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 With its outstanding features, such as high efficiency and torque-producing 

capability compared with the induction motor, the interior permanent magnet 

synchronous motor (IPMSM) has been increasingly researched and used for 

electric vehicles. The speed control strategy for both low and high speeds of 

the IPMSM is studied in conjunction with controllers based on the field-

oriented control (FOC) structure to ensure accurate and stable system response 

under various operating conditions. This paper focuses on three control 

methods: sliding mode control (SMC), backstepping (BSP), and proportional 

integral (PI) for the speed loop to enhance system stability. Coupled with the 

presence of load disturbances, environmental disturbances, and uncertainties 

in parameters, comparisons and observations regarding the three methods can 

be made to conclude system stability and performance. Finally, simulation 

results on MATLAB/Simulink software confirm the effectiveness and validity 

of the proposed speed controllers. 
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1. INTRODUCTION 

Depleting fossil fuels and environmental pollution have become significant issues that any nation 

worldwide faces, which is partially attributable to means of transportation. Therefore, electric vehicles are 

currently considered a suitable solution to address these two issues. The interior permanent magnet 

synchronous motor (IPMSM) possesses advantages such as high efficiency, capability of generating ample 

torque, wide speed adjustment range, and high power density, making it an attractive choice in various fields 

such as electric vehicle manufacturing, wind power, aerospace, and widely applied in other industrial  

sectors [1]. When the motor operates at high speed, it is limited by voltage and energy, which may cause a 

decrease in output torque, current, and speed; the IPMSM can widen the speed adjustment range by controlling 

the torque in the weakening flux region [2]. To maximize the potential of this kind of motor, the maximum 

torque per ampere (MTPA) method is preferred [3], [4]. Widely used methods in IPMSM drives include direct 

torque control (DTC) and field-oriented control (FOC) [5]-[8], which are accompanied by various control 

methods and controllers applied to the speed loops. Conventional proportional integral (PI) controllers can 

control the motor [9], [10], but disturbances and changes in the motor’s parameters have caused system 

instability. Nowadays, control theory is continuously evolving, and various control techniques have been 

widely utilized, such as sliding mode control (SMC), backstepping control, sliding mode variable structure 
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control (SMVSC), intelligent control, fuzzy control, neural networks, and adaptive control, which can operate 

IPMSM with high efficiency [11]-[20]. 

Dianov et al. [21] utilized the MTPA algorithm for the IPMSM drive system with PI controllers.  

Kirad et al. [22] applied sensorless backstepping technique with Kalman filtering to enhance motor 

performance. Feng et al. [23] developed a novel sliding mode control technology and comprehensive 

evaluation method for speed control of IPMSM to provide a rational assessment of speed control for 

synchronous PMSMs in various operating stages. Zhang et al. [24] designed and controlled field weakening of 

IPMSM for electric vehicles to demonstrate good dynamic performance and stable operation with the ability 

to extend speed up to four times the rated value. Belkacem et al. [25] compared backstepping sliding mode and 

reverse control for some vehicle components to demonstrate effectiveness and durability against external 

disturbances and different road conditions. Hosseini and Tabatabaei [26] controlled current and speed of 

IPMSM using segmented adaptive sliding mode control based on MTPA for current loop. Tung et al. [27] 

applied sliding mode observer for sensorless speed-controlled IPMSM with permanent magnet excitation along 

the axial magnetic field. Foo and Rahman [28] controlled MTPA in sensorless sliding mode for IPMSM drive 

system using sliding mode observer and high frequency (HF) signal transmission. Hashemi et al. [29] 

developed high-performance PI-based controllers for IPM motor drive system. 

However, the existing studies have yet to propose and implement various control methods to replace 

PI and proportional integral derivative (PID) controllers for IPMSM motors operating in the field weakening 

region applicable to electric vehicles. Therefore, this paper will propose three different approaches to design 

controllers for the speed loop circuit applicable to electric cars, specifically VinFast electric vehicles. Finally, 

simulation results on MATLAB/Simulink software verified the correctness of the Authors’ research. 

 

 

2. MODELLING DRIVE SYSTEM OF ELECTRIC VEHICLES 

2.1.  Mathematical model of the IPMSM motor 

The IPMSM model is represented in the d-q coordinate system as (1) [30]-[33]. Where Usd ,Usq, isd, isq 

Rs ,Lsd , Lsq are voltages, currents, resistance, inductances of the stator on dq-axis, ωs is the angular velocity of 

the motor, ψp is the rotor flux, pp is the number of pole pairs of the motor, Te is the motor output torque, ψsd, 

ψsq are the stator flux on the dq-axis, TL is the load torque, J is the moment of inertia of the motor, 𝑇𝑠𝑑 =
𝐿𝑠𝑑

𝑅𝑠
 is 

the d-axis time constant of the stator circuit and 𝑇𝑠𝑞 =
𝐿𝑠𝑞

𝑅𝑠
 is the q-axis time constant of the stator circuit. 
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 (1) 

 

2.2.  Modeling the forces acting on the electric vehicle 

As the vehicle moves, the atmosphere will impede its motion. This resistance force consists the air 

resistance and the vehicle's friction with the air [34]. These two components combined form the wind resistance 

force, which is calculated by (2). 

