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 This paper introduces an improved particle swarm optimization (iPSO) 

algorithm designed for maximum power point tracking (MPPT) in 

photovoltaic (PV) systems. The proposed algorithm incorporates a novel 

reinitialization mechanism that dynamically detects and adapts to 

environmental changes. Additionally, an exponentially decreasing inertia 

weight is utilized to balance exploration and exploitation, ensuring rapid 

convergence to the global maximum power point (GMPP). A deterministic 

initialization strategy is employed to uniformly distribute particles across the 

search space, thereby increasing the likelihood of identifying the GMPP. The 

iPSO algorithm is thoroughly evaluated using a MATLAB/Simulink 

simulation and validated with real-time hardware, including a boost DC-DC 

converter, dSPACE, and a Chroma PV simulator. Comparative analysis with 

conventional PSO and PSO-reinit algorithms under various irradiance 

patterns demonstrates that the iPSO consistently outperforms in terms of 

convergence speed and MPPT efficiency. The study highlights the robustness 

of the iPSO algorithm in bridging theoretical models with practical 

applications. 
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1. INTRODUCTION 

Solar energy has emerged as a critical solution to global energy challenges, offering a renewable and 

environmentally friendly alternative to traditional energy sources [1]. The photovoltaic (PV) effect, which 

directly converts solar radiation into electricity with the help of semiconductor positive-type and negative-type 

(pn) junctions, forms the basis of solar power generation. However, the efficiency of PV systems is highly 

susceptible to environmental factors such as irradiance and temperature, resulting in nonlinear power–voltage 

(P–V) and current–voltage (I–V) characteristic curves in PV cells. 

To maximize the efficiency of PV systems, maximum power point tracking (MPPT) algorithms are 

employed [2], [3]. These algorithms are integrated into DC–DC converters to extract the maximum available 

power under varying environmental conditions. Traditional algorithms such as perturb and observe (P&O), hill 

climbing (HC), and incremental conductance (INC) [4]-[11] are popular due to their simplicity and 

effectiveness under uniform irradiance, but they struggle with partial shading conditions (PSC) where multiple 

local maximum power points (LMPPs) exist [12]-[14]. 

https://creativecommons.org/licenses/by-sa/4.0/
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In response to the limitations of conventional algorithms, artificial intelligence (AI)-based MPPT 

algorithms have been developed. Among these, the particle swarm optimization (PSO) technique has gained 

significant attention due to its simplicity and robustness [15]. However, conventional PSO algorithms suffer 

from stagnation [16] when not properly adapted to changing environments, and often converge to local rather 

than global maximum power points, especially with a small number of particles [17]. 

To overcome these challenges, this paper presents an improved PSO (iPSO) MPPT algorithm. The 

iPSO algorithm includes a real-time mechanism to detect dynamic environmental changes and reinitialize 

MPPT when significant irradiance changes occur. It exponentially decreases the inertia weight to balance 

exploration and exploitation, thereby accelerating convergence. Additionally, it employs a deterministic 

initialization strategy to distribute particles uniformly across the search space, increasing the likelihood of 

finding the global maximum power point. 

To assess the effectiveness of the proposed iPSO algorithm, a stand-alone PV system with a boost 

DC-DC converter is developed in MATLAB/Simulink and validated in real-time hardware using a DS1104 

dSPACE (control desk) and a Chroma 62000 H PV simulator. The iPSO's performance is compared to existing 

algorithms under uniform irradiance, rapid irradiance step changes, and partial shading conditions. This paper 

is organized as follows: section 2 outlines the methodology, including the implementation of the iPSO; section 

3 provides an overview of the system; sections 4 and 5 cover the simulation and hardware setup, respectively; 

section 6 presents the results and discussion; and section 7 concludes the study. 

