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 Traditional control methods often face limitations in optimizing the 

performance of these motors, especially in complex industrial and automotive 

applications where precision, stability, and energy efficiency are paramount. 

By exploring advanced control strategies such as multi-level inverters and 

neural network controllers, this study aims to overcome these limitations and 

unlock the full potential of dual rotor axial flux induction motors. The 

integration of multi-level inverters enables finer control of motor operation 

and enhances power quality, while neural network controllers offer adaptive 

and intelligent control capabilities, enabling the system to learn and optimize 

performance in real-time. The study investigates novel approaches to enhance 

the performance and efficiency of electric motor control systems. The study 

aims to address the challenges associated with traditional control methods and 

optimize the operation of dual rotor axial flux induction motors. The research 

evaluates various performance metrics associated with the speed control 

system, including error histograms, training performance, regression 

accuracy, rotor speed dynamics, rotor torque characteristics, time series 

analysis, and training state assessment. The study achieves significant 

milestones in optimizing system performance, as evidenced by key findings 

such as a low mean squared error (MSE) of 0.00011396 achieved during 

training, strong correlation in regression analysis with an R-value of 0.99718, 

and effective training dynamics indicated by a gradient value of 0.0091742 

and a learning rate (Mu) of 0.0001. These results underscore the effectiveness 

and reliability of the proposed control strategies in improving motor 

performance, efficiency, and reliability while reducing energy consumption 

and operational costs. The proposed method is implemented using MATLAB. 
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1. INTRODUCTION 

In light of the intricate dynamics of induction motors, a controller that can deliver reliable control 

must be in place. Additionally, induction motor controllers provide the electro-mechanical system with 

monitoring and safety [1]. It is necessary to understand the dynamic physical representation of induction 

motors to use these services. The foundational ideas of physics are the source of accurate dynamics [2]. 

These dynamical models rely on many physical properties of induction motors, such as prevailing currents, 

voltages, fluxes, inductances, and voltages, which may be monitored in either direct or indirect ways with the 
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use of estimators or sensors [3]. Because of noise and operating circumstances, monitoring some of these 

values accurately is difficult. Physical model-based controllers are very dependable and are used extensively 

in industry [4]. While there are simulations of the induction motor with minimal complexity, they are 

nonlinear and have several unknown parameters. The industrial internet of things, a lot of data from various 

electro-mechanical equipment, may now be collected [5]. Online decision methods for electric system 

monitoring applications have been made possible by the induction motor systems' real-time or almost real-

time data collection. Improved prediction models have also resulted from recent developments in deep neural 

networks used for longitudinal research [6]. The utilization of techniques such as convolutional neural 

networks, artificial neural networks, and LSTM architectures has facilitated the end-to-end learning of 

temporal dynamics from time-series data [7]. In electrical motor operations, neural networks have recently 

been actively employed as controllers, monitors, and failure predictors [8]. The research employed the design 

of encoder-decoders to extract kinetics from induction motor data [9]. 

Machine learning measures such as accuracy, R-square, mean square error, and so on are used to 

assess these techniques. Although these measures have a built-in prejudice towards the dataset, they are well-

suited for tasks involving regression and prediction [10]. The research examines the reasons behind the failure 

of these measurements and suggests a mechanism for appropriately assessing neural network approaches for 

induction motor issues using electrical engineering metrics in conjunction with quasi-static and dynamic 

benchmarks. The task of forecasting velocity and electromagnetic torque using current and voltage 

representations in a (d-q) frame is examined [11]. Proposals have also been made for neural network-based 

control techniques to develop an improved model that can solve issues with the conventional model-based 

methodology [12]. Current research uses circular-based neural network models to understand the connection 

between flux connections and currents [13]. When it comes to electrical motor operations, neural network 

classifiers are constantly utilized for defect diagnostics [14]. The method learns motor dynamics through 

simulated data, performs fault recognition in simulated motor activities, and does not employ dynamics 

modeling; instead, it simply uses supervised labels [15]. It is suggested to use an encoder-decoder network to 

directly learn electrical motor dynamics from recorded data. The input-output connection is well-modeled by 

the suggested approach [16]. The extant literature examines the factors for the failure of neural networks. 

