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 The sharp rise in global energy demand over recent decades has necessitated 

the exploration of alternative energy sources. Solar energy, known for being 

both pollution- and fuel-free, stands out as a preferred choice. However, its 

efficiency is sensitive to factors like temperature fluctuations and solar 

irradiation. To optimize energy extraction, a maximum power point tracking 

algorithm is crucial for photovoltaic systems. This paper proposes a robust 

sliding mode control enhanced with an artificial neural network to achieve the 

Maximum Power Point in a stand-alone PV system. The artificial neural 

network determines the reference voltage, which is then regulated by the 

sliding mode control to match the photovoltaic array voltage. The 

performance of the suggested controller is compared to that of a proportional-

integral-based neural network controller and the perturb and observe method 

using MATLAB/Simulink. The results show that the suggested method 

provides excellent tracking performance and rapid convergence even under 

quickly changing weather conditions, highlighting its efficiency and 

robustness. 
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1. INTRODUCTION 

The global energy demand has increased dramatically in recent decades, driven by rapid 

industrialization, urbanization, and population growth. This trend highlights the urgent need for sustainable 

energy solutions to replace fossil fuels, both finite and major contributors to environmental problems like 

climate change. Among renewable energy sources, solar energy is distinguished by its abundance and 

environmental benefits, and low maintenance requirements. Photovoltaic systems, in particular, provide clean, 

renewable energy and are particularly useful in remote areas. 

However, daily and seasonal fluctuations in environmental factors, such as temperature and solar 

radiation, have a major impact on these systems. To address these challenges, maximum power point tracking 

(MPPT) techniques have been developed to optimize energy capture and enhance system performance under 

varying conditions [1]-[4]. 
In recent years, a variety of MPPT techniques have been proposed [5]-[8]. Traditional methods such 

as perturb and observe (P&O) [6] and incremental conductance (IC) [3] are widely renowned for their 

simplicity, low cost, and effectiveness under standard sunlight and temperature conditions. The perturb and 

observe (P&O) method is particularly preferred in areas with constant solar irradiation and minimal 

environmental variations. However, it faces significant challenges when dealing with rapidly changing 

conditions [7], including slower response times, persistent oscillations around the maximum power point, and 
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decreased tracking accuracy, which can limit their performance. These issues are especially critical in areas 

with rapidly changing weather conditions, such as tropical or mountainous regions [9].  

Advanced MPPT methods, including fuzzy logic controllers (FLC), have been developed to address 

these challenges [10]-[14], genetic algorithms (GA) [15], [16]. When dealing with complex environmental 

variations, these techniques offer superior adaptability and efficiency. FLC-based approaches improve 

response times and mitigate oscillations [10], while GA proves highly effective in locating the global maximum 

power point, particularly under partial shading effects [17]. 

Artificial neural network-based algorithms have been widely studied in [18]-[21] for various 

applications. ANN-based MPPT systems that use RBFN architectures for non-linear PV arrays, integrate PI 

controllers for enhanced response time and stability, or use field-oriented control to optimize the frequency of 

the inverter can significantly improve the efficiency, stability, and reliability of photovoltaic systems 

[22]-[24]. Additionally, neural network approaches have been used in [25], [26] for applications such as PV 

pumping systems. 

To further enhance performance, sliding mode controllers (SMCs) have been extensively proposed in 

the literature [17], [27]-[29]. These controllers ensure stable operation by maintaining a constant voltage at the 

load, even under varying environmental conditions, thus providing robustness and precision. A main 

contribution of this study is to improve the performance of maximum power point tracking (MPPT) by 

combining sliding mode control (SMC) with artificial neural networks (ANN). Although SMC usually suffers 

from chattering issues, this limitation has been overcome by using continuous functions. This results in smoother 

control signals, improving system stability and ensuring robust and efficient MPPT performance. Simulation 

results are used to evaluate the effectiveness of the suggested method, which is then compared to the standard 