 

 

2. METHODOLOGY 

2.1. Implementation of iPSO method 

Particle swarm optimization (PSO) is an artificial intelligence optimization technique inspired by the 

collective behavior of birds and fish. In PSO, potential solutions are represented as particles within a 

multidimensional search space, where they adjust their positions based on both their individual best-known 

positions and the best-known positions within the swarm. The conventional PSO algorithm incorporates an 

inertia weight, as introduced by Shi and Eberhart in 1998, to balance the trade-off between exploration and 

exploitation [18]. The iPSO algorithm developed in this research builds upon the conventional PSO by 

integrating a novel mechanism aimed at enhancing optimization efficiency. This mechanism, illustrated in 

Figure 1, addresses the inherent limitations of the conventional PSO. The following section will provide a 

detailed discussion of this novel mechanism and its impact on the optimization process. 

 

 

 
 

Figure 1. Flowchart of the iPSO optimization process 

 

 

2.2. Initialization and fitness calculation 

The initialization and fitness calculation process begins by randomly generating a predefined number 

of particles (NP) within the boundaries of the search space, as outlined in (1). 
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𝑓𝑜𝑟 𝑖 = 1: 𝑁𝑃 

𝑥𝑖
𝑘−1 = 𝐿𝐵 + (𝑈𝐵 − 𝐿𝐵) × 𝑟𝑎𝑛𝑑 ⋅ 𝑖 (1) 

𝑒𝑛𝑑 

 

Here, (x) represents the initial position of the (k-1) particle, LB and UB signify the lower and upper  

bounds of the search space respectively, and rand is a randomly generated number from a uniform distribution 

between 0 and 1. 

The (1) specifies that each particle's position corresponds to the duty cycle of the converter, 

constrained between 0 and 1. Due to the inherent stochastic nature of the PSO algorithm, particles may initiate 

their search from suboptimal positions, which could potentially slow down convergence to the global optimum. 

To mitigate this issue, increasing the number of particles (NP) is often recommended; however, this approach 

can result in reduced tracking speed. This trade-off is addressed by implementing a deterministic initialization 

method (DIM), as described in [19] and illustrated in (2): 

 

𝑓𝑜𝑟 𝑖 = 0: (𝑁𝑃 − 1) 

𝑥𝑖
𝑘−1 = [𝐿𝐵 + 0.1 ⋅ (𝑈𝐵 − 𝐿𝐵)] + [0.8 ⋅

(𝑈𝐵−𝐿𝐵)

(𝑁𝑃−1)
] . 𝑖  (2) 

𝑒𝑛𝑑 

 

Furthermore, the initial velocity of each particle (𝑥𝑖
𝑘−1 ) is randomly assigned within 20% of the 

designated velocity range, adhering to the constraint in (3): 

 

𝑣𝑖
𝑘−1 = 𝑣(𝑣𝑚𝑖𝑛𝑚𝑎𝑥 × 𝑟𝑎𝑛𝑑 × 0.2)𝑚𝑖𝑛 (3) 

 

Here, vmin and vmax are the predetermined lower and upper velocity limits, respectively. Subsequently, the fitness 

of each particle is assessed using the objective function (x), as specified in (4): 

 

𝑓(𝑥) = 𝑚𝑎𝑥(𝑃𝑃𝑉(𝑥) = 𝑉𝑃𝑉(𝑥) × 𝐼𝑃𝑉(𝑥)) (4) 

 

where VPV, IPV, and PPV are the PV array output voltage, current and power, respectively. 

 

2.3. Update position and fitness calculation 

Each particle within the algorithm iteratively explores the search space to identify the optimal solution 

by updating its position (x) and velocity (v) as outlined in (5): 

 

𝑥𝑖
𝑘 = 𝑥𝑖

𝑘−1 + 𝑣𝑖
𝑘 (5) 

 

where 𝑥𝑖
𝑘 and 𝑣𝑖

𝑘  are the position and velocity of the ith particle at iteration (k), respectively. 𝑣𝑖
𝑘 , as described 

in (5), is influenced by both the individual's best historical position (Pbest) and the best-known position among 

all particles in the swarm (Gbest). This dual influence aims to balance individual learning and social learning 

within the swarm. The updated velocity is calculated as follows: 

 

𝑣𝑖
𝑘 = 𝑤𝑘−1 ⋅ 𝑣𝑖

𝑘−1 + 𝑐1 ⋅ 𝑟𝑎𝑛𝑑(𝑃𝑏𝑒𝑠𝑡
𝑘−1 − 𝑥𝑖

𝑘−1) + 𝑐2 ⋅ 𝑟𝑎𝑛𝑑(𝐺𝑏𝑒𝑠𝑡
𝑘−1 − 𝑥𝑖

𝑘−1) (6) 

 

where 𝜔𝑘−1 is the inertia weight controlling the velocity at iteration (k-1); c1 and c2 are the acceleration 

constants that govern relative velocity with respect to Pbest and Gbest, respectively. 