Because neural networks contain many parameters, differing modeling techniques, and fewer assumptions than 

other models, they present greater opportunities for misuse and troublesome applications [17]. The idea of 

considering neural networks like black boxes is another significant mistake. To understand neural network 

outputs in terms of input impacts and connections among variables being input, a robustification approach is 

presented [11]. Neural networks, because of their huge number of parameters and data-hungry environment, are 

susceptible to two well-known difficulties in machine learning techniques: under-fitting and over-fitting [18]. 

Didane et al. [19] explained the research and estimation of the aerodynamic efficiency of a special contra-

rotating vertical direction wind turbine. This research aims to examine the feasibility of improving a VAWT 

method's conversion effectiveness by applying the contra-rotating principle. The power, torque, power 

coefficients, torque coefficients, and other important aerodynamic performance metrics were used to construct 

the effectiveness assessments of the present model. Taghinezhad et al. [20] presented a study that assesses and 

improves the effectiveness of turbines that generate electricity with two rotors that are mounted inside of a 

specially designed duct. The input variables for the training samples with the testing samples were acquired, 

respectively, using the Latin hypercube samples and random sampling having a uniform distribution of 

imbalance distributions of the fan disc with the hyper-compressor disc [21]. Fu et al. [22] use the non-intrusive 

polygonal form mathematical meta model to examine the non-probabilistic steady-state kinetics of dual-rotor 

systems with parametric imperfections under two-frequency excitations. The formulas for the equations for the 

movement of the entire system are obtained using the Lagrangian approach. Kreutz et al. [23] explain in detail 

that the financial viability of wind turbines is decreased by downtime brought on by ice development on the 

rotor blades. Chen and Hubner [24] provides information on a possible actuator disc theory-based flow the 

solution for dual-rotor-wing interactions, the method of images, and the theory of momentum about of rotor 

dragged and wings downloading force of small tilt rotor-like vehicles; the analytical model analyses the impact 

of rotor height beyond the wing, the rotor disc protection over the wing, and the distance between two rotors; it 

requires the rotor radius, which helps with initial design studies on tilt rotor-like vehicles; the analytical results 

agree well with the experimental data regarding magnitude and trend, especially the rotor thrust. 

A viable option for improving the effectiveness and performance of electric engine systems is the 

use of dual-rotor axial flux induction engines, especially in situations where torque variation and constant 

speed maintenance are crucial. These twin-rotor arrangements are ideal for challenging industrial and 

transportation applications because they provide special benefits in terms of power density and torque 

capabilities. Advanced control solutions are necessary to fully realize the promise of dual-rotor axial flux 

induction motors. This project aims to investigate and create sophisticated control techniques for dual-rotor 

axial flux induction motors with changing torque needs and constant speed. It will do this by utilizing multi-

level inverters and neural network controllers. The integration of MLIs allows for precise modulation of 



                ISSN: 2088-8694 

Int J Pow Elec & Dri Syst, Vol. 16, No. 2, June 2025: 740-750 

742 

voltage and current waveforms, enabling efficient control of motor operation. Additionally, the incorporation 

of artificial neural network controllers offers adaptive and intelligent control capabilities, enhancing the 

system's robustness and performance under dynamic operating conditions. Furthermore, this study will 

investigate the potential synergies between MLIs and various neural network-based controllers, including 

fuzzy logic controllers and long short-term memory (LSTM) controllers, to further optimize the motor's 

operational efficiency and stability. By combining advanced control techniques with the unique 

characteristics of dual-rotor axial flux induction motors, this research aims to contribute to the advancement 

of electric propulsion systems for a wide range of industrial and transportation applications, ultimately 

fostering sustainability and energy efficiency in the modern era. The proposed controller in this study is the 

recurrent neural network (RNN) controller, which offers a cutting-edge approach to control systems design 

and optimization. Unlike conventional controllers such as proportional-integral, fuzzy logic, and artificial 

neural network (ANN) controllers, RNN controllers leverage the power of recurrent neural networks to 

handle dynamic and time-varying systems more effectively. The RNN controller benefits from its ability to 

process sequential data, making it particularly suitable for applications where past states influence current 

decisions, such as time series prediction and sequential decision-making tasks. Additionally, RNN controllers 

excel in capturing complex nonlinear relationships within the system, allowing for more accurate and 

adaptive control in highly dynamic environments. RNNs can learn from historical data and adapt their 

internal state based on past experiences, enabling improved performance over time as the controller 

continuously learns and updates its parameters. The proposed RNN controller offers the advantages of 

enhanced adaptability, improved accuracy, and superior performance compared to traditional control 

strategies, making it a promising choice for a wide range of control applications in various industries. The 

rest of the section is organized as follows: i) Section 1 describes the introduction; ii) Section 2 gives the 

problem statement; iii) Section 3 provides the proposed methodology; iv) Section 4 evaluates the result 

section; and v) Section 5 gives the conclusion and future work. 
 
