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 This study investigates the estimation of the state of charge (SOC) in 

lithium-ion batteries by utilizing the extended Kalman filter (EKF) algorithm. 

A simulation model was developed in MATLAB, integrating the Thevenin 

model with the EKF algorithm to assess SOC levels. The results from the 

simulations confirm the accuracy and reliability of the proposed approach in 

estimating SOC. Moreover, a Simulink-based model of the Thevenin 

equivalent circuit and the EKF algorithm was implemented to further verify 

the effectiveness of the EKF in SOC estimation. This research underscores the 

potential of the EKF algorithm to deliver precise SOC estimates, which is 

crucial for optimizing battery management systems, particularly in electric 

vehicles. 
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1. INTRODUCTION 

The global shift towards sustainable energy solutions has positioned electric vehicles (EVs) at the 

forefront of efforts to reduce greenhouse gas emissions and dependence on fossil fuels [1]. The United States, 

Japan, and China have emerged as the primary markets driving the adoption of EVs, with sales showing a 

consistent upward trend since the early 2000s [2]. Despite these gains, the widespread adoption of EVs is still 

constrained by significant challenges, including high manufacturing costs, limited driving range, and concerns 

regarding battery longevity and reliability [3]. Central to these challenges is the performance of lithium-ion 

batteries [4], which play a critical role in determining the efficiency, range, power output, and overall cost-

effectiveness of EVs [5]. Lithium-ion batteries are widely favored for energy storage in EVs because of their 

exceptional energy density, excellent power performance, and minimal self-discharge rates [6]. The evolution 

of these batteries, particularly through the use of organic electrolytes, has led to significant improvements in 

energy density, enabling longer driving ranges and contributing to the increasing popularity of plug-in hybrid 

electric vehicles (PHEVs) and fully electric vehicles [7]. Organic electrolytes allow for stable operation at 

higher voltages, which has been instrumental in the advancement of lithium-ion technology [8]. However, 

despite these advances, the inherent limitations of lithium-ion batteries, such as degradation over time and 

sensitivity to operating conditions, continue to pose challenges to their widespread adoption [9]. 

An essential component of battery management in electric vehicles is accurately estimating the state 

of charge (SOC), which provides real-time information on the remaining energy capacity of the battery [10]. 

Accurate SOC estimation is vital for maximizing battery efficiency, prolonging its lifespan, and ensuring the 
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safe and effective operation of EVs. Several techniques have been developed to estimate SOC, each with 

distinct strengths and weaknesses [6], [11]. Coulomb counting is among the simple methods used to determine 

the battery's state of charge (SOC); this approach relies on the integration of input and output currents of the 

battery over time. Despite its simplicity, this method is prone to cumulative errors, particularly as the battery 

ages or its capacity changes [12]. Another widely used technique is the open-circuit voltage (OCV) method, 

which estimates SOC by measuring the battery’s terminal voltage [13], [14]. The nonlinearity between voltage 

and SOC, temperature fluctuations, and hysteresis effects can impact the accuracy of this method, though it 

remains cost-effective and easy to use [15]. These challenges highlight the necessity for more advanced 

approaches to address the complex and nonlinear nature of SOC estimation in lithium-ion batterie [16]. 

The extended Kalman filter (EKF) is the most applicable method in the field of EVs for estimating 

battery state of charge, due to its strong capability to handle the nonlinearities characteristic of such battery 

systems [12], and also for estimating battery parameters and states [17]. It is a nonlinear extension of the linear 

Kalman filter and operates by linearizing nonlinear functions through the use of partial derivatives and a first-

order Taylor series expansion [18]. The EKF was used both for the identification of battery model parameters 

and for state estimation [19]. The estimation process involves calculation of the Jacobian matrix, which can 

influence the accuracy of the estimated SOC value [20]. However, the EKF is not without its limitations. Its 

reliance on first-order approximations can introduce errors, particularly in systems with significant 

nonlinearities [13]. Moreover, the EKF's performance is highly dependent on the accuracy of prior knowledge 

regarding system noise, which, if inaccurate, can lead to estimation errors and even divergence from the true 

SOC [21]. In response to these challenges, various enhancements to the EKF have been proposed in recent 

years. One such improvement is the EKF which incorporates adaptive parameter updates to account for changes 

in the battery's characteristics over time, such as aging [22]. This adaptation improves the accuracy of SOC 

estimation, particularly in real-time applications where the battery's condition may change dynamically [23]. 

