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 Load frequency control (LFC) evaluates the net changes in generation by 

continuously monitoring tie-line flows and system frequency required 

relying on load changes. It adjusts generator set points to minimize the area 

control error's (ACE) time-averaged value. ACE is regarded as a controlled 

output of LFC. Previous research focused on customary power systems like 

hydro-hydro, thermal-thermal, and hydro-thermal configurations. This 

current development study introduces the hybrid PV and dual thermal 

system interconnected systems for LFC analysis. The research evaluates 

LFC performance with different controllers, considering parameters such as 

maximum peak overshoot (Mp), maximum undershoot (Mu), settling time 

(Ts), and peak time (Tp). Controllers, including proportional integral (PI), 

anti-windup PI, fuzzy gain scheduling PI, and A cutting-edge algorithm 

generating fake raindrops are used for minimize ACE. The analysis 

introduces various load perturbations to observe controller performance in 

interconnected power systems. Both PV-thermal-thermal and thermal-

thermal-thermal systems exemplify innovative approaches to energy 

management that bolster energy efficiency and sustainability. By integrating 

these advanced systems, we can make significant strides towards achieving 

global sustainability goals and promoting a cleaner and support energy 

efficiency for the future. 
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1. INTRODUCTION 

The incorporation of sustainable energy into conventional electricity systems has grown 

dramatically in the last ten years, partly because of reduced distributed energy prices, environmental 

concerns, and legislative support for renewable energy sources. However, because renewable energy is 

intermittent and affects grid frequency by reducing system inertia, this integration presents a threat to grid 

stability. It is still very important to handle load-frequency management, which is usually done with classic 

controllers like proportional integral (PI) and proportional integral derivative (PID), and is frequently 

optimized with strategies like particle swarm optimization (PSO) and genetic algorithm (GA) [1]-[5]. 

Newer methods that show promise in resolving these issues in multi-machine power systems include 

fuzzy-based PID controllers and contemporary strategies like optimum control and model predictive control 

(MPC). Research has looked into a number of techniques, including generalized Hopfield neural network 
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(GHNN) for self-adaptive PID tuning and adaptive neuro-fuzzy inference system (ANFIS) for adaptive 

control, which have shown benefits over conventional techniques in simulations [6]-[10]. New developments 

in smart generation control include the proportional-derivative win or learn fast-policy hill climbing (κ) 

(PDWoLF-PHC(κ)) technique, which emphasizes flexibility and resilience in intricate multi-area power 

systems. Further investigation is being conducted into algorithmic enhancements like as BFOA and genetic 

algorithms, which optimize control parameters for improved load frequency control (LFC) performance in a 

variety of power system setups [11]-[15]. 

 

 

2. GRID-BASED SOLAR ENERGY SYSTEM 

Due to the inherently low PV panel conversion efficiency and the application of the maximum 

power point tracking (MPPT) method becomes crucial [16], [17]. This algorithm enhances the PV system's 

tracking efficiency guarantees steady load voltage maintenance in spite of temperature and irradiance 

fluctuations [18]. An inverter is then used to convert the PV system's DC output to AC, as seen in Figure 1. 

 

 

 
 

Figure 1. PV cell equivalent circuit 

 

 

2.1.  Photovoltaic (PV) panel 

Photovoltaic (PV) diodes make up a solar cell panel, which uses the photovoltaic effect to function. 

The PV cell produces electricity when it is exposed to sunlight. The voltage that the PV cell normally 

generates ranges from 0.3 to 0.6 V, depending on the technology. Figure 1 depicts the PV cell's comparable 

circuit. Modeling the solar panel is done using (1) and (2). 

 

𝐼 = 𝐼1 − 𝐼𝑜1(𝑒𝑥𝑝(𝑞(𝑉 − 𝐼𝑅𝑒)/𝐵𝑘𝑇) − 1) − (𝑉 − 𝐼𝑅𝑒)/𝑅𝑠ℎ  (1) 

 

𝐼𝐴 =  (𝜆1/1000)[𝐼𝑠𝑐 + 𝐾. (𝑇 − 25)] (2) 

 

In the given context, 𝐼𝑠𝑐  represents the current in a short circuit, 𝐼 signifies the generated current of 

the photovoltaic array, 𝐼𝐴 stands for the photo current, 𝐼𝑜1  denotes the reverse saturation current, 𝑉 represents 

the voltage produced by the solar cell. The Boltzmann constant is denoted by 𝑘., 𝑇 signifies the Kelvin 

temperature, 𝑞 represents the electron charge, λ1 represents the irradiance, and 𝐵 is the diode's quality factor. 