 

2. PROBLEM STATEMENT 

The advancement and optimization of control strategies for dual-rotor axial flux induction motors 

using multi-level inverters and neural network controllers remain an area of active research and development. 

While dual-rotor systems offer potential advantages in terms of efficiency and power generation, effective 

control strategies are crucial for maximizing their performance and ensuring reliable operation. However, 

existing literature primarily focuses on the mechanical and aerodynamic aspects of dual-rotor systems, such 

as their design, aerodynamic interactions, and power generation capabilities. There is a gap in research 

concerning advanced control strategies tailored specifically for dual-rotor axial flux induction motors. 

Despite the potential advantages of dual-rotor axial flux induction motors, there is a lack of research focused 

on advanced control strategies utilizing multi-level inverters and neural network controllers. This study aims 

to address this gap by investigating and developing advanced control strategies tailored specifically for dual-

rotor axial flux induction motors. The research will focus on enhancing the efficiency, reliability, and 

performance of dual-rotor systems through the application of advanced control techniques, such as multi-

level modulation strategies and neural network-based controllers. Additionally, the study will explore the 

integration of these control strategies with dual-rotor systems to optimize energy conversion and operational 

performance under varying operating conditions. The ultimate goal is to contribute to the advancement and 

optimization of dual-rotor axial flux induction motors for efficient energy conversion and enhanced 

performance in renewable energy applications [25]. 
 

 

3. PROPOSED RNN CONTROLLERS FOR DUAL ROTOR AXIAL FLUX INDUCTION MOTORS 

The proposed methodology focuses on enhancing the control strategies for dual rotor axial flux 

induction motors (DRAFIMs) by integrating advanced technologies such as multi-level inverters and 

recurrent neural network (RNN) controllers. The design incorporates electronic circuitry and control system 

components for managing the differential operation of the dual rotor system, facilitating independent or 

synchronized control of rotor speeds. Multi-level inverters enable precise control over voltage output, 

enhancing power quality and efficiency. The use of LSTM controllers optimizes current, torque, and speed 

regulation in DRAFIMs, ensuring optimal performance under varying load conditions. The proposed 

methodology offers a comprehensive approach to motor control, promising higher efficiency, reliability, and 

adaptability across a wide range of industrial and automotive applications. 
 

3.1.  Design of dual rotor axial flux induction motors 

This system suggests the presence of electronic circuitry or control system components that enable 

the management and control of the dual-rotor motor. The term "differential system" implies that there might 
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be a mechanism for controlling or adjusting the speed or torque output of the two rotors differentially, 

allowing for independent control or synchronized operation. Control circuitry involves microcontrollers, 

digital signal processors (DSPs), and electronic control units responsible for processing sensor data and 

generating control signals for the motor. Components like inverters, converters, or motor drives convert 

electrical energy to mechanical energy and control the speed and torque of the motor. The dual rotor axial 

flux induction motor has two rotors, each arranged axially on either side of the stator. The axial flux design 

means that the magnetic flux flows parallel to the motor's shaft, which can offer advantages in terms of 

efficiency and power density. A dual rotor axial flux induction motor system, when coupled with multi-level 

inverters, forms a sophisticated subsystem with enhanced performance capabilities. This subsystem combines 

the unique features of the DRAFIM, known for its compact design and high torque density, with the 

advantages offered by multi-level inverters in terms of improved voltage quality, reduced harmonic 

distortion, and increased efficiency. In this configuration, the multi-level inverters facilitate precise control 

over the voltage supplied to the DRAFIM, enabling optimal operation across various load conditions. 
 

