Artificial raindrop algorithm for control of frequency in a networked power system

Lakshmi Dhandapani¹, Pushpa Sreenivasan¹, Malathy Batumalay^{2,3}

¹Department of Electrical and Electronics Engineering, Academy of Maritime Education and Training University, Kanathur, India
²Faculty of Data Science and IT, INTI International University, Nilai, Malaysia

³Centre for Data Science and Sustainable Technologies, INTI International University, Nilai, Malaysia

Article Info

Article history:

Received Jul 15, 2024 Revised Dec 30, 2024 Accepted Mar 1, 2025

Keywords:

Artificial raindrop algorithm Energy efficiency Load frequency control MPPT Proportional integral PV-thermal-thermal interconnected

ABSTRACT

Load frequency control (LFC) evaluates the net changes in generation by continuously monitoring tie-line flows and system frequency required relying on load changes. It adjusts generator set points to minimize the area control error's (ACE) time-averaged value. ACE is regarded as a controlled output of LFC. Previous research focused on customary power systems like hydro-hydro, thermal-thermal, and hydro-thermal configurations. This current development study introduces the hybrid PV and dual thermal system interconnected systems for LFC analysis. The research evaluates LFC performance with different controllers, considering parameters such as maximum peak overshoot (Mp), maximum undershoot (Mu), settling time (Ts), and peak time (Tp). Controllers, including proportional integral (PI), anti-windup PI, fuzzy gain scheduling PI, and A cutting-edge algorithm generating fake raindrops are used for minimize ACE. The analysis introduces various load perturbations to observe controller performance in interconnected power systems. Both PV-thermal-thermal and thermalthermal-thermal systems exemplify innovative approaches to energy management that bolster energy efficiency and sustainability. By integrating these advanced systems, we can make significant strides towards achieving global sustainability goals and promoting a cleaner and support energy efficiency for the future.

This is an open access article under the CC BY-SA license.

1116

Corresponding Author:

Lakshmi Dhandapani Department of Electrical and Electronics Engineering Academy of Maritime Education and Training University 135, East Coast Road, Kanathur 603112, Tamil Nadu, India Email: lakshmi.d@ametuniv.ac.in

1. INTRODUCTION

The incorporation of sustainable energy into conventional electricity systems has grown dramatically in the last ten years, partly because of reduced distributed energy prices, environmental concerns, and legislative support for renewable energy sources. However, because renewable energy is intermittent and affects grid frequency by reducing system inertia, this integration presents a threat to grid stability. It is still very important to handle load-frequency management, which is usually done with classic controllers like proportional integral (PI) and proportional integral derivative (PID), and is frequently optimized with strategies like particle swarm optimization (PSO) and genetic algorithm (GA) [1]-[5].

Newer methods that show promise in resolving these issues in multi-machine power systems include fuzzy-based PID controllers and contemporary strategies like optimum control and model predictive control (MPC). Research has looked into a number of techniques, including generalized Hopfield neural network

Journal homepage: http://ijpeds.iaescore.com

П

(GHNN) for self-adaptive PID tuning and adaptive neuro-fuzzy inference system (ANFIS) for adaptive control, which have shown benefits over conventional techniques in simulations [6]-[10]. New developments in smart generation control include the proportional-derivative win or learn fast-policy hill climbing (κ) (PDWoLF-PHC(κ)) technique, which emphasizes flexibility and resilience in intricate multi-area power systems. Further investigation is being conducted into algorithmic enhancements like as BFOA and genetic algorithms, which optimize control parameters for improved load frequency control (LFC) performance in a variety of power system setups [11]-[15].

2. GRID-BASED SOLAR ENERGY SYSTEM

Due to the inherently low PV panel conversion efficiency and the application of the maximum power point tracking (MPPT) method becomes crucial [16], [17]. This algorithm enhances the PV system's tracking efficiency guarantees steady load voltage maintenance in spite of temperature and irradiance fluctuations [18]. An inverter is then used to convert the PV system's DC output to AC, as seen in Figure 1.