P&O algorithm and the hybrid ANN-PI approach under diverse irradiance and temperature scenarios. 
The paper is structured as follows: Section 2 deals with the modeling of the PV module and the DC-

DC boost converter. Section 3 presents the architecture of the ANN and its role in generating the reference 

voltage. Section 4 describes the methodology used to design and implement the sliding-mode controller, 

highlighting how it reduces chattering and ensures system stability. Section 5 discusses the results in a 

comparative context, highlighting the advantages of the proposed method over traditional and hybrid 

approaches. Concluding the study, Section 6 proposes potential avenues for future research. 

 

 

2. SYSTEM MODELING 

2.1.  Photovoltaic model 

Solar cells are semiconductor devices that generate direct current when sunlight hits their surface. The 

equivalent electrical circuit, known as the one-diode model, consists of a current source, a single diode, and 

two resistors, as shown in Figure 1 [23], [30]. The output current of a photovoltaic cell can be determined by 

applying the law of Kirchhoff, as shown in (1). 
 

𝐼𝑝𝑣 = 𝐼𝑝ℎ − 𝐼𝑑 − 𝐼𝑠ℎ   = 𝐼𝑝ℎ − 𝐼𝑑  −
𝑉𝑝𝑣+𝐼𝑝𝑣.𝑅𝑠

𝑅𝑠ℎ
 (1) 

 

According to the Shockley equation, the diode current 𝐼𝑑  is given by (2). 

 

𝐼𝑑 = 𝐼0 (𝑒𝑥𝑝 (
𝑞(𝑉𝑝𝑣+𝐼𝑝𝑣.𝑅𝑠)

𝑛𝑘𝑇
) − 1) (2) 

 

where 𝐼0 represents the reverse saturation current, 𝑘 represents the Boltzmann constant, 𝑞 denotes the 

elementary charge, 𝑛 signifies the ideality factor of the p-n junction, and 𝑇 indicates the temperature of the 

photovoltaic cell [23]. The I-V characteristics of the PV cell model may be obtained by subsuming (2) into (1), 

as described by the formula below. 

In (3) indicates how temperature 𝑇 and irradiance 𝐼𝑟  affect the photocurrent  𝐼𝑝ℎ. 

 

𝐼𝑝𝑣 = 𝐼𝑝ℎ − (𝑒𝑥𝑝 (
𝑞(𝑉𝑝𝑣+𝐼𝑝𝑣.𝑅𝑠)

𝑛𝑘𝑇
) − 1) −

𝑉𝑝𝑣+𝐼𝑝𝑣.𝑅𝑠

𝑅𝑠ℎ
 (3) 

 

𝐼𝒑𝒉 = [𝐼𝒔𝒄 + 𝑘𝒊(𝑇 − 298). 
𝐺

1000
 (4) 

 

Where 𝐺 represents the solar irradiation, 𝐼𝑠𝑐  is the short circuit current at 25 °C and 1000 W/m2, and  𝑘𝒊 
corresponds to the temperature coefficient of 𝐼𝑠𝑐 . 

A photovoltaic module is generally composed of several PV cells arranged in series or parallel 

configurations. The photovoltaic module consists of 𝑛𝑃  PV cells connected in parallel and 𝑛𝑠 PV cells are 
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connected in series. Based on this configuration, the output voltage V and output current I of the module can 

be defined as (5) and (6). 
 

𝑉 = 𝑛𝑠. 𝑉𝑝𝑣 (5) 

 

𝐼 = 𝑛𝑃 . 𝐼𝑝𝑣 (6) 

 

We obtain the formula for the PV module's output current by substituting (5) and (6) into (3). 
 