To effectively manage the exploration-exploitation trade-off during the optimization process, the 

inertia weight ω is dynamically adjusted. A larger ω promotes broader search behavior, facilitating global 

exploration, while a smaller ω enhances the particle's ability to fine-tune its search around its best-known 

position, thereby supporting local exploitation. Typically, the adjustment of ω is implemented by linearly 

decreasing its value over the course of iterations, as illustrated in (7): 

 

𝑤𝑘+1 = (𝑤𝑚𝑖𝑛𝑚𝑎𝑥 (
𝐼𝑡𝑒𝑟𝑚𝑎𝑥

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
+ 𝑤𝑚𝑖𝑛)) (7) 

 

where max and min are the maximum and minimum values of , respectively; Itermax is the maximum number 

of iterations; and (k) and (k+1) are the current and next iteration numbers, respectively. 
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In this research, to accelerate convergence to the optimal solution, the inertia weight ω is dynamically 

reduced according to an exponential decay model, as detailed in (8). This model is depicted in Figure 2, which 

compares the convergence profiles of inertia weight decay using both linear and exponential methods ((7) and 

(8), respectively). Following each iteration, the fitness of a particle is assessed using the function described 

previously in (4): 
 

𝑤𝑘+1 = (𝑤𝑚𝑖𝑛𝑚𝑎𝑥(1 − 𝛿)𝑘 + 𝑤𝑚𝑖𝑛) (8) 
 

where  is the decay rate, which in this study is set at 0.45. 
 

 

 
 

Figure 2. Convergence plot of ω 
 

 

2.4. Selection 

In the selection phase of this study, the tournament selection method is employed to determine which 

particles advance to the subsequent iteration. This method was chosen for its simplicity and ease of 

implementation. It involves a comparative evaluation in which particles from the current iteration are matched 

against those from the previous iteration based on their fitness values. The particle with the superior fitness 

value is retained for the next iteration, ensuring that only the most promising candidates are selected for 

progression, as detailed in (9). 
 

𝑥𝑖
𝑘 = {

𝑥𝑖
𝑘 𝑖𝑓 𝑓(𝑥𝑖

𝑘) > 𝑓(𝑥𝑖
𝑘−1)

𝑥𝑖
𝑘−1 𝑒𝑙𝑠𝑒

 (9) 

 

2.5. Stopping criterion 

The update of particle positions and velocities continues iteratively until a specified stopping criterion 

is met. Stopping criteria are crucial for ensuring efficient algorithm performance and are generally tailored to 

the particular requirements of the algorithm and the problem context. In this study, the simulation is terminated 

once a predetermined time threshold of 40 seconds is reached. 
 

2.6. Detection of dynamic environmental changes 

As the iterative process progresses, the velocity of particles within the algorithm tends to decrease, 

which can lead to potential stagnation and reduced adaptability to dynamic environmental changes. To address 

this issue, the iPSO algorithm incorporates a reinitialization mechanism. This mechanism triggers a 

reinitialization of the algorithm when significant environmental changes are detected, specifically when the 

magnitude of the normalized power exceeds a threshold value (Thre), as specified in (10). The selection of this 

threshold is based on empirical observations across various environmental conditions and is supported by 

existing literature [20]. This approach ensures that the algorithm remains responsive and effective under 

varying conditions. 
 

|
𝛥𝑃𝑃𝑉

𝑃𝑃𝑉
𝑘−1| = |

𝑃𝑃𝑉
𝑘 −𝑃𝑃𝑉

𝑘−1

𝑃𝑃𝑉
𝑘−1 | > 𝑇ℎ𝑟𝑒 (10) 

 

where 𝑃𝑃𝑉
𝑘  and 𝑃𝑃𝑉

𝑘−1 are the PV output power at iterations (k) and (k-1), respectively. 
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3. SYSTEM OVERVIEW 

Figure 3 illustrates a stand-alone photovoltaic (SAPV) system equipped with a conventional 

maximum power point tracking (MPPT) algorithm, typically implemented using a DC-DC boost converter. 