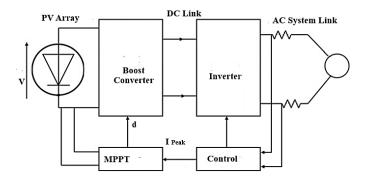


Figure 1. PV cell equivalent circuit

2.1. Photovoltaic (PV) panel

Photovoltaic (PV) diodes make up a solar cell panel, which uses the photovoltaic effect to function. The PV cell produces electricity when it is exposed to sunlight. The voltage that the PV cell normally generates ranges from 0.3 to 0.6 V, depending on the technology. Figure 1 depicts the PV cell's comparable circuit. Modeling the solar panel is done using (1) and (2).

$$I = I_1 - I_{o1}(exp(q(V - IR_e)/BkT) - 1) - (V - IR_e)/R_{sh}$$
(1)

$$I_A = (\lambda_1/1000)[I_{SC} + K.(T - 25)] \tag{2}$$

In the given context, I_{sc} represents the current in a short circuit, I signifies the generated current of the photovoltaic array, I_A stands for the photo current, I_{o1} denotes the reverse saturation current, V represents the voltage produced by the solar cell. The Boltzmann constant is denoted by k., T signifies the Kelvin temperature, q represents the electron charge, λ_1 represents the irradiance, and B is the diode's quality factor. Temperature and illumination play a crucial role in determining power generation in the cell, with this generation being connected directly to irradiance and inversely to temperature [19]-[22].

2.2. Integrated PV-thermal-hydro power system

A three-area interconnected system's block diagram is shown in Figure 2. The three areas' frequency deviations (Δ f1- Δ f3) are displayed [23], [24]. To examine the differences in frequency and tie-line power, equal load disturbances are introduced to each of the three systems. The system's performance is evaluated by evaluating different load perturbations. This system's main goal is the same as a three-area thermal system's [25].

Manual regulation is replaced by a closed-loop control method called load frequency control, or LFC. Eliminating frequency variations brought on by load disturbances in the tie lines and throughout the three zones is the primary goal of LFC. Every system controls its own oscillations and makes up for those in regions where deviations are uncontrollable [26]. The three-area block schematic of a networked system is shown in Figure 2.

1118 □ ISSN: 2088-8694

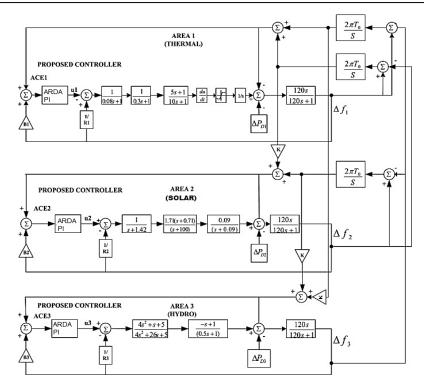


Figure 2. Diagrammatic representation of an integrated three-zone system

3. ARTIFICIAL RAINDROP ALGORITHM (ARDA)

A signal produced by the LFC regulates frequency and establishes generation. The LFC's ARDA modifies the PI controller's gains. This is the definition of the general optimization problem, where x is an n-dimensional vector and S is a set of finite measure. This optimization problem is intended to be solved by the raindrop algorithm.

At first, N raindrops fall on the "ground," where S stands for the "ground". The notation " $xi \in S$ x i \in S" indicates the location of the i-th raindrop. The raindrop will migrate during each period after it has fallen. The ideal values for the PI controller are ascertained by means of the six phases of ARDA: raindrop production, raindrop descent, raindrop collision, raindrop flow, RP updating, and vapor updating. If there's still duplicate vapor in Figure 3, which shows the process diagram of the artificial rain drop algorithm.

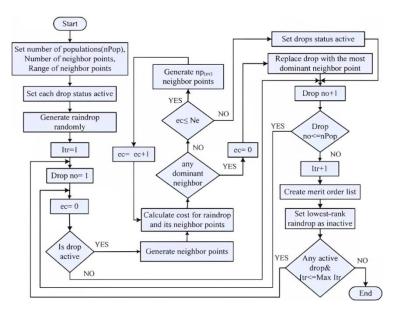


Figure 3. Displays the flow diagram of the artificial rain drop algorithm

4. RESULT AND DISCUSSION

The momentary reaction evaluation with reference to the islanded microgrid (MG) system was conducted with the aid of MATLAB/Simulink 2018a. To ensure a fair and comprehensive assessment of optimization of particle swarms (PSO), the grey wolf algorithm for optimization (GOA), and artificial rain drop algorithm (ARDA), identical system parameters were employed in both simulations.