𝐼 = 𝑛𝑃 . 𝐼𝑝ℎ − 𝑛𝑃 . 𝐼0 (𝑒𝑥𝑝 (
𝑞(

𝑉

𝑛𝑃
+
𝐼

𝑛𝑠
.𝑅𝑠)

𝑛𝑘𝑇
) − 1) −

𝑛𝑝

𝑛𝑠
.𝑉+𝐼.𝑅𝑠

𝑅𝑠ℎ
 (7) 

 

The photovoltaic array described in this paper can generate a maximum output power of 100.8 kW 

under standard test conditions (STC). It consists of 64 strings, each containing 5 modules connected in series, 

with each module having a maximum power output of 315.073 W. The total power is calculated as follows: 

64 × 5 × 315.072 𝑊 = 100.8 𝑘𝑊. The parameters of the SunPower SPR-305E-WHT-D module under STC 

are presented in Table 1. The characteristics of the photovoltaic array, consisting of 5 series-connected modules 

and 64 parallel strings, are illustrated in Figures 2 and 3, showing the I-V and P-V curves under varying 

irradiance and temperature conditions, respectively. 
 

 

Table 1. SunPower SPR-305E-WHT-D module parameters under STC 
Parameter Value 

Maximum power Pmpp 315.073 W 

Current at Impp 5.76 A 
Voltage at Vmpp 54.7 V 

Short-circuit current Isc 6.14 A 

Open-circuit voltage Voc 64.6 V 
No.of cells per module 96 

 

 

 
 

Figure 1. Equivalent electrical circuit of photovoltaic cell 
 

 

 
(a) (b) 

 

Figure 2. Comparison of the I-V and P-V characteristics of the PV array under varying irradiance levels at  

T = 25 °C in (a) I-V characteristic and (b) P-V characteristic 
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(a) (b) 

 

Figure 3. Comparison of the I-V and P-V characteristics of the PV array under varying temperature 

at G = 1000 W/m2 in (a) I-V characteristic and (b) P-V characteristic  

 

 

2.2.  Boost converter modeling 

The averaged model of the Boost converter is derived by applying the basic principles of system 

operation [31]. The converter diagram is shown in Figure 4. The dynamic equations for this converter are 

expressed as (8)-(10). 

 

{
 
 
 

 
 
 𝑥̇1 =

𝑖𝑝𝑣

𝐶1
−
𝑥2
𝐶1
 

𝑔

𝑥̇2 =
𝑥1
𝐿
− (1 − 𝑢)

𝑥3
𝐿
 

𝑔

𝑥̇3 = −
𝑥3
𝑅𝐶2

+ (1 − 𝑢)
𝑥2
𝐶2
 

  

(8) 

(9) 

(10) 

 

Where 𝑥 = [𝑥1 𝑥2 𝑥3] = [𝑉𝑃𝑉   𝐼𝐿   𝑉0]. 
The boost converter, which is powered by the solar module, is subject to continuous input voltage 

variations due to changing weather conditions. Consequently, the duty cycle must be dynamically adjusted to 

ensure that the system tracks the maximum power point of the photovoltaic array. The electrical parameters of 

the boost converter are provided in Table 2. 

 

 

 
 

Figure 4. Boost converter schematic 

 

 

Table 2. Main electrical parameters of the boost converter 
Electrical parameter  Value 

Inductor L 5 mH 
Input capacitor C1  1 mF 

Output capacitor C2 5 mF 

Switching frequency f 5 KHz 
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3. CONTROL OF THE SYSTEM 

This paper presents a hybrid MPPT system combining ANN and SMC to enhance power extraction 

from photovoltaic (PV) systems, as shown in Figure 5. The ANN predicts the reference voltage (Vref) at the 

maximum power point (MPP) by analyzing real-time solar irradiation and temperature variations. At the same 

time, the SMC calculates the duty cycle (u) by comparing Vref with the actual PV voltage (Vpv). The duty cycle 

is then processed through pulse width modulation (PWM) to regulate the boost converter’s switching (Q), 

ensuring that Vpv tracks Vref and achieves MPP. The boost converter increases the PV panel voltage using an 

inductance (L1), capacitors (C1 and C2), and diodes, coordinated through switching control. A resistive load 

was selected to simplify the experimental setup and facilitate the analysis of the system's core performance. 
 

