+1, it is essential to know the capacitor voltage 𝑣𝑐 , the 

inductor current 𝑖𝑓  , and the output current 𝑖0, all at time K. The current  𝑖0 can be obtained either through 

direct measurement or by estimation using (12), which is derived from (8). In this study, we opt for direct 

measurement of the output current 𝑖0 to ensure reliable and practical results. 

 

𝑖0(𝐾) = 𝑖𝑓(𝐾 − 1) −
𝐶

𝑇𝑠
 (𝑣𝑐(K) − 𝑣𝑐(K − 1) (12) 

 

2.1.3. Cost function 

The cost function 𝑔𝑁 is used to identify the best switching state among seven potential anticipated 

output voltage vectors in order to minimize the discrepancy between the reference voltage at time k+1 and 

the inverter's predicted output voltage for the subsequent sampling interval. As a result, the formal expression 

for the cost function 𝑔𝑁 is as (13). 

 

𝑔𝑁 = |𝑣𝑐𝛼 ∗ (𝐾 + 1) − 𝑣𝑐𝛼(𝐾 + 1)| + |𝑣𝑐𝛽 ∗ (𝐾 + 1) − 𝑣𝑐𝛽(𝐾 + 1)| (13) 

 

With 𝑣𝑐𝛼 ∗ (𝐾 + 1), 𝑣𝑐𝛽 ∗ (𝐾 + 1), depicting the real and imaginary parts of the reference output voltage 

𝑣𝑐 ∗. 𝑣𝑐𝛼(𝐾 + 1), 𝑣𝑐𝛽(𝐾 + 1) are the real and imaginary parts of the predicted voltage 𝑣𝑐. The basic 

operating principle of the MPC is depicted in Figure 3. 
 

 

 
 

Figure 3. Block diagram illustrating the model predictive control of UPS 
 
 

2.2.  Concept of ANN-MPC 

Artificial neural networks (ANNs), composed of fully connected layers, are highly adaptable tools 

capable of solving a wide range of problems, including classification tasks. When a control problem is 

framed as a classification task, ANNs can produce control actions that are comparable to those generated by 

Finite control set model predictive control (FCS-MPC) [23]-[25]. The performance of the network is strongly 

influenced by the size of the hidden layers. Generally, within an appropriate range, increasing the network 

size enhances its classification capability. In the final layer, a SoftMax activation function is applied to 

compute the probability associated with each possible switching state. 

 

2.2.1. ANN training 

 The ANN undergoes an iterative offline training process, as illustrated in Figure 4. To begin, a power 

converter is designed and used with a conventional model predictive control. The input data ([𝑣𝑐(𝐾), 𝑖𝑓(𝐾) , 

𝑖𝑜(𝐾), 𝑣𝑐 ∗ (𝐾)]) and output data [ Sa, Sb, Sc] from this controller are collected to serve as input and target 

values, respectively, for the ANN-MPC training set. The training set needs to encompass a broad range of 

scenarios, spanning from no load to maximum load conditions. This involves conducting numerous experiments 



Int J Pow Elec & Dri Syst  ISSN: 2088-8694  

 

Artificial neural network-based predictive control for three-phase inverter systems with … (Iftissen Nabil) 

953 

to generate a collection of training datasets, resulting in 108 different scenarios. These scenarios are categorized 

into 84 cases, each corresponding to specific resistive load values (particularly for R values). Moreover, 24 

experiments are dedicated to investigating scenarios where the inverter supplies power directly to a nonlinear 

load, such as a diode bridge rectifier. This configuration involves varying values of nonlinear load resistance 

(RNL) and capacitance (CNL). Including reference voltage considerations, these simulations cover various 

operational situations with distinct sampling times (𝑇𝑠), filter capacitance (C) and filter inductance (L) values, as 

well as DC link voltage (𝑉𝑑𝑐) and variable simulation times measured in the number of output voltage cycles. 

Subsequently, ANN is trained offline using the recorded samples. Throughout training phase, ANN utilizes the 

recorded data ([𝑣𝑐(𝐾), 𝑖𝑓(𝐾) , 𝑖0(𝐾), 𝑣𝑐 ∗ (𝐾)]) to estimate the control signals. 