4.1. Controlling voltage and frequency during load variation and DG integration

In an islanded microgrid, frequency, voltage, and regulation are critical due to the lack of main grid support. To optimize stability after DG insertion and load changes, three metaheuristic techniques (PSO, GOA, ARDA) were employed to fine-tune the capacitance of the DC-link and PI controller parameters. ARDA iteratively searched for optimal values by minimizing the FF parameter during simulation. At 0.05 seconds, photovoltaic (PV) modules powered by solar were activated, causing voltage overshoots (Figure 4).

The optimized PI gains and capacitance values obtained through these techniques ensure minimal overshoot and settling time, ensuring optimal dynamic behavior in the MG model behavior. Figure 4 illustrates voltage overshoot at 0.05 seconds in the DG integration process, influenced by DG rating and controller parameters. To ensure a fair comparison between PSO, GOA, and ARDA, the same system settings were maintained. Load changes at 0.25 s (addition) and 0.55 s (disconnection) caused corresponding voltage fluctuations.

Figure 5 depicts responses during DG insertion, load addition, and disconnection of load [20]-[22]. Optimal parameters from ARDA outperform PSO and GOA in Figures 5(a) and 5(b), evident in lower overshoot and settling times across conditions. In islanded MG operations, addressing system frequency is crucial. Figure 5(c) shows ARDA's superior frequency regulation compared to PSO and GOA, emphasizing ARDA's effectiveness in enhancing overall MG system performance. Figure 6 depicts MG system frequency response for three optimization methods, indicating stable responses within $\pm 1\%$ deviation. Notably, ARDA exhibits superior dynamic.

Table 1 presents a comparative analysis of control of frequency and voltage in the islanded microgrid setup (MG) under study, highlighting the superior effectiveness of ARDA compared to its competitors. The results shown in Table 1 show that the ARDA controller worked better than both PSO and GOA. This meant that the studied MG system had better dynamic response indicators and stable operation. It maintained voltage within $\pm 5\%$ and frequency within $\pm 1\%$, meeting IEEE standards. Notably, the settling time for frequency wasn't calculated due to the curve staying within $\pm 2\%$ of the rated value.

Table 1. Summarizes comparative analyses for control of frequency and voltage in the examined

Examined scenario		Approach MOS/MUS (%)		Peak period (milliseconds)	Settling time (ms)		
Voltage	MG insertion	PSO	5.86	27.2	37.7		
		GOA	4.68	36.3	64.5		
		ARDA	1.45	26.2	26.36		
	Load injection	PSO	16.45	4.00	94.21		
		GOA	16.00	4.70	94.20		
		ARDA	15.04	3.90	94.19		
	Load detachment	PSO	16.41	7.70	73.50		
		GOA	15.59	7.50	78.50		
		ARDA	14.77	7.80	77.40		
Frequency	MG injection	PSO	0.44	2.05	-		
		GOA	0.54	5.58	-		
		ARDA	0.46	2.30	-		
	Load injection	PSO	0.66	35.2	-		
		GOA	0.50	34.8	-		
		ARDA	0.46	35.0	-		
	Load detachment	PSO	0.50	36.4	-		
		GOA	0.48	36.7	-		
		ARDA	0.46	36.8	-		

4.2. Evaluation of the analyzed optimization algorithms effectiveness

This segment presents results from evaluating three optimization algorithms (PSO, GOA, ARDA) under identical conditions. All algorithms underwent 50 iterations with 50 search agents in a fair comparison. Over 20 simulation runs, ARDA achieved the minimum fitness function value (0.5841) in the seventeenth cycle, outperforming PSO (0.9211586 at 21st iteration) and GOA (0.8748774 at 25th iteration). ARDA exhibited faster convergence and superior solution quality. Figure 7 shows the PSO, GOA, and ARDA convergence curve.