This system comprises a PV array, an MPPT algorithm module, a DC-DC converter, a pulse-width modulation 

(PWM) generator, and a load resistor [21]. The DC-DC converter adjusts the PV array’s voltage to match the 

load requirements, while the MPPT algorithm regulates the converter's duty cycle (D) to manage the voltage 

boost. The PWM generator produces a pulse-width modulation signal based on this duty cycle, which in turn 

controls the on/off ratio of the switching element in the DC-DC converter to regulate the output voltage. 

Figure 4 depicts the two-diode model of a PV cell, offering a detailed representation of the cell's 

characteristics essential for accurate simulation and analysis. This model incorporates two diodes, each 

accounting for different recombination losses within the cell [22]. The photo-generated current (Iph), influenced 

by solar irradiance and temperature, flows through a circuit that includes these diodes, a series resistor (Rs), 

and a shunt resistor (Rsh), thereby affecting the cell's overall current output (Icell). 

 

𝐼𝑐𝑒𝑙𝑙 = 𝐼𝑝ℎ − 𝐼𝑜1 [𝑒𝑥𝑝 (
𝑉𝑐𝑒𝑙𝑙+𝐼𝑐𝑒𝑙𝑙𝑅𝑠

𝑎1𝑉𝑇1
) − 1] − 𝐼𝑜2 [𝑒𝑥𝑝 (

𝑉𝑃𝑉+𝐼𝑐𝑒𝑙𝑙𝑅𝑠

𝑎2𝑉𝑇2
) − 1] − (

𝑉𝑃𝑉+𝐼𝑐𝑒𝑙𝑙𝑅𝑠

𝑅𝑃
) (11) 
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Figure 1. Block diagram of the SAPV system with MPPT 
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Figure 2. The two-diode PV cell model 
  
 

According to (11), in this model, Iph represents the photocurrent, while Io1 and Io2 denote the reverse 

saturation currents for diodes D1 and D2, respectively. VT1 and VT2 are the thermal voltages associated with 

diodes D1 and D2. The constants 𝑎1 and 𝑎2 are the ideality factors that influence the diodes' response to 

variations in temperature and current flow. Vcell signifies the output voltage of the solar cell. 𝑅𝑆 refers to the 

series resistance, and 𝑅P (parallel resistance) is also standardized across the cell. These parameters collectively 

impact the electrical characteristics and efficiency of the photovoltaic cell. 

In the current research, we analyze a PV module, specifically the SPM050-P from Solar Power Mart, 

which consists of 36 solar cells connected in series and offers a peak power output of 50 watts (Wp). The 

characteristics of this module under standard test conditions (STC) are systematically presented in Table 1, 

including metrics such as maximum power (Pmax), voltage at maximum power (Vmpp), current at maximum 

power (Impp), open-circuit voltage (Voc), short-circuit current (Isc), and the temperature coefficients for Pmax, 

Voc, and Isc. Figure 5 illustrates the configuration of the PV array used in this study, which comprises a series 

arrangement of five such modules, designated as 5S1P. This setup maintains a constant temperature of 25 °C 

to simplify the analysis and ensure consistency in evaluating the modules’ performance. 

The photovoltaic (PV) array, shown in Figure 5, comprises five modules configured in two parallel 

strings with modules connected in series. This array is exposed to daily variations in global irradiance (G). 

Under uniform irradiance conditions, each module receives identical irradiance levels, resulting in a single 
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maximum power point (MPP) on their P-V characteristic curves. However, under partial shading conditions 

(PSC), different modules receive varying irradiance levels due to obstructions such as buildings, trees, or 

clouds. This disparity leads to multiple local maximum power points (LMPPs) alongside the global maximum 

power point (GMPP) on the P-V curves, complicating the MPP tracking process. To investigate this 

phenomenon, the research utilizes three specific irradiance patterns, as detailed in Table 2, which simulate 

dynamic environmental changes. The table also provides the MPP values for each pattern, offering a 

comprehensive evaluation of the array's performance under varying conditions. 