 

𝐹𝑤𝑖𝑛𝑑 =
1

2
𝜌𝐶𝑑𝐴𝑓(𝑣𝑣𝑒ℎ + 𝑣𝑤𝑖𝑛𝑑)

2 (2) 

 

Where 𝜌 is the air density, Cd is the coefficient of air resistance (typically: 0.2 < Cd < 0.4); Af is the frontal 

area of the vehicle's body (cross-sectional area), and vwind is the wind speed. 

For rolling resistance, we only consider the rolling friction on a rigid road surface, and in the ideal 

case where all wheels have the same conditions, the rolling friction force can be calculated as (3) [5]. 

 

𝐹𝑟𝑜𝑙𝑙 = 𝑓𝑟𝑚𝑣𝑔 𝑐𝑜𝑠 𝛼 (3) 

 

Where mv is the total mass of the vehicle and passengers, g is the gravitational acceleration, α is the slope angle, 

fr is the coefficient of rolling resistance calculated by (4). With vveh being the velocity of the vehicle. 
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𝑓𝑟 = 0.01 (1 +
3.6

100
𝑣𝑣𝑒ℎ) (4) 

 

 

3. SPEED LOOP CONTROL DESIGN 

Figure 1 presents the control structure based on the principle of field-oriented control on the dq-axis 

system to control the speed above the rated speed in the field weakening region. At the same time, the torque 

reaches the maximum value. The speed loop controllers are PI, backstepping, and sliding mode control to 

compare and evaluate the quality of speed control. 

 

 

 
 

Figure 1. The field-oriented control structure of IPM 

 

 

3.1.  The sliding mode control design 

Figure 2 shows the SMC controller structure, which defines the error between the desired and feedback 

angular velocity as (5), that e  = − . Taking the derivative of the error as in (5). 

 

𝑒̇ = 𝜔̇ − 𝜔̇∗ =
𝑝𝑝

𝐽
(𝑇𝑒 − 𝑇𝐿) − 𝜔̇

∗ (5) 

 

J is the moment of inertia, TL is the load torque, pp is the number of pole pairs. Choosing the Lyapunov function 

𝑉 =
1

2
𝑠2 [14]. The derivative of V is written as (6). 

 

𝑉̇ = 𝑠. 𝑠̇ (6) 

 

To ensure stability conditions 𝑉̇ < 0, the sliding surface s is defined as follows: 𝑠 = 𝑒 ⇒ 𝑠̇ = 𝑒̇. Setting 𝑠̇ = 0 

we obtain the robust control component, as in (7). 

 

𝑇𝑒 =
−𝐽

𝑝𝑝
(−

𝑝𝑝

𝐽
𝑇𝐿 − 𝜔̇

∗) (7) 

 

The system is stable when V is positive definite, continuously differentiable with first-order 

derivatives, and negative definite [35]. To ensure 𝑠. 𝑠̇ < 0, the exponential reaching law is chosen to have the 

following form [36]. 

 

𝑠̇ = −𝜀 𝑠𝑔𝑛(𝑠) − 𝑘𝑠, 𝜀 > 0, 𝑘 > 0 (8) 

 

Therefore, the control signal is designed as (9). 

 

𝑇𝑒 =
−𝐽

𝑝𝑝
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𝑝𝑝

𝐽
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∗ + 𝜀 𝑠𝑔𝑛( 𝑠)) (9) 

 

With k = 100, ε = 10. Proving stability as (10). 

 

𝑉̇ = 𝑠. 𝑠̇ = 𝑒̇ = 𝜔̇ − 𝜔̇∗ = 𝑠 [
𝑝𝑝

𝐽
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∗]  
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∗ + 𝜀 𝑠𝑔𝑛( 𝑠)) − 𝑇𝐿) − 𝜔̇
∗]  

= 𝑠(−𝑘𝑠 − 𝜀 𝑠𝑔𝑛( 𝑠)) = −(𝜀|𝑠| + 𝑘𝑠2) ≤ 0 (10) 
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3.2.  The backstepping control design 

Figure 3 shows the BSP controller structure. Let's define the error signal as: 𝑒 = 𝜔 − 𝜔∗, taking the 

derivative of both sides as in (11). 
 