Temperature and illumination play a crucial role in determining power generation in the cell, with this 

generation being connected directly to irradiance and inversely to temperature [19]-[22]. 

 

2.2.  Integrated PV-thermal-hydro power system 

A three-area interconnected system's block diagram is shown in Figure 2. The three areas' frequency 

deviations (∆f1-∆f3) are displayed [23], [24]. To examine the differences in frequency and tie-line power, 

equal load disturbances are introduced to each of the three systems. The system's performance is evaluated by 

evaluating different load perturbations. This system's main goal is the same as a three-area thermal 

system's [25]. 

Manual regulation is replaced by a closed-loop control method called load frequency control, or 

LFC. Eliminating frequency variations brought on by load disturbances in the tie lines and throughout the 

three zones is the primary goal of LFC. Every system controls its own oscillations and makes up for those in 

regions where deviations are uncontrollable [26]. The three-area block schematic of a networked system is 

shown in Figure 2. 
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Figure 2. Diagrammatic representation of an integrated three-zone system 
 

 

3. ARTIFICIAL RAINDROP ALGORITHM (ARDA) 

A signal produced by the LFC regulates frequency and establishes generation. The LFC's ARDA 

modifies the PI controller's gains. This is the definition of the general optimization problem, where x is an n-

dimensional vector and S is a set of finite measure. This optimization problem is intended to be solved by the 

raindrop algorithm. 

At first, N raindrops fall on the "ground," where S stands for the "ground". The notation "𝑥𝑖∈𝑆 x i ∈ 

S" indicates the location of the i-th raindrop. The raindrop will migrate during each period after it has fallen. 

The ideal values for the PI controller are ascertained by means of the six phases of ARDA: raindrop 

production, raindrop descent, raindrop collision, raindrop flow, RP updating, and vapor updating. If there's 

still duplicate vapor in Figure 3, which shows the process diagram of the artificial rain drop algorithm. 
 
 

 
 

Figure 3. Displays the flow diagram of the artificial rain drop algorithm 
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4. RESULT AND DISCUSSION 

The momentary reaction evaluation with reference to the islanded microgrid (MG) system was 

conducted with the aid of MATLAB/Simulink 2018a. To ensure a fair and comprehensive assessment of 

optimization of particle swarms (PSO), the grey wolf algorithm for optimization (GOA), and artificial rain 

drop algorithm (ARDA), identical system parameters were employed in both simulations. 
 

4.1.  Controlling voltage and frequency during load variation and DG integration 

In an islanded microgrid, frequency, voltage, and regulation are critical due to the lack of main grid 

support. To optimize stability after DG insertion and load changes, three metaheuristic techniques (PSO, 

GOA, ARDA) were employed to fine-tune the capacitance of the DC-link and PI controller parameters. 

ARDA iteratively searched for optimal values by minimizing the FF parameter during simulation. At 0.05 

seconds, photovoltaic (PV) modules powered by solar were activated, causing voltage overshoots (Figure 4). 

The optimized PI gains and capacitance values obtained through these techniques ensure minimal 

overshoot and settling time, ensuring optimal dynamic behavior in the MG model behavior.  

Figure 4 illustrates voltage overshoot at 0.05 seconds in the DG integration process, influenced by DG rating 

and controller parameters. To ensure a fair comparison between PSO, GOA, and ARDA, the same system 

settings were maintained. Load changes at 0.25 s (addition) and 0.55 s (disconnection) caused corresponding 

voltage fluctuations. 

Figure 5 depicts responses during DG insertion, load addition, and disconnection of load [20]-[22]. 