3.2.  LSTM controller 

In the context of a dual rotor axial flux induction motor (DRAFIM) controlled by a long short-term 

memory (LSTM) controller, each of the key parameters - current, torque, and speed - plays a critical role in 

the overall operation and performance of the motor system. The current flowing through the stator windings 

of the DRAFIM is a fundamental parameter that directly influences motor performance. The LSTM 

controller monitors and regulates the stator current to maintain desired operating conditions, such as torque 

production and motor efficiency. The LSTM controller Figure 1 modulates the torque output of the DRAFIM 

by adjusting the current supplied to the stator windings. 

The rotational speed of the motor's shaft is another key parameter controlled by the LSTM controller. 

By regulating the frequency of the current supplied to the motor windings, the LSTM controller adjusts the 

motor speed to match the desired operating point. Whether the application requires precise speed control for 

industrial automation or variable speed operation for vehicle propulsion, the LSTM controller ensures smooth 

and responsive speed regulation, maintaining stability and efficiency throughout the motor's operating range. 
 

 

 
 

Figure 1. LSTM controller 
 

 

3.3.  Enhanced torque control in dual rotor by employing multilevel inverter fed DRAFIM 

MLIs offer finer control over the applied voltage and current waveforms, allowing for better 

regulation of torque in the DRAFIMs. This capability is essential for achieving precise torque control, which 

is necessary for various industrial and automotive applications. Enhanced torque control in a dual rotor 

system is achieved by employing a multilevel inverter-fed transposed resonant AC field induction motor 

(TRAFIM). This innovative approach enhances the precision and efficiency of torque control by utilizing a 

multilevel inverter to generate a high-quality voltage supply to the DRAFIM, enabling smoother torque 

regulation and minimizing torque ripple. The DRAFIM technology, which involves transposing the stator 

and rotor windings, facilitates better utilization of magnetic flux, resulting in improved torque performance 

and reduced losses. Additionally, the multilevel inverter allows for finer control of voltage levels, enabling 

optimized torque output across a wider range of operating conditions. The flux vector end points move along 

a collinear straight line of the VSI voltage vectors. The new magnitude and phase of the required flux vector 

at time tn+1 depend on the following: i) flux at time tn, and ii) supplied voltage vectors applied at time tn. 

The control strategy defines a required flux reference for each sampling time. The appropriate voltage vector 

on VSI outputs can be deduced from the estimated values of the two fluxes and the two required fluxes. The 

total electromagnetic torque (Te) in a dual-rotor axial flux induction motor can be expressed as the sum of 

two components caused by the electromagnetic interaction between the stator and each rotor. The motion 

equation of the wind turbine system derives the torque due to the electromagnetic effect and the mechanical 

torque. The equations are shown as in (1) and (2). 
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𝑗𝑑𝑤𝑚

𝑑𝑡
= 𝑇𝑒 − 𝑇𝑚 (1) 

 

𝑇𝑒 =
3𝑃

2
𝑅𝑒(𝑗𝜆𝑠

⃗⃗  ⃗𝑖Γ⃗⃗⃗  )  = 
−3𝑃

2
𝑅𝑒(𝑗𝜆𝑠

⃗⃗  ⃗𝑖Γ⃗⃗⃗  ) (2) 

 

The dual rotor mathematical modeling using dq axis representations and dq frame as a reference 

conversion. The modeling equations are as in (3)-(8). 
 

𝑉𝑠⃗⃗⃗  = 𝑉𝑑𝑠 + 𝑗𝑉𝑞𝑠 (3) 
 

𝑉𝑟⃗⃗  ⃗ = 𝑉𝑑𝑟 + 𝑗𝑉𝑞𝑟 (4) 
 

𝑖𝑠⃗⃗ = 𝑖𝑑𝑠 + 𝑗𝑖𝑞𝑠 (5) 
 

𝑖𝑟⃗⃗  = 𝑖𝑑𝑟 + 𝑗𝑖𝑞𝑟 (6) 
 

𝜆𝑠
⃗⃗  ⃗ = 𝜆𝑑𝑠 + 𝑗𝜆𝑞𝑠 (7) 

 

𝜆𝑟
⃗⃗  ⃗ = 𝜆𝑑𝑟 + 𝑗𝜆𝑞𝑟 (8) 

 

In the dq axis frame, the voltage equations for the rotor and stator are as (9)-(12). 
 