𝑒̇ = 𝜔̇ − 𝜔̇∗ =
𝑝𝑝

𝐽
(𝑇𝑒 − 𝑇𝐿) − 𝜔̇

∗ (11) 

 

Choosing the Lyapunov function 𝑉 =
1

2
𝑒2. Taking the derivative of V [1]: 𝑉̇ = 𝑒. 𝑒̇. Choosing the control 

parameter k > 0 such as (12). 
 

 𝑒̇ = −𝑘𝑒 ⇒ 𝑉̇ = 𝑒. (−𝑘𝑒) = −𝑘𝑒2 < 0 (12) 
 

Substituting 𝑒̇ = −𝑘𝑒 into (11), we obtain (13). With k = 100. 
 

𝑝𝑝

𝐽
(𝑇𝑒 − 𝑇𝐿) − 𝜔̇

∗ = −𝑘𝑒 ⇒ 𝑇𝑒 = 𝑇𝐿 −
𝐽

𝑝𝑝
(𝑘𝑒 − 𝜔̇∗) (13) 

 

3.3.  The PI controller design 

When synthesizing the speed loop circuit, as shown in Figure 4, we consider the entire current loop 

as a function of the optimal module standard and regard the component (𝐿𝑠𝑑 − 𝐿𝑠𝑞)𝑖𝑠𝑑𝑖𝑠𝑞 as noise [37]-[39]. 

The speed control loop with the transfer function, as (14). 
 

𝑃 =
1

𝐾𝑖(1+2𝑇𝑠𝑖𝑝+2𝑇𝑠𝑖
2𝑝2)

.
3𝑝𝑝𝜓𝑝

2
.

𝐾𝜔

𝑇𝜔𝑝+1
 (14) 

 

With Tsi = 2Ti. According to the optimal module standard, select the normalized function, as (15). 
 

𝐹𝑐 =
1

2𝑇2𝜎𝑠
2+2𝑇𝜎𝑠+1

 (15) 

 

Set 𝐾 = 2𝐾𝑖/(3𝑝𝑐 . 𝜓𝑝). The controller is as (16). 

 

𝑅𝜔 =
𝐹𝑐

(1−𝐹𝑐)𝑃
=

(1+2𝑇𝑠𝑖𝑝+2𝑇𝑠𝑖
2𝑝2).𝐾.(1+𝑇𝜔 𝑝).𝐽𝑝

2𝑝𝑐𝐾𝜔(1+𝑇𝜎𝑝)𝑇𝜎𝑝
 (16) 

 

 

 
 

Figure 2. SMC controller structure 
 

 

 
 

Figure 3. BSP controller structure 
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Eliminate high-order components, as (17). 
 

𝑅𝜔 =
(1+2𝑇𝑠𝑖𝑝).𝐾.(1+𝑇𝜔 𝑝).𝐽𝑝

2𝑝𝑝𝐾𝜔(1+𝑇𝜎𝑝)𝑇𝜎𝑝
=

[1+(2𝑇𝑠𝑖+𝑇𝜔)].𝐾. 𝐽𝑝

2𝑝𝑝𝐾𝜔(1+𝑇𝜎𝑝)𝑇𝜎𝑝
 (17) 

 

Deselect: 𝑇𝜎 = 𝑇𝑠𝜔 = 2𝑇𝑠𝑖 + 𝑇𝜔; We have 𝑅𝜔 =
𝐾. 𝐽𝑝

2𝑝𝑐𝐾𝜔𝑇𝑠𝜔𝑝
. 

The controller becomes a simple stage incapable of eliminating static error while there is load 

disturbance. The symmetric optimal synthesis method can overcome this drawback. Choosing the standard 

function according to symmetric optimization as (18). 
 

𝐹𝑐 =
1+4𝑇𝜎𝑝

1+4𝑇𝜎𝑝+8𝑇
2
𝜎𝑝

2+8𝑇3𝜎𝑝
3 (18) 

 

Where 𝑅𝜔 =
𝐹𝑐

(1−𝐹𝑐)𝑃
 and setting 𝑇𝜎 = 𝑇𝑠𝜔 = 2𝑇𝑠𝑖 + 𝑇𝜔 

 

From there, we obtain (19). 
 

𝑅𝜔 =
𝐹𝑐

(1−𝐹𝑐)𝑃
=

(1+2𝑇𝑠𝑖𝑝+2𝑇𝑠𝑖
2𝑝2).𝐾.(1+𝑇𝜔 𝑝)(1+4𝑇𝜎).𝐽𝑝

8𝑝𝑝𝐾𝜔(1+𝑇𝜎𝑝)𝑇
2
𝜎𝑝

2  (19) 

 

Eliminating the high-order terms with (20). 
 