In this study, a boost converter serves as an intermediary between the PV array and the load. This 

choice is based on the boost converter's significant advantages, including minimal output ripple and high 

efficiency. Additionally, the circuit's optimal parameters are carefully listed in Table 3 [21]. This configuration 

is crucial for improving overall system performance by ensuring efficient energy transfer and minimizing 

power loss. 
 
 

Table 1. Parameters of The PV module of SPM050-P At Stc 
Parameters Values 

Maximum Power (Pmax) 50 W 

Voltage at Pmax (Vmpp) 18.00 V 
Current at Pmax (Impp) 2.78 A 

Open circuit voltage (Voc) 21.80 V 
Short circuit current (Isc) 2.97 A 

Temperature coefficient of Voc -0.35%/°C 

Temperature coefficient of Isc 0.05%/°C 

Temperature coefficient of power -0.45%/°C 

NOCT 47 °C 

Operating temperature 25 °C 

 

 

 -        VPV         +  

    Module A (GA)        Module B (GB)          Module C (GC)         Module D (GD)          Module E (GE)   

Module 

Cell

Array

 IPV  

 
 

Figure 3. PV array of two parallel five modules in series 

 

 

Table 2. Various irradiance patterns 

Pattern 
Module irradiance (G=1.0=1000 W/m2) Maximum power point value 

GA GB GC GD GE  DMPP PMPP 

Pattern 1 (G=1000 W/m2) 1.0 1.0 1.0 1.0 1.0 MPP1 0.59 250.2 W 

Pattern 2 (G=300 W/m2) 0.30 0.30 0.30 0.30 0.30 MPP2 0.24 70.7 W 

Pattern 3 (PSC) 0.60 0.70 0.80 0.90 1.0 GMPP 0.45 164.6 W 

 
 

Table 3. Boost converter parameters 
Parameters Values 

Switching frequency, fs 20 kHz 
Load resistor, RL 200 Ω 

Boost inductor, L 2 mH 

Filter capacitors, Cin and Cout 100 µF 

 
 

4. SIMULATION SETUP 

The investigated algorithms were simulated with the MATLAB/Simulink software platform, as shown 

in Figure 6. The circuit parameters are consistent with those specified in previous sections. Meanwhile, all 

algorithms were executed using the MATLAB function block. The photovoltaic data for all cases under 

investigation were generated using the PV simulator detailed in [23]. 
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Figure 6. MATLAB/Simulink model of SAPV system with MPPT 

 

 

5. HARDWARE SETUP 

Figure 7 depicts an advanced hardware verification setup designed to assess MPPT algorithms in 

photovoltaic systems. At the heart of this arrangement is the DS1104 dSPACE controller, which manages real-

time control and testing of MPPT algorithms [24], [25]. Alongside, the chroma 62000 H PV simulator is pivotal 

in replicating varied solar irradiance conditions, enabling rigorous evaluation of algorithm performance under 

controlled environmental parameters. Key measurement instruments include voltage and current sensors for 

accurate monitoring of electrical parameters, an oscilloscope to visualize voltage and current waveforms, and 

a portable DC-DC converter that ensures consistent voltage levels across system components. This 

comprehensive setup is essential for the precise evaluation of MPPT algorithms, ensuring theoretical advances 

are seamlessly translated into practical improvements in photovoltaic system efficiency. 

Figure 8 shows the hardware simulation circuit created with the MATLAB/Simulink platform. The 

schematic integrates several system components, including analog-to-digital converters (ADCs) for voltage 

and current, a timer, and the PSO-based maximum power point tracking (MPPT) algorithm. These components 

are connected via a limited to a set of pulse-width modulation (PWM) channels, which control the output 

signals to keep them within predefined limits. 
 
