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 This paper presents a device designed to provide continuous electrical energy 

to isolated areas where connection to the power grid is expensive and 

unprofitable. This objective is achieved through a system that combines a 

wind turbine and photovoltaic panels as primary energy sources, with storage 

batteries and a diesel generator serving as backup sources. The main 

contribution of this work is characterized by the ability to ensure uninterrupted 

electrical power supply, even on days when renewable energy sources are less 

favorable. This intermittency is due to the random nature of these sources, as 

well as their dependency on weather and climatic conditions. Therefore, we 

sized each component of the hybrid system to meet the maximum required 

load individually under the most favorable conditions. We then modeled each 

energy conversion chain and developed power control laws to ensure effective 

set point tracking. Finally, we implemented a hierarchical energy management 

algorithm to define the operating modes of the hybrid system's sources, aiming 

to produce as much power as the load requires while prioritizing the use of 

renewable energy sources to minimize reliance on the storage system and the 

diesel generator. 
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1. INTRODUCTION 

Researchers worldwide encourage producers and users to shift to renewable energy resources, 

particularly solar and wind energy. Moreover, to meet current market requirements, energy forms would 

replace fossil resources in this context [1]-[6], as their use is inexhaustible, non-polluting, and well-suited to 

future market requirements. The global demand on energy could be sufficiently satisfied through renewable 

energies, as this form of energy has a significant potential [7]. The increasing adoption of renewable energy 

sources like solar, wind power is crucial for addressing climate change and reducing the dependence on fossil 

fuels. As technology advances and economies of scale improve, renewables become more competitive, making 

them an increasingly attractive option for electricity generation. Achieving nearly 50% of global electricity 

generation from renewables by 2026 would mark a significant milestone in the transition to a more sustainable 

energy future [8]. Nevertheless, technologies applied to renewable energies often rely on one source of energy. 

For this reason, energy use based on solar energy (PV) or wind power is insufficient to satisfy the users’ needs 

especially that these forms of energy production highly depend entirely on the weather, climate change, and 
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natural hazards [9]. Consequently, the monitoring and management of this instability is imperative, by 

integrating a complementary energy storage system [2]. 

Indeed, several multi-sources energy system designs have been proposed with different power control 

features. Some of them are based on logical states and others on intelligent algorithms. The latter are more 

interesting, especially for autonomous applications. A great deal of publications has been devoted to the study 

of power management in multi-sources [2], [3], [10]-[13]. Typically, the management is still based on power 

balance. Thus, some authors have suggested various methods for power management and monitoring. 

Consistently, in articles [14]-[16] the monitoring system uses fuzzy logic. Different authors suggest various 

strategies, with [17] using levelness and [18] relying on power balance. Additionally, power management 

seems to be controlled by microcontrollers, as evidenced in with [16]-[21]. 

This study describes wind-photovoltaic system's power management and control. For this purpose, we 

will first present the global system under consideration. Then, we will suggest an energy management strategy 

that will deliver power references for each source (wind, photovoltaic, battery, and diesel generator) for an 

optimal, uninterrupted load supply. The load is represented by a variable resistor. Finally, to validate this 

management strategy, we consider some simulation scenarios that the system will likely undergo. 

 

 

2. GLOBAL SYSTEM PRESENTATION 

This study presents a hybrid system that combines two renewable energy sources: a photovoltaic 

generator to convert solar energy and a wind generator to convert wind energy. The primary purpose is to use 

the hybrid wind-photovoltaic system to supply electrical energy to remote areas where the grid connection is 

prohibitively expensive. Moreover, the system is equipped with storage batteries and a diesel generator that 

would provide backup power in case of a lack of sunlight or wind. These energy sources are connected to the 

same direct current DC bus via converters, whose role is to ensure power control and a constant DC voltage 

despite load variations. This overall system is illustrated in Figure 1. 

The wind turbine conversion chain comprises a 3 kW induction generator, self-excited by a three-

phase bank of capacitors, allowing the conversion of the wind energy into electrical energy [22]-[25]. This 

generator can provide one-third of its maximum power under optimal conditions. A pulse-width modulation 

(PWM) rectifier equipped with a neural network-based direct power control (DPC) control law enables the 

asynchronous generator to follow a given active power reference while maintaining a fixed rectifier output 

voltage, as shown in Figure 2 [26]. 