1120 ☐ ISSN: 2088-8694

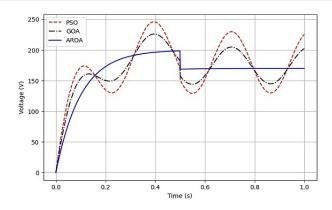


Figure 4. Response of the system's voltage under load variation and DG integration

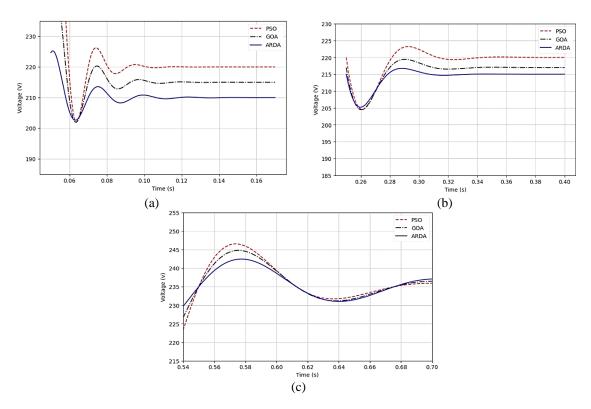


Figure 5. Profile of voltage at (a) DG integration, (b) abrupt load increase, and (c) abrupt load drop

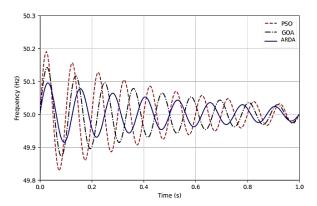


Figure 6. The microgrid system's frequency response for the explored optimization methods

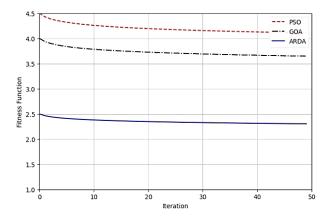


Figure 7. The convergence profile for GOA, PSO, and ARDA

5. CONCLUSION

This paper presents the successful development of an optimal controller for an islanded microgrid (MG) utilizing the adaptive randomized differential algorithm (ARDA). The designed controller effectively regulates voltage and frequency during load variation and microgrid integration, minimizing overshoot and settling time scenarios. Comparative analysis of optimization algorithms demonstrates that ARDA exhibits superior convergence behavior, offering higher quality solutions and faster optimization capabilities compared to alternative algorithms.

The implemented controller provides remarkable power quality by ensuring virtually perfect sinusoidal waveforms for both voltage and current, according to the power quality analysis. Under the identical operating conditions and system settings, a thorough comparison with controllers that use particle swarm optimization (PSO) and genetic optimization algorithm (GOA) highlights the ARDA-based controller's superior performance. The results show that in every studied case, the ARDA-based parameter selection produces the best dynamic responses, outperforming alternative approaches. Furthermore, there may be future uses for this strategy that try to increase energy efficiency.

FUNDING INFORMATION

Author state no funding involved.

AUTHOR CONTRIBUTIONS STATEMENT

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author	C	M	So	Va	Fo	I	R	D	0	E	Vi	Su	P	Fu
Lakshmi Dhandapani	✓	✓	✓	✓	✓	✓		✓	✓	✓			✓	
Pushpa Sreenivasan		\checkmark				\checkmark		\checkmark	\checkmark	\checkmark	✓	\checkmark		
Malathy Batumalay	✓		✓	✓		✓			✓		✓		✓	

CONFLICT OF INTEREST STATEMENT

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Authors state no conflict of interest.