𝑅𝜔 =
(1+2𝑇𝑠𝑖𝑝).𝐾.(1+𝑇𝜔 𝑝)(1+4𝑇𝜎).𝐽𝑝

8𝑝𝑝𝐾𝜔(1+𝑇𝜎𝑝)𝑇
2
𝜎𝑝

2 =
[1+(2𝑇𝑠𝑖+𝑇𝜔)𝑝].𝐾.(1+4𝑇𝜎 𝑝).𝐽

8𝑝𝑝𝐾𝜔(1+𝑇𝜎𝑝)𝑇
2
𝜎𝑝

=
𝐾.(1+4𝑇𝜎 𝑝).𝐽

8𝑝𝑝𝐾𝜔𝑇
2
𝜎𝑝

 (20) 

 

Obtaining the speed controller as (21). 
 

𝑅𝜔 =
𝐾.𝐽

2𝑝𝑝𝐾𝜔𝑇𝑠𝜔
(1 +

1

4.𝑇𝑠𝜔.𝑝
) (21) 

 

 

 
 

Figure 4. Speed loop circuit 
 

 

4. SIMULATION RESULTS 

The theoretical studies validated through responses simulated on MATLAB software include three 

control methods for the speed loop of the FOC structure applied in electric vehicles. The responses are 

implemented in MATLAB/ Simulink using the simulation parameters from Tables 1 and 2. The speed profile 

is based on Europe ECE's standard urban cycle [40]. The speed response of the electric vehicle transmission 

control system using PI, BSP, and SMC is illustrated in Figure 5. Figure 5 compares the speed response results 

of three methods: PI, BSP, and SMC. SMC and BSP demonstrate relatively short transient response times of 

about 0.07 s, whereas PI responds slower, around 0.2 s. Moreover, during the transition from acceleration to 

steady-state, an overshoot occurred. From Figure 5, we can observe that the overshoot of PI is the largest, 

leading to oscillation and a more extended response time, followed by BSP and, finally, SMC. 

The three control methods, PI, BSP, and SMC, have been conducted when the load changes, and the 

results are presented in Figure 6. Overall, when operating at speeds higher than the rated speed (1200 rpm), all 

three methods show a decrease in electromagnetic torque to increase the speed. This leads to a higher peak 

value of the torque oscillation in the PI method and a larger amplitude of oscillation, potentially affecting the 

system's stability. Conversely, we observe a smaller peak value of the electromagnetic torque oscillation in 

SMC, with a lower amplitude of oscillation and smaller torque. This result indicates that the system is less 

affected by load disturbances. 
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Figure 7 illustrates the waveforms of isd and isq. Looking at Figure 7(a), we can observe that the two 

currents isd and isq have been decoupled, with isd being controlled to be less than 0. Examining Figure 7(b) and 

Figure 7(c), during sudden load changes in PI and BSP control, isd and isq currents oscillate and exhibit more 

giant spikes, affecting the system's stability. In contrast, SMC exhibits more minor oscillations, providing better 

response and being less affected by load changes. 

 

 

Table 1. Parameters of motor IPM 
Parameters Symbol Value Unit 

Stator resistance Rs 0.0065 Ohm 
d-axis inductance Lsd 0.001597 H 

q-axis inductance Lsq 0.002057 H 

Inertia torque J 0.09 kg.m2 
Number of pole pairs pp 3  

DC voltage Vdc 550 V 
 

Table 2. Parameters of an electric car 
Parameters Value Unit 

Vehicle weight + load 2018 kg 
Wheel radius 0.3 m 

Transmission ratio 9.73  

Maximum speed 130 km/h 
Effective area 2.3 m2 

Air density 1.25 kg/m3 

Road gradient 0  

Rolling resistance coefficient 0.02  
 

 

 

  
 

Figure 5. The speed response 

 

Figure 6. Torque response as load changes 

 

 

 
(a) 

  
(b) (c) 

 

Figure 7. Current response to sudden load changes: (a) comparison of the current responses isd and isq of three 

methods, (b) zoom out isd , and (c) zoom out isq 
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5. CONCLUSION 

This paper has presented a comparison of three control methods, PI, SMC, and BSP, for the speed 

control loop of the IPM motor to evaluate them based on criteria such as stability, response time, and accuracy 

in speed control even when the load changes. Simulation results have shown that the sliding mode control 

(SMC) method yielded the best results among the three compared methods. SMC ensures high stability and 

fast response time and minimizes control errors, especially under dynamic and noisy conditions while the 

overshoot of PI is the largest, leading to oscillation and more extended response time; PI and BSP cause isd and 

isq currents to oscillate as load changes. These results suggest that SMC can be effectively applied in IPM 

control systems, particularly when high precision and fast response are required. This research provides a 

foundation for selecting the appropriate control method in IPM motor control applications. 
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