One limitation of the EKF algorithm is that its linearization only provides first-order accuracy, as it relies on 

first-order Taylor expansion. Consequently, the performance of the EKF is highly dependent on the accuracy 

of the battery model parameters and prior knowledge of system noise. If the prior knowledge is inaccurate, the 

estimation process may result in divergence errors [24]. 

For instance, the authors in [18] proposed an Improved EKF for online SOC estimation, which adapts 

battery model parameters in real time to account for battery aging. The I-EKF method demonstrated that the 

SOC estimated from a single cell could be accurately used to represent the SOC of an entire battery pack in 

EVs. Additionally, a robust EKF was utilized for SOC estimation using a five-RC battery model to evaluate 

the algorithm’s performance [25]. The study explored the sensitivity of SOC estimation to different initial 

conditions, and the results showed that robust EKF could effectively minimize errors caused by incorrect initial 

SOC values. 

In this study, we propose developing a comprehensive equivalent circuit model (ECM) of a lithium-

ion battery, incorporating the dynamic characteristics of the battery, such as resistance, capacitance, and voltage 

sources. This model will serve as the basis for formulating a state equation model, which will then be 

implemented in MATLAB/Simulink for simulation. The simulation results will provide a foundation for 

integrating the model into an EKF algorithm to estimate SOC. The effectiveness of the proposed method will 

be evaluated by comparing the estimated SOC values with actual SOC values obtained from experimental 

measurements. This work contributes to the existing body of knowledge by introducing a refined battery model 

that more accurately captures the nonlinear behavior of lithium-ion batteries, and by proposing an improved 

EKF algorithm that accounts for battery aging and other dynamic factors, thereby enhancing the accuracy and 

reliability of SOC estimation. Finally, the study provides a rigorous evaluation of the proposed method through 

simulations and experimental validation, demonstrating its potential applicability in real-world EV battery 

management systems. 

The structure of this manuscript is as follows: i) Section 2 offers a comprehensive review of the 

literature, discussing both the strengths and limitations of previous research on SOC estimation; ii) In section 

3, the methodology is outlined, covering the development of the battery model and the application of the EKF 

algorithm; iii) Section 4 presents the simulation and experimental results, while section 5 provides an in-depth 

discussion of these findings; and iv) Lastly, section 6 concludes the paper, summarizing the main contributions 

and proposing directions for future research. 

 

 

2. METHOD 

To accurately estimate the SOC of a battery, it is necessary to construct an equivalent model that not 

only offers high precision but also accurately captures the dynamic behavior of the battery. Moreover, to 

facilitate practical implementation in engineering applications, the model's complexity must be kept in check. 

The most commonly used equivalent models for Li-ion batteries include the Rint model [26], the Thevenin 

model [27], and the Rngv model [28]. Among these, the Thevenin model is particularly effective in quickly 
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capturing the operating state of the Li-ion battery without introducing significant delays, thus ensuring reliable 

accuracy over extended simulations. 

The equivalent circuit model is a well-established approach, frequently applied across various 

applications depending on the type of battery. Researchers in the field have created several models, often 

refining them through extensive testing to generalize their use for different battery types. The following section 

outlines some of the models discussed in the literature. One of the most commonly used models is Thevenin’s 

model, depicted in Figure 1. In this model, the components of the equivalent circuit are considered constant, 

with differences between the charging and discharging states. However, in reality, these parameters also vary 

according to the battery’s state of charge and discharge rate [29]. 