1122 □ ISSN: 2088-8694

DATA AVAILABILITY

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

REFERENCES

- M. A. Eltawil and Z. Zhao, "Grid-connected photovoltaic power systems: Technical and potential problems-A review," Renewable and Sustainable Energy Reviews, vol. 14, no. 1, pp. 112–129, 2010, doi: 10.1016/j.rser.2009.07.015.
- [2] S. Neelagiri and P. Usha, "Energy management of PV wind based microgrid with hybrid energy storage systems," *International Journal of Power Electronics and Drive Systems (IJPEDS)*, vol. 13, no. 4, p. 2128, Dec. 2022, doi: 10.11591/ijpeds.v13.i4.pp2128-2138.
- [3] T. A. Jumani, M. W. Mustafa, M. Md Rasid, N. H. Mirjat, M. H. Baloch, and S. Salisu, "Optimal power flow controller for grid-connected microgrids using grasshopper optimization algorithm," *Electronics*, vol. 8, no. 1, p. 111, Jan. 2019, doi: 10.3390/electronics8010111.
- [4] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and S. M. Mirjalili, "Salp swarm algorithm: A bio-inspired optimizer for engineering design problems," *Advances in Engineering Software*, vol. 114, pp. 163–191, Dec. 2017, doi: 10.1016/j.advengsoft.2017.07.002.
- [5] R. Abbassi, A. Abbassi, A. A. Heidari, and S. Mirjalili, "An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models," *Energy Conversion and Management*, vol. 179, pp. 362–372, 2019, doi: 10.1016/j.enconman.2018.10.069.
- [6] D. S. Stephen, Y. M. Jagadeesh, R. Monish, S. Karthik, and S. Akilesh, "PSO and BFO for LFC of two area hybrid wind system with V2G," *International Journal of Advanced Research Trends in Engineering and Technology (IJARTET)*, vol. 3, no. 19, pp. 133–140, 2016, doi: 10.20247/IJARTET.2016.S19040025.
- [7] P. Civicioglu, "Backtracking search optimization algorithm for numerical optimization problems," *Applied Mathematics and Computation*, vol. 219, no. 15, pp. 8121–8144, Apr. 2013, doi: 10.1016/j.amc.2013.02.017.
- [8] W. Y. Leong, "Digital technology for Asean energy," in 2023 International Conference on Circuit Power and Computing Technologies (ICCPCT), IEEE, Aug. 2023, pp. 1480–1486, doi: 10.1109/ICCPCT58313.2023.10244806.
 [9] B. N. Alajmi, K. H. Ahmed, S. J. Finney, and B. W. Williams, "Fuzzy-logic-control approach of a modified hill-climbing method
- [9] B. N. Alajmi, K. H. Ahmed, S. J. Finney, and B. W. Williams, "Fuzzy-logic-control approach of a modified hill-climbing method for maximum power point in microgrid standalone photovoltaic system," *IEEE Transactions on Power Electronics*, vol. 26, no. 4, pp. 1022–1030, Apr. 2011, doi: 10.1109/TPEL.2010.2090903.
- [10] T. S. Bhatti, A. A. F. Al-Ademi, and N. K. Bansal, "Load frequency control of isolated wind diesel hybrid power systems," Energy Conversion and Management, vol. 38, no. 9, pp. 829–837, Jun. 1997, doi: 10.1016/S0196-8904(96)00108-2.
- [11] L. Xi, T. Yu, B. Yang, and X. Zhang, "A novel multi-agent decentralized win or learn fast policy hill-climbing with eligibility trace algorithm for smart generation control of interconnected complex power grids," *Energy Conversion and Management*, vol. 103, pp. 82–93, 2015, doi: 10.1016/j.enconman.2015.06.030.
- [12] M. Gheisarnejad, "An effective hybrid harmony search and cuckoo optimization algorithm based fuzzy PID controller for load frequency control," *Applied Soft Computing Journal*, vol. 65, pp. 121–138, 2018, doi: 10.1016/j.asoc.2018.01.007.
- [13] A. Dwivedi, G. Ray, and A. K. Sharma, "Genetic algorithm based decentralized PI type controller: load frequency control," Journal of The Institution of Engineers (India): Series B, vol. 97, pp. 509–515, 2016, doi: 10.1007/s40031-015-0191-7.
- [14] P. Civicioglu, "Transforming geocentric Cartesian coordinates to geodetic coordinates by using differential search algorithm," Computers & Geosciences, vol. 46, pp. 229–247, Sep. 2012, doi: 10.1016/j.cageo.2011.12.011.
- [15] N. Cohn, "Some aspects of tie-line bias control on interconnected power systems [includes discussion]," Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, vol. 75, no. 3, pp. 1415–1436, Jan. 1956, doi: 10.1109/AIEEPAS.1956.4499454.
- [16] T. P. Blanchett, G. C. Kember, and R. Dubay, "PID gain scheduling using fuzzy logic," ISA Transactions, vol. 39, no. 3, pp. 317–325, Jul. 2000, doi: 10.1016/S0019-0578(00)00024-0.
- [17] D. K. Chaturvedi, R. Umrao, and O. P. Malik, "Adaptive polar fuzzy logic based load frequency controller," *International Journal of Electrical Power & Energy Systems*, vol. 66, pp. 154–159, Mar. 2015, doi: 10.1016/j.ijepes.2014.10.024.
- [18] M.-Y. Cheng and D. Prayogo, "Symbiotic organisms search: A new metaheuristic optimization algorithm," Computers & Structures, vol. 139, pp. 98–112, Jul. 2014, doi: 10.1016/j.compstruc.2014.03.007.
- [19] M. Regad, M. Helaimi, R. Taleb, A. M. Othman, and H. A. Gabbar, "Control of hybrid power system based renewable energy generations using PID controller," *International Journal of Power Electronics and Drive Systems (IJPEDS)*, vol. 11, no. 4, pp. 1775–1784, Dec. 2020, doi: 10.11591/ijpeds.v11.i4.pp1775-1784.
- [20] M. H. Qais, H. M. Hasanien, and S. Alghuwainem, "Augmented grey wolf optimizer for grid-connected PMSG-based wind energy conversion systems," *Applied Soft Computing*, vol. 69, pp. 504–515, Aug. 2018, doi: 10.1016/j.asoc.2018.05.006.
- [21] H. M. Hasanien, "Performance improvement of photovoltaic power systems using an optimal control strategy based on whale optimization algorithm," *Electric Power Systems Research*, vol. 157, pp. 168–176, Apr. 2018, doi: 10.1016/j.epsr.2017.12.019.
- [22] F. Daneshfar and H. Bevrani, "Load-frequency control: a GA-based multi-agent reinforcement learning," IET Generation, Transmission & Distribution, vol. 4, no. 1, pp. 13–26, Jan. 2010, doi: 10.1049/iet-gtd.2009.0168.
- [23] H. Gozde and M. C. Taplamacioglu, "Automatic generation control application with craziness based particle swarm optimization in a thermal power system," *International Journal of Electrical Power & Energy Systems*, vol. 33, no. 1, pp. 8–16, Jan. 2011, doi: 10.1016/j.ijepes.2010.08.010.
- [24] D. Lakshmi, R. Zahira, C. N. Ravi, G. Ezhilarasi, and C. Nayanatara, "Flower pollination algorithm in DPS integrated DFIG for controlling load frequency," in 2020 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS), IEEE, Dec. 2020, pp. 1–7, doi: 10.1109/ICPECTS49113.2020.9337017.
- [25] S. M. Saber, G. S. Hassan, M. S. Jabbar, J. F. Tawfeq, A. D. Radhi, and P. S. JosephNg, "Enhancing smart home energy efficiency through accurate load prediction using deep convolutional neural networks," *Periodicals of Engineering and Natural Sciences (PEN)*, vol. 11, no. 3, pp. 139–147, 2023, doi: 10.21533/pen.v11i3.3606.
- [26] S. Stephen D, "LFC of DFIG based two area system using TCPS, SSSC and SMES," *International Journal of Innovative Technology and Exploring Engineering*, vol. 9, no. 2, pp. 1911–1916, 2019, doi: 10.35940/ijitee.a4832.129219.