Figure 5 illustrates the simulation carried out in MATLAB Simulink. The outputs generated by the 

Neural Network block are sent to block 1, whose objective is to fix the values using a saturation block. The 

optimized signals are then processed and sent to a block responsible for generating the commands for the 

inverter switches, as shown in Figure 6. These commands are then used by an inverter made up of six IGBT 

switches, whose role is to convert the DC voltage into an AC voltage to supply the load. This part has already 

been described step by step in section 2.1.1. Downstream of the inverter, a passive RLC filter is inserted in order 

to attenuate the harmonic components of the output voltage and to ensure a sinusoidal waveform that complies 

with power quality standards. The parameters and modeling of this filter are described in section 2.1.2. 

 

 

 
 

Figure 4. Block of the ANN-MPC's offline training procedure 

 

 

 
 

Figure 5. Block simulation 



                ISSN: 2088-8694 

Int J Pow Elec & Dri Syst, Vol. 16, No. 2, June 2025: 949-960 

954 

2.2.2. Enhanced ANN-base controller 

The training phase and the implementation (or testing) phase are the two primary steps of the ANN-

MPC control technique. The data produced by the MPC controller is used to train the Artificial Neural 

Network during the first offline training phase. This data also forms the foundation for gathering training, 

validation, and test datasets. The network is used in real-time to regulate the inverter after it has been 

appropriately trained and optimized. Figure 6 displays the block diagram of the ANN-based control system 

connected to a three-phase inverter with an RLC filter at the output. The objective is to create a high-quality 

sinusoidal output voltage with minimal total harmonic distortion (THD) to guarantee compliance with a 

variety of load scenarios. 

The flowchart in Figure 7 shows the process of training and validating an artificial neural network 

(ANN) model. The process begins by defining the input and output parameters for the artificial neural 

network (ANN). Once the parameters are defined, the architecture of the ANN is designed. Following this, 

the ANN is trained using the defined architecture. After training, the process reaches the first decision point, 

where the statistical index is evaluated. If the statistical index is not acceptable, the process returns to the 

training phase to improve the model. If the statistical index is acceptable, the process proceeds to validate the 

performance of the trained ANN model. At the second decision point, the model's acceptability is assessed. If 

the model is not acceptable, the process returns to the ANN architecture step for possible redesign and 

retraining. If the model is accepted, it is then considered ready for prediction. The trained and validated ANN 

model is now ready to be deployed for making predictions. 

 

 

 
 

Figure 6. Block diagram of the improved ANN-based controller 

 

 

 
 

Figure 7. Flow chart of ANN modeling 
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3. RESULTS AND DISCUSSION 

In this section, we validate and compare the performance of the proposed ANN-MPC against FCS-

MPC. This evaluation encompasses different loads and as well as different operating conditions. The system 

parameters used in the simulations are detailed in Table 1. Figure 8 shows the steady-state behavior of the 

ANN-based controller under a 50 Ω resistive load, while Figure 9 presents the response of the MPC under the 

same conditions. In Figures 8 and 9, the reference voltage is maintained at an amplitude of 200 V and a 

fundamental frequency of 50 Hz. The total harmonic distortion obtained by the ANN-based controller 

scheme is 0.39% for a resistive load of 50 Ω, have been depicted in Figure 10, and the total harmonic 

distortion obtained by the FCS-MPC scheme is 0.52% for a resistive load of 50 Ω, have been depicted in 

Figure 11. 

 

 

Table 1. Converter system parameters 
Parameter Value 

DC link voltage Vdc 

Voltage reference 

500 V 

200 V 

Filter capacitor C 50e-6 F 

Filter inductance L 
Filter resistor 

Reference frequency 

3.5e-3 H 
R/10 Ω 

50 fm 

Sampling time Ts 10e-6 s 

 

 

  
(a) (b) 

 

Figure 8. Simulated (a) output voltage and (b) output current for a 50 Ω resistive load controlled  

by the ANN-based scheme 

 

 

  
(a) (b) 

 

Figure 9. Simulated (a) output voltage and (b) output current, for a 50 Ω resistive load controlled by  

the FCS-MPC-based scheme 
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The plotted waveforms clearly demonstrate that both control strategies produce sinusoidal output 

voltages vcv_cvc with minimal distortion. Notably, the ANN-based controller achieves a lower total 

harmonic distortion (THD) of 0.39%, compared to 0.52% obtained using the conventional MPC approach. 

Furthermore, since the load is purely resistive, the output current 𝑖0 is directly proportional to the output 

voltage. It is also observed that the filter current 𝑖𝑓, measured at the converter's output, contains high-

frequency harmonics more prominent in the case of MPC, which are effectively attenuated by the RLC filter. 