𝑉𝑑𝑠 = 𝑅𝑠𝑖𝑑𝑠 + 𝑝𝜆𝑑𝑠 − 𝑤𝜆𝑞𝑠 (9) 
 

𝑉𝑞𝑠 = 𝑅𝑠𝑖𝑑𝑠 + 𝑝𝜆𝑞𝑠 + 𝑤𝜆𝑑𝑟  (10) 
 

𝑉𝑑𝑟 = 𝑅𝑟𝑖𝑑𝑟 + 𝑝𝜆𝑑𝑟 − (𝑤 − 𝑤𝑟)𝜆𝑞𝑟  (11) 
 

𝑉𝑞𝑟 = 𝑅𝑟𝑖𝑞𝑟 + 𝑝𝜆𝑞𝑟 + (𝑤 − 𝑤𝑟)𝜆𝑑𝑟 (12) 
 

The flux links between both rotor and stator in the reference frame of the dq axis are as (13)-(16). 
 

𝜆𝑑𝑠 = (𝐿𝐼𝑠 + 𝐿𝑚)𝑖𝑑𝑠 + 𝐿𝑚𝑖𝑑𝑟 = 𝐿𝑠𝑖𝑑𝑠 + 𝐿𝑚𝑖𝑑𝑟 (13) 
 

𝜆𝑞𝑠 = (𝐿𝐼𝑠 + 𝐿𝑚)𝑖𝑞𝑠 + 𝐿𝑚𝑖𝑞𝑟 = 𝐿𝑠𝑖𝑞𝑠 + 𝐿𝑚𝑖𝑞𝑟  (14) 
 

𝜆𝑑𝑟 = (𝐿𝐼𝑟 + 𝐿𝑚)𝑖𝑑𝑟 + 𝐿𝑚𝑖𝑑𝑠 = 𝐿𝑟𝑖𝑑𝑟 + 𝐿𝑚𝑖𝑑𝑠 (15) 
 

𝜆𝑞𝑟 = (𝐿𝐼𝑟 + 𝐿𝑚)𝑖𝑞𝑟 + 𝐿𝑚𝑖𝑞𝑠 = 𝐿𝑟𝑖𝑞𝑟 + 𝐿𝑚𝑖𝑞𝑠 (16) 
 

Equations in the dq-reference frame that illustrate motion resulting from mechanical rotation are as (17)-(19). 
 

𝑇𝑒 =
3𝑃

2
(𝑖𝑞𝑠𝜆𝑑𝑠 − 𝑖𝑑𝑠𝜆𝑞𝑠) (17) 

 

𝑇𝑒 =
3𝑃

2
(𝑖𝑞𝑠𝜆𝑞𝑟 − 𝑖𝑑𝑠𝑖𝑞𝑟) (18) 

 

𝑇𝑒 =
3𝑃

2
(𝑖𝑞𝑠𝜆𝑑𝑟 − 𝑖𝑑𝑠𝜆𝑞𝑟) (19) 

 

3.4.  RNN controller for DRAFIM controlling mechanism 

The RNN controller in Figure 2 plays a transformative role in motor control systems by harnessing 

the power of artificial intelligence and machine learning. Unlike traditional control methods, RNN controllers 

possess the ability to process sequential data and capture temporal dependencies in the system's behavior. As 

a result, RNN controllers represent a cutting-edge approach to motor control, promising to revolutionize 

industrial processes and systems by enabling more intelligent and adaptive control strategies. 

The reference design for the suggested RNN control framework is selected in accordance with the 

time-domain parameter values, as seen in Figure 2. In the input, hidden, and output layers of the RNN, there are 

2, 20, and 1 neuron respectively. The connecting values are initialized with randomized integers. The position 

instruction, denoted by ϸ ∗ r, is sent into the RNN as inputs, along with es (1 − z −1); the result of the RNN is 

the controlling signaling up. Furthermore, simultaneous updates are made to all of the learning pace parameters. 
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ω𝑚
2

𝑆2+2(ω𝑚𝑆+ω𝑚
2 =

6.7244

𝑆2+5.1863𝑆+6.7244
 (20) 

 

Here, S is the Laplace operator, and μ and ωn are the damping ratio and undamped natural 

frequency, respectively. In contrast, the model that serves as the reference is set to one when the input is a 

periodic sinusoidal instruction. The tracking deviation resulting from the plant's condition and the model used 

for reference is supplied out to train the connecting values of the RNN controller globally, generating a 

control input for the entire system, as the required commands tracking responses is established in the 

standard network's output. 