 

 
 

Figure 5. Proposed system 
 

 

3.1.  Generation of reference by neural networks MPP 

The proposed ANN predicted the MPP voltage of the photovoltaic array. A feedforward neural 

network consisting of three layers has been implemented, as illustrated in Figure 6. The network receives 

temperature and solar irradiation as inputs, processes them through hidden layers, and outputs the reference 

voltage (Vref) for the SMC. 

a) Input layer: 

The input neurons receive the solar irradiation 𝑥1  and temperature  𝑥2. Each input neuron has a bias 

term, denoted as 1. 

b) Hidden layer 

The net input to a hidden neuron 𝑖 is given by: 

 

 𝑧𝑖 = ∑ 𝑤𝑖𝑗
2
𝑗=1 𝑥𝑗 + 𝑏𝑖  (11) 

 

Where 𝑥𝑗  are the input signals (solar irradiation 𝑥1  and temperature 𝑥2); 𝑤𝑖𝑗  are the weights from the input 

neurons 𝑗 to the hidden neuron 𝑖; and 𝑏𝑖 is the bias term for the hidden neuron 𝑖. The output of the hidden 

neuron 𝑖 after applying the activation function (sigmoid function σ) is (12). 
 

ℎ𝑖= σ(𝑧𝑖) = 
1

1+𝑒−𝑧𝑖
 (12) 

 

c) Output layer: 

The net input to the output neuron k is given by (13). 
 

 𝑧𝑘 = ∑ 𝑤𝑘𝑖
𝑛
𝑖=1 ℎ𝑖 + 𝑏𝑘 (13) 

 

Where ℎ𝑖 are the outputs from the hidden neurons; 𝑤𝑘𝑖  are the weights from the hidden neurons 𝑖 to the output 

neuron k; 𝑏𝑘  is the bias term for the output neuron k; and the output of the network, which is the 𝑉𝑟𝑒𝑓  voltage 

value at the MPP is (14). 
 

  𝑦𝑘 = 𝑧𝑘 = 𝑉𝑟𝑒𝑓  (14) 
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The database for this study, derived from photovoltaic module simulations, includes irradiation 

patterns, temperature variations, and the corresponding MPP voltage, as illustrated in Figure 7. This dataset is 

divided as follows: 70% is used for training, 15% for validation, and 15% for testing the feedforward neural 

network. To train the neural network effectively for predicting the target variable, the mean square error (MSE) 

serves as the loss function, as indicated in (9). The MSE assesses the accuracy of the network's predictions by 

averaging the squared differences between the predicted and actual values. Through gradient-based 

optimization, this error is minimized by iteratively adjusting the model’s parameters, thereby improving its 

predictive performance over time. 

Figure 8 shows the performance of the ANN, showing an MSE of 3.6775e-02, which indicates 

satisfactory results. 
 

𝑀𝑆𝐸 =
1

𝑛
 ∑ (𝑉𝑟𝑒𝑓(𝑖)

𝑛
𝑖=1 − 𝑉̂𝑟𝑒𝑓(𝑖))

 2 (15) 

 

Where n is the number of data points; 𝑉𝑟𝑒𝑓(𝑖) is the actual voltage for the i-th data point; and 𝑉̂𝑟𝑒𝑓(𝑖) is the 

predicted voltage for the i-th data point. 
 

 

 
 

 

Figure 6. The proposed ANN architecture 

 

Figure 7. The optimal PV voltage according 

to the environmental conditions 

 
 

 
 

Figure 8. Mean square error 
 

 

3.2.  Sliding mode control design 

Sliding mode control (SMC) is a nonlinear technique that has been developed for use with highly 

nonlinear systems, such as photovoltaic arrays. The fundamental objective of the SMC is to offer stability and 

optimal energy transfer between the PV array and the DC load. The SMC method involves defining a sliding 

surface and designing a control law that maintains the system state at this surface. By continuously adjusting 
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the control input, this method ensures that the system remains at the MPP of the photovoltaic array, effectively 

adapting to varying weather conditions [31]. 