Optimal parameters from ARDA outperform PSO and GOA in Figures 5(a) and 5(b), evident in lower 

overshoot and settling times across conditions. In islanded MG operations, addressing system frequency is 

crucial. Figure 5(c) shows ARDA's superior frequency regulation compared to PSO and GOA, emphasizing 

ARDA's effectiveness in enhancing overall MG system performance. Figure 6 depicts MG system frequency 

response for three optimization methods, indicating stable responses within ±1% deviation. Notably, ARDA 

exhibits superior dynamic. 

Table 1 presents a comparative analysis of control of frequency and voltage in the islanded 

microgrid setup (MG) under study, highlighting the superior effectiveness of ARDA compared to its 

competitors. The results shown in Table 1 show that the ARDA controller worked better than both PSO and 

GOA. This meant that the studied MG system had better dynamic response indicators and stable operation. It 

maintained voltage within ±5% and frequency within ±1%, meeting IEEE standards. Notably, the settling 

time for frequency wasn't calculated due to the curve staying within ±2% of the rated value. 

 

 

Table 1. Summarizes comparative analyses for control of frequency and voltage in the examined  

islanded microgrid emphasizing ARDA's efficacy over competitors 
Examined scenario Approach MOS/MUS (%) Peak period (milliseconds) Settling time (ms) 

Voltage MG insertion PSO 5.86 27.2 37.7 

GOA 4.68 36.3 64.5 

ARDA 1.45 26.2 26.36 
Load injection PSO 16.45 4.00 94.21 

GOA 16.00 4.70 94.20 

ARDA 15.04 3.90 94.19 
Load detachment PSO 16.41 7.70 73.50 

GOA 15.59 7.50 78.50 

ARDA 14.77 7.80 77.40 
Frequency MG injection PSO 0.44 2.05 - 

GOA 0.54 5.58 - 

ARDA 0.46 2.30 - 
Load injection PSO 0.66 35.2 - 

GOA 0.50 34.8 - 

ARDA 0.46 35.0 - 
Load detachment PSO 0.50 36.4 - 

GOA 0.48 36.7 - 
ARDA 0.46 36.8 - 

 

 

4.2.  Evaluation of the analyzed optimization algorithms effectiveness 

This segment presents results from evaluating three optimization algorithms (PSO, GOA, ARDA) 

under identical conditions. All algorithms underwent 50 iterations with 50 search agents in a fair comparison. 

Over 20 simulation runs, ARDA achieved the minimum fitness function value (0.5841) in the seventeenth 

cycle, outperforming PSO (0.9211586 at 21st iteration) and GOA (0.8748774 at 25th iteration). ARDA 

exhibited faster convergence and superior solution quality. Figure 7 shows the PSO, GOA, and ARDA 

convergence curve. 
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Figure 4. Response of the system's voltage under load variation and DG integration 

 

 

  
(a) (b) 

 
(c) 

 

Figure 5. Profile of voltage at (a) DG integration, (b) abrupt load increase, and (c) abrupt load drop 

 

 

 
 

Figure 6. The microgrid system's frequency response for the explored optimization methods 
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Figure 7. The convergence profile for GOA, PSO, and ARDA 

 

 

5. CONCLUSION 

This paper presents the successful development of an optimal controller for an islanded microgrid 

(MG) utilizing the adaptive randomized differential algorithm (ARDA). The designed controller effectively 

regulates voltage and frequency during load variation and microgrid integration, minimizing overshoot and 

settling time scenarios. Comparative analysis of optimization algorithms demonstrates that ARDA exhibits 

superior convergence behavior, offering higher quality solutions and faster optimization capabilities 

compared to alternative algorithms. 

The implemented controller provides remarkable power quality by ensuring virtually perfect 

sinusoidal waveforms for both voltage and current, according to the power quality analysis. Under the 

identical operating conditions and system settings, a thorough comparison with controllers that use particle 

swarm optimization (PSO) and genetic optimization algorithm (GOA) highlights the ARDA-based 

controller's superior performance. The results show that in every studied case, the ARDA-based parameter 

selection produces the best dynamic responses, outperforming alternative approaches. Furthermore, there 

may be future uses for this strategy that try to increase energy efficiency. 
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