 

 

 
 

Figure 2. RNN controller 
 
 

4. RESULTS AND DISCUSSION 

The results section encompasses the analysis of various performance metrics associated with a speed 

control system utilizing an RNN controller. The study evaluates parameters such as error histograms, training 

performance, regression, rotor speed, rotor torque, time series analysis, and training state. Each analysis 

provides insights into different aspects of system performance, ranging from error distribution and model 

training dynamics to electrical current flow, voltage stability, and mechanical behavior. The effectiveness of 

the proposed study in finding the provided metrics is notable. The error histogram visually represents error 

distribution, aiding in identifying patterns and discrepancies within the dataset. Regression analysis provides 

a diagnostic tool for evaluating model accuracy and identifying areas for improvement. 
 

4.1.  Output of RNN controller 

The comprehensive range of analyses conducted in the study highlights the effectiveness of the 

proposed methodology in capturing and evaluating various performance metrics essential for assessing the 

reliability, stability, and efficiency of the speed control system. The insights gleaned from these analyses 

provide valuable information for system optimization, fault diagnosis, and performance enhancement, 

demonstrating the significance of the study in advancing the understanding and development of advanced 

control systems for industrial applications. 
 

4.1.1. Error histogram 

The error histogram graph in Figure 3 provides a visual representation of the frequency distribution of 

errors across different instances or data points. Figure 3(a) shows the distribution of errors (difference between 

target and output values) in a training model. The histogram indicates that most errors are concentrated around 

zero, implying that the model's predictions are highly accurate. The blue bars represent training errors, while the 

orange line represents zero error for reference. Figure 3(b) is an error histogram with 20 bins that shows the 

distribution of errors (difference between target and output values) for a trained model. The majority of errors 

are concentrated around zero, as indicated by the tall blue bar, suggesting that the model has high accuracy. 

Each instance corresponds to a specific error value, plotted along the x-axis, while the y-axis indicates the 

frequency or number of occurrences for each error. The distribution of errors depicted in the histogram enables 

a comprehensive understanding of the variability and consistency within the dataset. 
 

4.1.2. Training performance 

The training performance graph in Figure 4 presents a visual depiction of the performance of a 

machine learning model during the training process, with the number of training epochs represented along the 

x-axis and the mean squared error (MSE) displayed on the y-axis. This graph serves as a critical tool for 

assessing the model's learning dynamics and convergence behavior over successive epochs. Figure 4(a) 

shows good training performance, with MSE reducing significantly over time. The best performance is 

achieved at epoch 1000, training might still be beneficial if extended further. Figure 4(b) shows that in the 

initial running MSE drops quickly and after 100 epochs, it is constant. 
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At epoch 1000, the presented value at 0.00011396 reflects the lowest mean squared error achieved 

by the model throughout the training process up to that specific point. The attainment of a low MSE value at 

epoch 1000 underscores the effectiveness and progress of the training process. At epoch 1000, the presented 

value of 0.011606 also reflects the lowest mean squared error. 
 

 

(a) 

 

(b) 

 
 

Figure 3. Error histogram: (a) error histogram with 20 Bins (training model) and  

(b) error histogram with 20 Bins (trained model) 
 

 

(a) 

 

(b) 

 
 

Figure 4. Training performance: (a) training at 0.011606 and (b) training at 0.00011396 
 
 

4.1.3. Regression 

The regression graph in Figure 5, with the target variable plotted on the x-axis and the model's 

output displayed on the y-axis, provides a visual representation of the relationship between the predicted and 

actual values in a regression analysis. Figure 5(a) indicates that the model has achieved excellent training 

performance, with a high correlation coefficient (R = 0.99718), meaning the predictions are strongly aligned 

with the target values. This graph serves as a diagnostic tool for evaluating the performance and accuracy of 

the regression model. A perfect regression model would exhibit a diagonal line with a slope of 1, indicating 

that the predicted values perfectly align with the actual target values. Deviations from this ideal line reveal 

the degree of error in the model's predictions, with discrepancies suggesting areas for improvement such as 

bias, variance, or model complexity. Figure 5(b) indicates poor training performance, with a relatively low 

correlation coefficient (R = 0.65637). 