This section presents the SMC design using a reference voltage,  𝑥1𝑑 = 𝑉𝑟𝑒𝑓  when feeding the ANN. 

The sliding surface of this control is defined as (16). 

 

 𝑒1 = 𝑥1  −  𝑥1𝑑 (16) 
 

Where  𝑥1𝑑 = 𝑉𝑟𝑒𝑓 . Taking the derivative of (16) along the dynamics given in (2). 
 

𝑒̇1 = 𝑥̇1 − 𝑥̇1𝑑  

𝑒̇1 =
 𝑖𝑝𝑣

 𝐶1
−

𝑥2

 𝐶1
− 𝑥̇1𝑑   (17) 

 

The second error, 
 

e2 = 𝑒̇1 (18) 
 

Taking the derivative of  e2, 
 

𝑒̇2 = 𝑒̈1 =
1

𝐶1
⋅
𝑑𝑖𝑝𝑣

 𝑑𝑡
−
𝑥̇2
𝐶1
− 𝑥̈1𝑑  

𝑒̇2 =
1

𝐶1
⋅
𝑑𝑖𝑝𝑣

 𝑑𝑡
−

𝑥1

𝐿𝐶1
+

𝑥3

𝐿𝐶
−

𝑥3

𝐿𝐶1
⋅ 𝑢 − 𝑥̈1𝑑 (19) 

 

The sliding surface 𝑆 is defined as (20). 
 

S =  𝑒2 +  α. e1  (20) 
 

The derivative of (14). 
 

𝑠̇ = 𝑒̈1 + 𝛼𝑒̇1 = 𝑒̇2 + 𝛼𝑒̇1 (21) 
 

Substituting in (17) and (19) into (21), 
 

𝑠̇ =
𝑖𝑝𝑣

𝐶1
−
𝑥1
𝐿𝐶1

+
𝑥3
𝐿𝐶1

−
𝑥3
𝐿𝐶1

⋅ 𝑢 − 𝑥̈1𝑑 +  𝛼
𝑖𝑝𝑣

𝐶1
− 𝛼

𝑥2
𝐶1
− 𝛼𝑥̇1𝑑 

 

Setting 𝑠̇ = 0 gives the equivalent control law, denoted by ueq , which is crucial for achieving the desired 

tracking, i.e  𝑥1− 𝑥1𝑑 = 0. 
 

𝑖𝑝𝑣

𝐶1
−
𝑥1
𝐿𝐶1

+
𝑥3
𝐿𝐶1

−
𝑥3
𝐿𝐶1

⋅ 𝑢𝑒𝑞 − 𝑥̈1𝑑 +  𝛼
𝑖𝑝𝑣

𝐶1
− 𝛼

𝑥2
𝐶1
− 𝛼𝑥̇1𝑑 = 0 

𝑢𝑒𝑞 =
𝐿𝐶1𝑥3

𝑥3
 [
𝑖𝑝𝑣

𝐶1
−

𝑥1

𝐿𝐶1
+

𝑥3

𝐿𝐶1
− 𝑥̈1𝑑 +  𝛼

𝑖𝑝𝑣

𝐶1
− 𝛼

𝑥2

𝐶1
− 𝛼𝑥̇1𝑑] (22) 

 

The reaching law is defined as follows: 𝑢𝑠 = +𝐾. 𝑠𝑖𝑔𝑛(𝑆) with 𝐾 > 0. The total control law for the nonlinear 

SMC-based MPPT system can be described as (23). 
 