П

BIOGRAPHIES OF AUTHORS

Dr. Lakshmi Dhandapani si s a Professor of Department of Electrical and Electronics Engineering, Academy of Maritime Education and Training, Deemed to be University, Chennai, Tamil Nādu, India. She has more than 23 years of expertise in the field of power system. She has guided more than 30 UG students, 15 PG students, and 4 research scholars. She has published 11 book chapters and 6 books, 46 articles in SCI and Scopus indexed journals, and nearly 35 national level and international level conference proceedings. She is a life member in professional bodies such as IEEE, IEI, IAENG, and InSc. She is a star organizer in IGEN Energathon-2023 Marathon, a new world record on a longest conference. Her areas of interest are power system operation and control, soft computing, renewable energy systems, microgrids, and electrical machines. She can be contacted at email: lakshmi.d@ametuniv.ac.in.

Pushpa Sreenivasan is a research scholar in Electrical and Electronics Engineering Department at the Academy of Maritime Education (AMET) University, Tamil Nadu, India. She has 18 years of teaching experience. She received her B.E. degree in Electrical and Electronics Engineering from Madras University in the year 2003, M.E. degree in Power System Engineering from Anna University, Tamil Nadu, India, in the year 2009, respectively. She is currently an assistant professor at Panimalar Engineering College, Tamil Nadu, India. Her research interests include the field of power systems, renewable energy, electrical machines, control systems, and microgrids. She is a life member in professional bodies like IAENG. She got an organizer award in the Green Energy SDG. She can be contacted at email: puvehava@gmail.com.