 

 

 
 

Figure 1. Thevenin battery model 

 

 

2.1.  State of charge estimation based on EKF  

The EKF algorithm represents the advanced Kalman filter designed to accommodate non-linear 

system models. It finds extensive application in addressing state estimation challenges, particularly in 

estimating the SOC for lithium-ion batteries in EVs. Operating on a mathematical model of the battery's 

behavior, the EKF integrates real-time measurements with predicted states, undertaking iterative updates to 

enhance the precision of state estimates [30]. The procedural steps involved in implementing the EKF algorithm 

for battery state estimation are as follows: 

‐ State and measurement models definition: Specify the state vector, outlining the parameters of interest for 

estimation. 

‐ Initialization: Set the initial values for the state vector and its covariance matrix, reflecting the preliminary 

estimate and uncertainty regarding the battery's SOC and other parameters. 

‐ Prediction phase: Employ the non-linear system model to project the subsequent state (SOC and other 

parameters), taking into account the present state estimate and system inputs (e.g., current, voltage). 

‐ Covariance prediction: Utilize the Jacobian matrix and the covariance matrix of the present state to project 

the covariance matrix for the subsequent state estimate. This matrix quantifies the uncertainty associated 

with the projected state. 

‐ Update phase: Collect real-time measurements from sensors (e.g., battery voltage, current) and compare 

them with the projected measurements derived from the measurement model. 

‐ State update: Enhance the state estimate by combining the projected state with the Kalman gain-weighted 

measurement residual. This process yields an improved estimate of the battery's SOC and other parameters. 

‐ Covariance update: Adjust the covariance matrix of the state estimate using the Kalman gain and the 

covariance matrix of the sensor measurements. This step minimizes the uncertainty in the state estimate 

after incorporating real-time measurements. 

The application of the EKF serves to alleviate the influence of noise, yielding accurate SOC estimation 

outcomes. When dealing with nonlinear systems, the discrete-time state space model is expressed in (1). 

 

𝑋𝑡 = 𝑓(𝑋𝑡−1, 𝑈𝑡−1) + 𝑊𝑡−1, 𝑌𝑡 = 𝑔(𝑋𝑡 , 𝑈𝑡) + 𝑉𝑡 (1) 

 

Where, the function Xt is the battery dynamics state equation, and the function Yt is the battery output state 

equation. The function 𝑓(𝑋𝑡−1, 𝑈𝑡−1) is the state transition function, and the function 𝑔(𝑋𝑡 , 𝑈𝑡) is the 

measurement or observation function of the nonlinear system. The parameters of the state space model are: X t 

is the state vector, Yt denotes the observation vector, Ut signifies the input vector, Wt stands for process noise, 

and Vt represents Gaussian white measurement noise. The Taylor series expansion of the nonlinear observation 

function, as shown in (2)-(7). 
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g(𝑋𝑡 , 𝑈𝑡) ≈ g(𝑋̂𝑡 , 𝑈𝑡) +
𝜕𝑔(𝑋𝑡,𝑈𝑡)

𝜕𝑥𝑡
|

𝑥𝑡=𝑥𝑡

(𝑥𝑡 − 𝑥̂𝑡)  and 𝐶𝑡 =
𝜕𝑔(𝑋𝑡,𝑈𝑡)

𝜕𝑥𝑡
|

𝑥𝑡=𝑥𝑡

 (2) 

 

𝑌𝑡 = 𝐶𝑡𝑥𝑡 + 𝑔(𝑋̂𝑡 , 𝑈𝑡) − 𝐶𝑡𝑥̂𝑡 + 𝑉𝑡 (3) 

 

of them, 𝑔(𝑋̂𝑡 , 𝑈𝑡) − 𝐶𝑡𝑥̂𝑡  has no functional relationship with 𝑥𝑡, so it is directly regarded as 𝐷𝑡𝑈𝑡. 