𝑢 = 𝑢𝑒𝑞 + 𝑢𝑠 (23) 

 

SMC is robust and effective in handling nonlinearity, but often suffers from chattering due to the 

discontinuous switching term 𝑢𝑠 = +𝐾. 𝑠𝑖𝑔𝑛(𝑆) , which leads to high frequencies. To address this, the 

suggested method replaces the sign function with a continuous saturation function, represented as:  𝑢𝑠 =
+𝐾. 𝑠𝑎𝑡(𝑆/Ø). Where Ø defines a boundary layer around the sliding surface. This adjustment smoothens the 

control input, reducing oscillations while maintaining accuracy. 

Stability analysis uses the Lyapunov stability function, which is defined as (24). 
 

𝑉 =
1

2
𝑆2  

𝑉̇ = 𝑆 [
𝑖𝑝𝑣

𝐶1
−

𝑥1

𝐿𝐶1
+

𝑥3

𝐿𝐶1
−

𝑥3

𝐿𝐶1
⋅ 𝑢 − 𝑥̈1𝑑 + 𝛼 (

𝑖𝑝𝑣

𝐶1
−

𝑥2

𝐶1
− 𝑥̇1𝑑)] (24) 
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Substituting (17) in (18). 
 

𝑉̇ = 𝑆 [
𝑖𝑝𝑣

𝐶1
−

𝑥1

𝐿𝐶1
+

𝑥3

𝐿𝐶1
−

𝑥3

𝐿𝐶1
⋅ (𝑢𝑒𝑞 + 𝐾. 𝑠𝑎𝑡(𝑆/Ø)) − 𝑥̈1𝑑 + 𝛼 (

𝑖𝑝𝑣

𝐶1
−

𝑥2

𝐶1
− 𝑥̇1𝑑)]  

𝑉̇ = 𝑆. (−
𝑥3

𝐿𝐶1
) . 𝐾. 𝑠𝑎𝑡 (

𝑆

Ø
)  

 

The saturation function 𝑠𝑎𝑡(𝑆/Ø)  is bounded by −1 ≤ 𝑠𝑎𝑡(𝑆/Ø)  ≤ 1 . Therefore: 

 

𝑉̇ = − ‖
𝑥3

𝐿𝐶1
‖ . 𝐾. |𝑆|.

|𝑺|

Ø
< 0  

 

This indicates that the Lyapunov function 𝑉 decreases as time passes, confirming the stability of the system 

while mitigating chattering due to the use of the continuous saturation function. 
 

 

4. RESULTS AND DISCUSSION 

In order to assess the effectiveness, the proposed MPPT method, a simulation model was developed 

using MATLAB/Simulink. Figure 9 shows the simulation model of the photovoltaic system with the ANN-

SMC MPPT technique. Specifically, Figure 9(a) represents the complete system architecture, and Figure 9(b) 

details the implementation of the SMC algorithm. The performance of the ANN-SMC controller was evaluated 

under various weather condition scenarios, as shown in Figure 10. 
 
 

 
(a) 

 
(b) 

 

Figure 9. Simulation model of the photovoltaic system with ANN-SMC MPPT in Simulink:  

(a) overall system architecture in Simulink and (b) detailed implementation of the SMC 
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To evaluate its adaptability, the system was tested in three different operating scenarios. During the 

first time interval (0 to 0.5 s), the photovoltaic module functioned under STC, with an irradiance of 1000 W/m² 

and a temperature of 25 °C. In the second time interval (0.5 s to 1 s), the irradiance was decreased from 1000 

W/m² to 500 W/m², and the temperature was decreased from 25 °C to 15 °C. In the final time interval (1 s to 

1.5 s), the irradiance was increased from 500 W/m² to 800 W/m², while the temperature was maintained at a 

constant 30 °C, to evaluate the system's response under improved solar conditions. 