 

 

 
 

Figure 1. Proposed studied DC microgrid 
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A regulated DC/DC series converter (chopper) allows having a specific voltage useful to the 

connection to the DC bus. The photovoltaic conversion chain is composed of a combination of ten solar panels, 

each with a power of 60 W, converts solar energy into electrical energy. The panels are connected to a DC/DC 

converter (step-up chopper) equipped with a maximum power point tracking (MPPT) (perturb and observe 

with reference tracking) control to ensure optimal operating conditions for all the panels, as shown in Figure 3 

[3], [27], [28]. A regulated DC/DC series chopper that enables the desired voltage required by the connection 

to the DC bus. The storage chain comprises a lithium-ion battery initially charged and a bidirectional DC/DC 

converter, suitable for an energy storage system that charges and discharges the battery shows in Figure 4 [27].  

 

 

 
 

Figure 2. Direct power control diagram for wind energy 

 

 

 
 

Figure 3. Perturb and observe MPPT with reference tracking 
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2.1. Model of PV array 

In the technical literature we find several models of photovoltaic generators (with one, two or three 

diodes). They differ in the number of parameters involved in the calculation of the final value of the voltage 

and current of the photovoltaic generator. The single-diode model is the most commonly cited in the literature. 

The equivalent circuit shown in Figure 5 characterizes it. It consists of a current source symbolizing the 

conversion of luminous flux into electrical energy, a shunt resistor Rsh characterizing the leakage current at the 

cell surface due to the non-ideality of the PN junction, and impurities near the junction. A series resistor Rs 

represents the various contact and connection resistances [27]. 
 

 

 
 

Figure 4. Electrical diagram of the chopper converter 
 

 

 
 

Figure 5. Equivalent circuit of solar cell 
 
 

Figure 5, the (1) gives the current Ipv of the photovoltaic cell under standard operating conditions. 
 

𝐼𝑝𝑣 = 𝐼𝑝ℎ − 𝐼𝑑 − 𝐼𝑠ℎ  (1) 
 

Where Iph : the photo-current, Id: polarization of the PN junction current, Ish: current in the resistor Rsh. The 

current expression of the solar cell is given by (2): 
 

𝐼𝑝𝑣 = 𝐼𝑝ℎ − 𝐼0 (𝑒𝑞(
𝑉+𝑅𝑠ℎ
𝑛.𝑘.𝑇

) − 1) −
𝑉𝑝𝑣+𝐼.𝑅𝑠

𝑅𝑠ℎ
  (2) 

 

Where: Vpv: cell voltage [V], I0: saturation current [A], Rs: cell series resistance [Ω], Rsh: cell shunt resistance 

[Ω], T: cell temperature [°K], q: the electron's charge, e = 1.6 *10-19 [C], K: Boltzmann constant (1.3854*10-

2 [JK -1]), and n: the diode quality factor. 
 

2.2. Dynamic model of the generator 

The asynchronous generator model in Park's reference frame is written as in (3):  
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where Rs, Rr, Ls, and Lr are the stator and rotor resistances per phase and the cyclic self-inductances, respectively, 

and Lm is the magnetizing inductance. It's important to note that in the model of the induction machine operating 

as a generator, the saturation must be taken into account, since it determines the operating point) [22]-[25]. Taking 

saturation into account means considering the magnetizing inductance Lm as variable as a function of the 

magnetizing current im. The MATLAB-Simulink program for the self-excited induction generator is based on the 

system of (3) [22]-[25]. The under-load self-excitation process is modelled as in (4) [22]-[25]. 

 

𝑝. (𝑣𝑑𝑠
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) = (
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)  (4) 

 

Where RL is the load resistance and C is the self-excitation capacity. The induction machine parameters and 

the photovoltaic panel electrical parameters are shown in Tables 1 and 2, respectively. 
 
 

Table 1. Induction machine parameters 
Parameters Value Unit 

Rated power (Pa)  
Rated speed (Ωn)  

Number of pole pairs (p)  

Stator resistance (Rs)  
Rotor resistance referred to the stator (Rr)  
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Table 2. Photovoltaic panel electrical parameters 
Parameters Value Unit 

Peak power (Pmax)  
Voltage (Vmp) 

Current (Imp) 

Open circuit voltage (Vc0) 
Short circuit current (Isc) 

Nomber of cells 

60 

17.2 
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V 
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3. MANAGEMENT STRATEGIES OF THE HYBRID SYSTEM 

The management strategy proposed in this paper aims to generate power references for each source, 

to ensure an optimal supply with no load interruption. Therefore, the study outlines an algorithm for power 

flows management between the various sources. The latter follows an "all or nothing" logic rule, targeting 

activating or deactivating the sources as the hybrid system state evolves. The role of this algorithm, which is 

located at the core of the hybrid system, is displayed in Figure 6. 
 