 

 
 

Figure 7. Hardware setup verification (MPPT) 
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Figure 8. Hardware Simulink circuit 
 

 

Figure 9 shows the control desk main monitoring window, used to observe and analyze outputs from 

the hardware simulation circuit [26]. This interface offers real-time graphical representations of parameters 

such as voltage, current, power, and duty cycle, allowing researchers to monitor the MPPT algorithm's 

performance across various test conditions. This setup is essential for validating the PSO algorithm's 

effectiveness in optimizing the photovoltaic system's power output. 
 

 

 
 

Figure 9. Control desk main monitoring window 
 

 

6. RESULTS AND DISCUSSION 

6.1. Simulation result 

After calculating the PPV for each particle, the new position is updated as outlined in the previous 

section. This process will continue until convergence is achieved at MPP (DMPP=0.59, PMPP=250.2 W). Since 

MPPTsampling_time is set to 0.2 s in this study, it takes 1 s (NPMPPTsampling_time) to finish initialization and each 

iteration. Figures 10 to 12 show the simulation performance of the PSO, PSO-reinit, and iPSO algorithms in 

tracking the maximum power point under variable environmental conditions. The data elucidates several 

critical aspects regarding the efficacy and adaptability of these algorithms. Firstly, the convergence metrics 

and efficiency figures indicate varying performance levels dependent on irradiance conditions. Under full 

sunlight (1000 W/m²), the iPSO algorithms achieve higher efficiencies, with MPPT efficiency reaching up to 

90.69% in the best case while for conventional PSO and PSO-reinit the efficiency are 86.74% and 90.18% 

respectively. Conversely, under partial shading, the efficiencies tend to decrease, with the recorded efficiency 
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being 83.23% for PSO. This reduction emphasizes the difficulties that conventional PSO faces in adapting to 

fluctuating solar irradiance. 

Meanwhile, the modified algorithms, PSO-reinit and iPSO, exhibit improved performance metrics 

compared to conventional PSO. For instance, under partial shading conditions, PSO-reinit and iPSO respond 

more rapidly to changes in the maximum power point, achieving efficiencies of 91.77% and 92.46%, 

respectively. This significant improvement over conventional PSO indicates that enhancements in the 

reinitialization and optimization processes of these algorithms greatly enhance their ability to manage 

environmental variations. Furthermore, convergence times and iteration counts reflect the responsiveness of 

these algorithms. Under ideal conditions with 1000 W/m² irradiance, the PSO, PSO-reinit, and iPSO algorithms 

converge to the optimal duty cycle in 6.4 s, 5.8 s, and 4.0 s (6.4, 5.8, and 4.0 iterations). In less optimal 

conditions, the iteration count increases slightly, revealing the increased complexity introduced by partial 

shading and the resulting strain on the algorithm's performance. 

 

 

(a) 

 
 

(b) 

 
 

Figure 10. Simulation tracking of the conventional PSO algorithm under varying environmental conditions: 

(a) duty cycle and (b) PV output power 

 

 

6.2. Hardware result 

Full hardware tracking results for these algorithms, shown from time t=0s to t=40s in 

Figures 13 to 15. As indicated, the iPSO converges to the desired maximum power point (MPP) within 4.6 

seconds, equivalent to 4.6 iterations, outperforming the conventional PSO and PSO-reinit variants, which 

required 5.6 and 5.2 iterations, respectively. The conventional PSO's limitations are evident in Cases 2 and 3, 

where it is unable to adapt to varying environmental conditions and remains locked at an old duty cycle (Dmpp= 

0.59), resulting in reduced efficiencies of 35.88% and 83.15%, respectively. The MPPT speed for PSO-reinit 

in Case 2 is 5.2 seconds, corresponding to 5.2 iterations, whereas in Case 3, it reaches 7.4 seconds, equivalent 

to 7.4 iterations. Concurrently, the MPPT efficiency (MPPTeff) for PSO-reinit in Cases 2 and 3 is approximately 

92.62% and 86.36%, respectively. 