 

𝑌𝑡 = 𝐶𝑡𝑥𝑡 + 𝐷𝑡𝑈𝑡 + 𝑉𝑡 (4) 

 

[
𝑆𝑂𝐶𝑡

𝑈𝑐𝑡
] = [

1 0

0 𝑒
(

∆𝑡

𝑅2𝐶
)] [

𝑆𝑂𝐶𝑡−1

𝑈𝑐𝑡−1
] + [

−∆𝑡

𝑄𝑟

𝑅2 − (1 − 𝑒
∆𝑡

𝑅2𝐶)

] 𝐼𝑡−1 + [
𝑊1 𝑡−1

𝑊2 𝑡−1
] (5) 

 

𝑈𝑐𝑜 𝑡 =  [
𝜕𝐹(𝑆𝑂𝐶𝑡)

𝜕𝑆𝑂𝐶𝑡
− 1] [

𝑆𝑂𝐶𝑡

𝑈𝑐 𝑡
] − 𝐼𝑡𝑅1 + 𝑉𝑡 (6) 

 

The formula and the process of the extended Kalman calculation as (7). 

 

𝑥̂𝑡̅ = 𝐴𝑡−1𝑥̂𝑡−1 + 𝐵𝑡−1𝑈𝑡−1  

𝑃̂𝑡̅ = 𝐴𝑡−1𝑃̂𝑡−1
+ 𝐴𝑡−1

𝑇 + 𝑄𝑡   

𝐾𝑡 = 𝑃̂𝑡
−𝐶𝑡

𝑇(𝐶𝑡𝑃̂𝑡
−𝐶𝑡

𝑇  + 𝑅𝑡)−1  

𝑥̂𝑡 = 𝑥̂𝑡
− + 𝐾𝑡(𝑌𝑡 − 𝐶𝑡𝑥̂𝑡

− − 𝐷𝑘𝑈𝑘)  

𝑃𝑡 = (𝐼 − 𝑘𝑡𝐶𝑡)𝑃𝑡
− (7) 

 

The functioning of the EKF adheres to a fundamental principle encompassing multiple stages. 

Initially, it computes the a priori estimate value based on the state quantity from the preceding time step and 

subsequently ascertains the covariance matrix of the estimation error. These computed values are then 

employed in the formulation of the temporal update equations. Subsequently, the gain coefficient 𝐾𝑡 is derived 

based on the existing observation matrix 𝐶𝑡. Following this, the optimal temporal value is computed utilizing 

the a priori estimate value of the state quantity and the current observation value, ultimately, the covariance 

error matrix is adjusted accordingly. 
 

 

3. RESULTS AND DISCUSSION 

In this research, a MATLAB-based simulation platform was used to design and implement a SOC 

estimation model that integrates the Thevenin equivalent circuit with EKF algorithms. This method involved 

coupling the lithium-ion battery model with the EKF algorithm, as depicted in Figure 2. The Thevenin model 

simplifies the battery into an equivalent circuit comprising a series resistance and an internal voltage source, 

allowing for accurate simulation of the battery's electrical response under varying operating conditions. The 

EKF algorithm processes measured data alongside the battery's dynamic models to provide more accurate SOC 

estimates than conventional methods. Utilizing these tools in the MATLAB environment enables 

comprehensive simulation of lithium-ion battery performance, the fine-tuning of model parameters based on 

experimental data, and improved precision in SOC estimation. This approach overcomes the limitations of 

static estimation techniques by considering dynamic SOC fluctuations, delivering reliable outcomes for 

practical applications such as energy management in electric vehicles. 

Figure 2 illustrates the simulation model used for estimating the SOC of the battery. To assess the 

effectiveness of the proposed estimation model, the simulation results for SOC were evaluated by analyzing 

the input current and load voltage, as shown in Figures 3 and 4. This process involves verifying the accuracy 

of the SOC estimation model by examining how variations in input current and load voltage affect the SOC 

results. The data presented in the referenced figures enable a comparison between the estimated SOC values 

and the actual measurements, which helps determine the model’s performance under different operational 

conditions. By analyzing the input current and load voltage, insights can be gained into how well the model 

adapts to various operating scenarios and maintains accurate SOC estimations. This validation ensures the 

model’s robustness and its suitability for practical applications such as energy management in battery systems. 