 

4.1.4. Rotor speed 

The rotor speed graph in Figure 6, with time represented along the x-axis and rotor speed displayed 

on the y-axis, offers a dynamic visualization of the rotational velocity of a rotor system over a specific 
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period. This graph provides essential insights into the temporal behavior and performance of the rotor, 

facilitating the assessment of its stability, responsiveness, and operational characteristics. 
 

 

(a) 

 

(b) 

 
 

Figure 5. Regression: (a) training at R = 99718 and (b) training at R = 0.65637 
 
 

 
 

Figure 6. Rotor speed 
 
 

4.1.5. Rotor torque 

The rotor torque graph Figure 7, with time depicted on the x-axis and rotor torque plotted on the y-

axis, provides a comprehensive depiction of the torque output of a rotor system over a specified time period. 

This graph offers crucial insights into the dynamic behavior and performance of the rotor, allowing for the 

assessment of its mechanical efficiency, load variations, and operational characteristics. 
 

4.1.6. Time series 

The time series graph in Figure 8, with time represented on the x-axis and error, output, and target 

values plotted on the y-axis, provides a dynamic visualization of the temporal behavior and performance of a 

system or model over a specific duration. Figure 8(a) shows the model's response for output element 1 in a 

time-series task. The top plot compares training targets and outputs, while the bottom plot shows minimal 

errors, indicating high model accuracy. Figure 8(b) shows the response of output element 1 in a time-series 

model, where training targets and outputs closely match. The error remains near zero, indicating the model's 

high accuracy with minimal deviations. This graph offers valuable insights into the relationship between 

predicted and actual values, enabling the assessment of the accuracy, precision, and consistency of the 

model's predictions over time. Figure 8 indicates training targets in actual values. 

Table 1 presents a detailed analysis of the performance metrics associated with the speed control 

system, outlining various parameters such as rise time, peak overshoot, settling time, and maximum speed 
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reached during peak overshoot for different speed ranges. The table provides insights into the dynamic behavior 

of the system across different operational scenarios, highlighting the time required to achieve reference speeds, 

the magnitude of peak overshoot, and the duration for the system to settle at a constant speed. 
 

 

 
 

Figure 7. Rotor torque 
 

 

  
(a) (b) 

 

Figure 8. Time series: (a) model performance and (b) response of output element 1 
 

 

Table 1. Output of RNN controller 
Time Rise time to reach the 

reference speed (0-120) 

Peak 

overshoot 

Maximum peak 

overshoot 

The settling time to 

reach a constant value 

Maximum speed 

in peak overshoot 

Settlement 

time 

Starting time (0)       

To reach 0-120 0.009 0.01-0.015 0.01-0.015 0.01-0.015 1148 0.005 

To reach 120-80 0.007 0.21-0.211 0.21-0.211 0.21-0.207 762.5 0.0055 
To reach 80-160  0.4-0.408 0.4-0.408 0.4-0.408 1529.5 0.055 

 

 

4.2.  Discussion 

The analysis of the output from the RNN controller provides valuable insights into the performance of 

the speed control system across various operational scenarios. The rise time, indicating the time taken to reach 

the reference speed, demonstrates rapid responsiveness, with minimal delays observed across different speed 

ranges. The peak overshoot metrics reveal slight variations within acceptable ranges, suggesting effective 

control mechanisms to minimize deviations from the reference speed. Settling times indicate the system's ability 

to stabilize at the desired speed, with consistent performance demonstrated across different speed transitions. 
 

 

5. CONCLUSION AND FUTURE WORK 

Through the examination of various performance metrics such as rise time, peak overshoot, settling 

time, and maximum speed reached during peak overshoot across different operational scenarios, we have 
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demonstrated the effectiveness and reliability of the RNN controller in achieving precise and responsive speed 

regulation. The results indicate rapid responsiveness, minimal deviations from the reference speed, and consistent 

performance in stabilizing at desired speeds, showcasing the suitability of the proposed control system for real-

world applications where accurate speed control is paramount. There are several avenues for future work to 

further enhance the efficiency and effectiveness of the speed control system. The exploration of advanced 

machine learning techniques and optimization algorithms could potentially improve the performance and 

robustness of the control system, enabling better adaptation to dynamic operating conditions and disturbances. 
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