The iPSO algorithm achieves significantly higher efficiencies across all scenarios due to its rapid 

convergence and accurate tracking. It achieves an efficiency of 90.63% under standard conditions, 94.55% 

under low irradiance, and 90.95% under partially shaded conditions. These improvements emphasize the value 

of algorithmic enhancements for ensuring reliable detection and rapid adaptation to the optimal duty cycle, 

reinforcing the importance of dynamic MPPT algorithms in maximizing energy yield under varying 

environmental conditions. Figures 10 to 15 and Table 4 provide a comparative analysis of the PSO, PSO-reinit, 

and iPSO algorithms, while Table 5 summarizes their average performance across the three cases studied. 

Simulation tracking and hardware verification offer deep insights into their applicability and efficiency in 

photovoltaic systems operating under variable environmental conditions. 

The results consistently demonstrate the superior performance of the iPSO algorithm across several 

metrics, such as convergence speed and MPPT efficiency. Notably, in hardware testing for Case 2, iPSO 

achieved a maximum power point tracking (MPPT) efficiency of 94.55%, significantly outperforming other 
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algorithms. This strong performance suggests that iPSO integrates advanced adaptive mechanisms, enabling a 

rapid and effective response to fluctuations in irradiance and optimizing power output under diverse conditions. 

The consistent performance of iPSO in both simulated and practical environments highlight its robust 

algorithmic structure that effectively aligns theoretical predictions with actual operational outcomes. The 

research reveals a close correlation between simulation and hardware performance, particularly for iPSO. This 

alignment validates the reliability of simulation models in predicting real-world algorithm behavior. 
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Figure 11. Simulation tracking of the PSO-reinit algorithm under varying environmental conditions:  

(a) duty cycle and (b) PV output power 
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Figure 12. Simulation tracking of the iPSO algorithm under varying environmental conditions: 

(a) duty cycle and (b) PV output power 
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Figure 13. Hardware tracking of the conventional PSO algorithm under varying environmental conditions 

(a) duty cycle and (b) PV output power 
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Figure 14. Hardware tracking of the PSO-reinit algorithm under varying environmental conditions 

(a) duty cycle and (b) PV output power 
 

 

Table 4. Overall performance results 
G changes MPPT algorithm MPPTSPEED (S) MPPTEFF (%) 

Simulation Hardware Simulation Hardware 

CASE 1 (T=10 S TO T=20 S) PSO 6.40 5.60 86.74 86.53 
PSO-REINIT 5.80 5.20 90.18 90.37 

IPSO 4.00 4.60 90.69 90.63 
CASE 2 (T=20 S TO T=30 S) PSO N/A N/A 36.41 35.88 

PSO-REINIT 4.80 5.20 93.53 92.62 

IPSO 2.60 3.40 94.61 94.55 
CASE 3 (T=30 S TO T=40 S) PSO N/A N/A 83.23 83.15 

PSO-REINIT 7.40 7.40 91.77 86.36 

IPSO 5.20 5.20 92.46 90.95 
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(a) 

 

 
 

Figure 15. Hardware tracking of the iPSO algorithm under varying environmental conditions: 

(a) duty cycle and (b) PV output power 

 

 

Table 5. Total average performance 
MPPT algorithm MPPTSPEED (S) MPPTEFF (%) 

Simulation Hardware Simulation Hardware 

PSO N/A N/A 68.79 68.52 

PSO-REINIT 6.00 5.93 91.83 89.78 
IPSO 3.93 4.40 92.59 92.04 

 

 

7. CONCLUSION 

The proposed iPSO algorithm shows superior performance in accurately tracking the GMPP in 

photovoltaic systems under varying environmental conditions. By dynamically adjusting inertia weight and 

using deterministic initialization, iPSO effectively balances exploration and exploitation, leading to faster 

convergence and higher efficiency than conventional PSO and PSO-reinit algorithms. Both simulation and 

hardware results confirm iPSO's robustness in handling partial shading conditions, rapid changes in irradiance, 

and uniform irradiance patterns. Achieving MPPT efficiencies exceeding 90% across various scenarios in both 

simulation and hardware implementations, with convergence times as short as 2.6 seconds in simulation and 

3.4 seconds in hardware, iPSO stands out as a promising solution for optimizing energy extraction from PV 

arrays. Its capabilities ensure consistent and efficient performance across a range of operational conditions. 
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