The MATLAB/Simulink simulation model includes a photovoltaic (PV) array, which is modeled 

using a single-diode equivalent circuit, a boost converter to regulate the voltage 𝑉𝑝𝑣 , and an MPPT controller 

that implements the ANN-SMC approach. The ANN-SMC controller integrates an ANN to estimate the 

reference voltage (𝑉𝑟𝑒𝑓) and an SMC to ensure robust tracking of 𝑉𝑟𝑒𝑓 . The ANN is trained on a dataset 

covering different irradiance and temperature variations, enabling it to dynamically predict the optimal value. 

The SMC uses a sliding surface designed to minimize tracking error while mitigating chattering effects. 

To evaluate the efficiency of the ANN-SMC controller, a comparative analysis was conducted against 

two reference MPPT techniques: perturb and observe (P&O) and ANN-PI. As illustrated in Figure 11, the power 

output response demonstrates the superior performance of ANN-SMC, which rapidly reaches the MPP with 

minimal oscillations. In contrast, P&O exhibits slower convergence and higher oscillations, while ANN-PI 

achieves better results than P&O but remains less stable than ANN-SMC. The improved stability of ANN-SMC 

is further confirmed by the voltage and current responses shown in Figures 12 and 13. ANN-SMC ensures 

smoother voltage and current transitions with minimal fluctuations compared to the other methods, while P&O 

suffers from excessive oscillations and ANN-PI faces moderate instability. 

 

 

 
(a) (b) 

 

Figure 10. Weather conditions: (a) irradiance and (b) temperature 
 

 

 
 

Figure 11. Power output generated by ANN-SMC, ANN-PI, and P&O methods  

under diverse weather conditions 
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Figure 12. Voltage output generated by ANN-SMC, ANN-PI, and P&O methods  

under diverse weather conditions 
 

 

 
 

Figure 13. Current output generated by ANN-SMC, ANN-PI, and P&O methods  

under diverse weather conditions 
 
 

Table 3 shows clear advantages of the ANN-SMC method over P&O and ANN-PI in tracking the 

MPP for MPPT algorithms. The ANN-SMC technique demonstrates superior accuracy, rapid adaptability to 

changing environmental conditions, and exceptional stability across different climates. The results clearly show 

the strengths of ANN-SMC over ANN-PI and P&O techniques, positioning it as a highly effective solution for 

enhancing the MPPT performance of solar photovoltaic systems. 
 

 

Table 3. Comparison results of ANN-SMC, ANN-PI, and P&O methods 
 Temperature 25 ºC 

Irradiance 1000 W/m2 
Temperature 15 ºC 

Irradiance 500 W/m2 
Temperature 30 ºC 

Irradiance 800 W/m2 

MPPT method Power oscillation 

(kW) 

Tracking response 

time (s) 

Power oscillation 

(kW) 

Tracking response 

time (s) 

Power oscillation 

(kW) 

Tracking response 

time (s) 

ANN-SMC 0.1 0.12 0.1 0.55 0.08 1.15 

ANN-PI 0.3 0.14 0.2 0.60 0.15 1.2 
P&O 0.6 0.25 0.4 0.65 0.3 1.25 

 

 

5. CONCLUSION 
This study demonstrates the effectiveness of the ANN-SMC technique for maximum power point 

tracking (MPPT) in PV systems, highlighting its clear advantages over ANN-PI and P&O methods in terms of 
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accuracy, responsiveness, and reliability under variable conditions. The use of a continuous saturation function 

significantly reduces the chattering effect, making the approach both energy efficient and stable.  

While the use of resistive loads helps simplify the analysis, it limits the realism of the evaluation. Future 

research will focus on evaluating how the system performs with non-linear loads and grid integration to confirm 

its practical applicability in real photovoltaic systems. In addition, efforts could focus on improving the 

computational efficiency and extending the method to other renewable energy applications. Furthermore, as the 

proposed approach has been tested using simulations, future work will consider an experimental implementation 

to determine its real-world feasibility and ensure its robustness under practical operating conditions. 
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