The SOC estimation model proposed, as depicted in Figure 2, was assessed based on simulation results 

obtained under specific conditions of load input current and load voltage. To evaluate the model's performance, 

load voltage and current profiles, derived from EA power control, were analyzed. The data acquisition process 

was managed through the LabView interface. 
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Figure 2. Simulink model 

 

 

  
 

Figure 3. Current profile 

 

Figure 4. Voltage profile 

 

 

Furthermore, the accuracy of the EKF algorithm was evaluated, and the effectiveness of the SOC 

estimation methods was determined by examining the estimation results presented in Figure 5. This evaluation 

involved a detailed analysis of the model's performance in predicting the SOC and its ability to accurately 

reflect changes in load conditions. By comparing the estimated SOC outcomes with actual measurements, the 

study assessed the reliability and precision of the proposed estimation model and algorithm. Figure 6 illustrates 

the comparison between the real voltage and the estimated voltage of the battery, demonstrating the accuracy 

of the estimation model. The close alignment between both voltage profiles indicates that the estimation 

algorithm effectively tracks the actual battery voltage, which is essential for reliable SOC prediction and 

optimal battery management. 
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Figure 5. SOC estimation using EKF algorithm 

 

 

 
 

Figure 6. Real voltage and estimated voltage 

 

 

4. CONCLUSION 

The EKF method exhibits resilience to variations in the initial SOC value and demonstrates the ability 

to rectify SOC errors, as corroborated through distinct input adjustments. In the simulation results, the proposed 

approach demonstrates its effectiveness and accuracy in addressing the outlined objectives, the SOC estimated 

by the extended Kalman filter for the battery is indicated at 90% and 10%, respectively. These figures portray 

the values the extended Kalman filter estimated, the actual SOC value, and the SOC value in ampere-hours 

plotted together. When relying solely on the ampere-hour integration method, an erroneous initial value 

perpetuates errors, significantly compromising SOC estimation precision. However, utilizing the EKF for SOC 

estimation demonstrates resilience to initial values, facilitating rapid correction of the SOC estimate provided 

by the EKF. Data analysis of data indicates that even when the initial SOC differs from the actual SOC by 

50%, the EKF adeptly rectifies the discrepancy to under 5%. Following error correction by the EKF, the 

estimation error fluctuates, primarily influenced by added Gaussian noise. Nonetheless, the EKF error 

gradually diminishes, and the estimated SOC value consistently converges toward the true value. The 

experimental findings validate the efficacy of the EKF algorithm in capturing the dynamic characteristics of 

lithium-ion batteries, encompassing variables such as charge and discharge cycles, varying temperature 

conditions, and non-linear voltage-SOC relationships. In comparison to traditional methods, the EKF approach 

mitigates cumulative errors and addresses uncertainties in both the battery model and measurements, yielding 

more accurate SOC estimation. Moreover, the adaptability of the EKF algorithm to various battery chemistries 

and configurations enhances its applicability across diverse electric vehicle scenarios. Its computational 

efficiency and real-time suitability ensure practical implementation in battery management systems, 

contributing to more efficient energy utilization, extended driving range, and increased battery lifespan. 
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These findings hold significant implications for the electric vehicle industry, where accurate SOC 

estimation is essential for efficient battery usage, reliable range forecasting, and overall vehicle performance. 

The EKF algorithm emerges as a practical and reliable solution for SOC estimation in electric vehicles, paving 

the way for greener and more sustainable transportation systems. Future research endeavors in this domain 

may explore the algorithm's performance under diverse driving conditions, investigate the incorporation of 

machine learning techniques for further enhancement, and explore potential integration with smart grid 

technologies to optimize energy utilization even further. Continued efforts in this direction promise accelerated 

advancements in battery management and energy efficiency, thereby fostering the widespread adoption of 

environmentally friendly transportation solutions. 
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