 

 
 

Figure 6. Block diagram of the management strategy 
 
 

The objective of the management algorithm is to define the operating points of the hybrid system's 

sources, thus producing as much power as required by the load. This operation is established by prioritizing 

the renewable energy sources and sparing the storage system and the diesel generator as much as possible. 

Furthermore, the management algorithm must optimize the storage battery to extend its lifespan, as a 

 
 

 

Management 

flowchart 

 
Load 

 
Battery 

 

Wind  

 

PV  

 

Diesel  



Int J Pow Elec & Dri Syst  ISSN: 2088-8694  

 

Sustainable energy empowerment in remote regions wind-solar system with intelligent … (Rabah Rouas) 

91 

reasonable estimation of its state of charge or discharge (SoC) is necessary. Therefore, it is advisable to reduce 

the battery's load and use energy from renewable sources to preserve the battery. However, in critical situations 

involving insufficient renewable energy sources and low battery SoC, the diesel generator must support the 

hybrid system and supply the load. 
The management strategy developed in this study is based on conditional statement rules. This strategy 

considers the wind conversion system as the leading source to power the load. Therefore, the photovoltaic 

conversion system is activated only when the former does not meet the load demand. Furthermore, the battery 

is used in case of power production lack. It is also a storage system in the case of overproduction. Finally, the 

diesel generator is considered a last resort. Energy production sources operate in maximum power point mode, 

and the hybrid system is isolated. Consequently, we have provided a dissipative load that serves as an 

"overflow" for possible overproduction. The operating scheme of this algorithm is shown in Figure 7, where: 

PW is the wind power, Ppv is the photovoltaic power, Pch is the power required by the load, SoC is the charged 

and discharged state of the battery (state of charge), ∆P1is the difference between the wind power and the 

power requested by the load, given by the following equation: 𝛥𝑃1 = 𝑃𝑤 − 𝑃𝑐ℎ, ∆P2 is the difference between 

the sum of the two powers, namely the wind and photovoltaic, and the power requested by the load, given by 

the following equation: 𝛥𝑃2 = (𝑃𝑝𝑣 + 𝑃𝑤) − 𝑃𝑐ℎ. 
 

 

 
 

Figure 7. Energy management flowchart 
 
 

4. RESULTS AND DISCUSSION 

To validate the developed management strategy by simulation tests, several possible simulation 

scenarios to be encountered by the hybrid system were considered. The simulation results are given in the 

presented figures. The different scenarios are designed to involve all the energy sources of the hybrid system.  
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are shown in Figures 8(a)-8(d). 
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(a) (b) 

  
(c) (d) 

 

Figure 8. Simulation results for the first scenario: (a) power produced by the global system, (b) power 

delivered by the wind generator, (c) power supplied by the photovoltaic generator, and (d) battery SoC curve 
 

 

4.2. Case where ∆P1 > 0, ∆P2 > 0 and SoC > 95% 

In this case, we repeated the previous experiment, but the battery was charged to more than 95%. The 

results obtained are shown in Figures 9(a)-9(c). The simulation results show that when the battery is charged 

(Figure 9(b)), the auxiliary load dissipates the surplus power, as shown in Figure 9(c). 
 

4.3. Case where ∆P1 < 0, ∆P2 < 0 and SoC < 10% 

For the last scenario, we performed a power variation until the two main sources could no longer 

satisfy the load considering that the battery is at its minimum state of charge. This situation imposes the 

triggering of the diesel generator, which must supply the load demand. It is worth noting that the generator is 

seen as a constant source. The results obtained are shown in Figures 10(a)-10(e). 
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Figure 9. Simulation results for the first scenario: (a) power produced by the global system,  

(b) the surplus power curve, and (c) the battery SoC curve 
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(a) (b) 

 

 

(c) (d) 

 

(e) 

 

Figure 10. Simulation results for the third scenario: (a) power produced by the global system, 

(b) power produced by the wind generator, (c) power produced by the photovoltaic generator, 

(d) power produced by the diesel generator, and (e) SoC of the battery 
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5. CONCLUSION 

This paper described the analysis of a hybrid electric energy system, including a wind turbine 

generator associated with photovoltaic panels and a storage system. First, we gave a presentation of the overall 
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the conventional energy sources (a diesel generator, batteries). Finally, to validate the management strategy, 

we simulated our algorithm's response to a power demand profile. These responses include the scenarios that 

the system is likely to encounter. 
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