Table 2 summarizes the simulation results for different resistive load values under both control strategies. 

Figures 12 and 13 illustrate the transient response of the ANN-MPC and FCS-MPC control schemes, 

respectively, under no load (i.e., open circuit). 

The great dynamic performance of the suggested control technique is highlighted by the ANN-based 

controller's quick and steady transient response. In contrast, the MPC approach takes approximately 13 ms to 

reach a stable steady-state and accurately track the reference waveform. On the other hand, the ANN-based 

controller achieves the same stable state and tracks the reference waveform in less than 5 ms, demonstrating 

its superior dynamic response performance. The dynamic response to the increase in the amplitude of the 

reference voltage from 200 to 150 V at t = 0.045 s is presented in Figures 14 and 15 for the FCS-MPC and 

ANN-MPC methods, respectively. 

 

 

Table 2. Summary of simulation results for various resistive load values 
Resistor Ω ANN-based controller THD% FCS-MPC THD% 

10 0.35 0.39 

50 0.39 0.52 

100 0.36 0.63 
300 0.55 0.87 

 

 

 
 

Figure 10. Total harmonic distortion obtained by ANN-based controller scheme 

 

 

 
 

Figure 11. Total harmonic distortion obtained by FCS-MPC scheme 
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Figure 12. The ANN-based controller's dynamic 

response when there is no load 

 

Figure 13. The dynamic response of the FCS-MPC-

based controller when there is no load 

 

 

In the ANN-MPC model, the system responds to a change in the input reference in less than 1 ms, 

while the traditional MPC system takes approximately 3 ms to react. This difference is due to the varying 

computational demands of the MPC model. To evaluate the practicality and performance of the proposed 

ANN-based controller under real-world conditions, we conduct online tests with nonlinear loads, such as a 

diode bridge rectifier, as illustrated in Figure 16. Figure 17 shows the output voltage of the ANN-based 

controller under a nonlinear load, while Figure 18 presents the response of the predictive controller under the 

same conditions. In both cases, the reference voltage is maintained at an amplitude of 150 V and a 

fundamental frequency of 50 Hz. 
 
 

  

 

Figure 14. FCS-MPC-based control strategy's 

dynamic response: output voltage at t = 0.045 s when 

the reference voltage shifts from Vref = 200 V to 

Vref = 150 V 

 

Figure 15. ANN-based control strategy's dynamic 

response: output voltage at t = 0.045 s when the 

reference voltage shifts from Vref = 200 V to 

Vref = 150 V 

 

 

 
 

Figure 16. Non-linear model used with values C = 300 µF and R = 60 Ω 

 

 

The data from the graphs demonstrate that the output voltage generated by the artificial neural 

network (ANN)-based controller outperforms that obtained with model predictive control (MPC) for 

nonlinear loads. To improve MPC's performance in this scenario, it would be advantageous to consider 
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implementing a shorter sampling time or adjusting the values of capacitance or filtering resistance upwards. 

The THD values given by the system for different resistance and capacitance values are shown in Table 3. 
 

 

  
 

Figure 17. Simulation results: output voltages  

(𝑣𝑐 [v]) for the ANN-MPC a C = 30 µF and R = 60 Ω 

 

Figure 18. Simulation results: output voltages (𝑣𝑐[v]) 

for the FCS-MPC a C = 30 µF and R = 60 Ω 
 

 

Table 3. A summary for different values of non-linear load 
Nonlinear loads C(µF) and R(Ω) ANN-based controller THD% FCS-MPC THD% 

C = 30, R = 60 1.29 3.51 
C = 30, R = 150 0.9 3.11 

C = 100, R = 60 2.10 3.62 

C = 100, R = 150 1.80 3.75 

 

 

4. CONCLUSION 

This study introduces an ANN-based MPC design for power converters with an output RLC filter. 

By combining the strengths of machine learning with the precision of MPC, this approach provides a 

comprehensive solution to the computational challenges associated with traditional MPC methods. 

Simulation results on three-phase converters demonstrate that the ANN-MPC approach maintains the control 

efficacy of conventional MPC while significantly reducing computational complexity. The neural network-

based control strategy delivers a rapid dynamic response, reduced harmonic distortion, improved output 

voltage quality, and superior management of nonlinear loads compared to traditional MPC models. Future 

research may focus on the practical implementation of this ANN-based controller in real-world applications. 
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