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 Transformer less inverters (TIs) are highly efficient and have a high power 

density, making them a popular choice for grid-connected solar PV 

applications. However, certain topologies can lead to high-frequency 

common-mode voltage (CMV), which can cause issues such as high leakage 

current, electromagnetic interference, and an absence of safety. Our newly 

developed inverter is designed to be more efficient, cost-effective, and 

compact than traditional types while also addressing the issue of leakage 

current. This architecture eliminates leakage current by directly connecting 

the grid's neutral terminal to the PV's negative polarity, resulting in a low 

leakage current. Moreover, the inverter increases output voltage using only 

one voltage source and a few power devices, making it a cost-effective 

solution. Its modular form allows for an increase in output levels, further 

enhancing its cost-effectiveness. We conducted a comprehensive 

mathematical examination, and the MATLAB/Simulink results demonstrate 

its ability to increase the output voltage, eliminate leakage current, and 

maintain acceptable output voltage THD and current waveforms. These 

results and the inverter's safety features showcase significant improvements 

over traditional inverters and provide a secure and reliable solution for grid-

connected solar PV applications. 
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1. INTRODUCTION 

In photovoltaic (PV) applications, transformers are commonly used for galvanic isolation and voltage 

ratio conversions. However, traditional transformers add weight, bulk, and expense to the inverter while 

reducing efficiency and power density. To address these issues and prevent safety concerns like ground fault 

and leakage currents, we aim to design an inverter that does not require transformers and can operate safely 

without additional precautions [1]–[4]. 

Various topological topologies, including circuit designs based on AC and DC dissociating, have been 

suggested in the literature to statement leakage current problems [5], [6]. The most often used and effective 

topology of this kind is the (HERIC) topology, built on the AC decoupling technique offered in this study. 

Other DC topologies contain H5 and various forms of H6. But still have the leakage current issue. Furthermore, 

conduction losses and the inverter's incapacity to the main disadvantages of such inverter topologies are 

increased [7]–[14]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Voltage using neutral-point-clamped (NPC) inverters is an additional option that reduces leakage 

current to a manageable range by keeping the common-mode voltage (CMV) constant. Increasing the output 

voltage levels also improves the quality of electricity. The most advanced and effective topologies in this 

category of inverter structures are the flying capacitor (FC)-based t-type and active neutral-point-clamped 

(ANPC). Recently, a five-level inverter built on an impedance source was described in [15]–[19]. 

This inverter's poor voltage gain, large component count, and leakage current are its key shortcomings. 

Consequently, EMI filters are included to reduce high-frequency volatility in CMV, which raises the inverter's 

cost. Conversely, in these topologies, the maximum AC voltage is just half the DC-link voltage; therefore, a 

two-stage power managing design with a further boost converter is required for low-voltage solar energy 

systems [20], [21]. As an alternative, a unique way for satisfying the demands of grid-connected renewable 

energy sources, particularly PV sources, is to use (CG) TI that may eliminate the issue of high-frequency 

(CMV), which causes leakage current. Based on the common-ground method, SCMLIs for reducing leakage 

current have lately acquired acceptance in the literature. They are described as a unique 5-L common-ground 

CG-type inverter using dual SCs, six switches, and a diode designed for PV systems. Additional sensors are 

required to balance the SC voltages [22]–[26]. Compact MLIs with boosting capabilities and minimal THD 

voltage generation are required for PV systems. MLIs based on switched capacitors (SC) have recently become 

popular as DC/AC voltage converters with boosting capabilities [27]. The SC unit's output voltage range is 

changeable. 

It is dependent on the arrangement and spans a wide range. A traditional active neutral point clamp 

(ANPC) architecture utilizing capacitors was created [28]. Five output voltage levels beyond the load may be 

produced with a single DC voltage source, eight IGBTs, and three capacitors. However, there is no way to 

boost production levels in the load terminal. 

Nevertheless, this arrangement does not have a way to raise the output voltage. Two new kinds of 

ANPC topologies were presented in [29]. These topologies are unable to enhance voltage, and this paper 

describes a new 5-level boost inverter with continuous gain controller capabilities. The inverter needs an 

inductor to supply continuous input current in both DC and AC modes, essential for photovoltaic and other 

renewable energy applications. Because the negative end of the DC source is linked to the neutral terminal of 

the grid, the design has minimal LC and few components. 

The paper's structure follows: section 2 explains the construction of the suggested 5-level multilevel 

boost inverter. Section 3 explains the switch mechanism and pulse-generating method. Section 4 shows 

MATLAB Simulink findings for the inverter, which ends in section 5. 

 

 

2. PROPOSED TOPOLOGY 

Figure 1 shows the inverter's circuit architecture, which includes a boost inductor to sustain continuous 

input current and give adjustable gain voltage, seven switches, and two capacitors. The inverter uses a single 

DC source designed specifically for photovoltaic (PV) systems. Additionally, this provides a large boost gain, 

with the peak output voltage set at 2M/(1-D) for a 5-level output. 

 

 

 
 

Figure 1. The basic block of the proposed 5-level inverter topology 

 

 

2.1.  Operating modes 

In this section, Figure 2(a) illustrates the primary operational modes of the proposed 5-level converter. 

These establish distinct operating settings for each voltage stage, guaranteeing a consistent output voltage even 

during faults. Moreover, the system incorporates multiple charging and discharging modes to suit varying 

levels of inverter power. This design maintains the equilibrium of the capacitors' voltage and simplifies the 
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control of the boost duty cycle, resulting in additional benefits, for instance, capacitor voltage balancing. 

Furthermore, the input inductance within this inverter undergoes charging during the conduction phase of the 

IGBT S1, while it experiences discharge when the power switch S1 transitions to the off state. Consequently, 

the key waveforms pertinent to the proposed inverter are illustrated in Figure 2(b). As illustrated in Figure 2(a), 

the state (+1) consists of two operational conditions: the state of inductor charging and the state of inductor 

discharging; during the charging phase, the inductor is energized by the direct current (DC) source when switch 

S1 is activated, in this state the switches S1, S3, S4, S6are activated to reach the +1 level. During the 

discharging phase, switch S2 is activated, while switches S3, S4, and S6 remain conducting to reach 

the -1 level, and the same operation principle is used for the rest states. 

 

 

 
(a) 

S1-GatePulse t

ON

OFF

IL t

IC1,C2 t

Mode1 Mode2  
(b) 

 

Figure 2. Operational modes of the (a) charging and discharging stages of the input boost inductor 

and (b) key waveforms associated with the inverter during both charge and discharge functions 

 

 

2.2.  Voltage gain analysis 

The gain of the suggested inverter can be determined as follows, considering the DC source voltage 

and the AC output voltage. 

 

𝐺𝑖 =
2𝑀

1−𝐷
 (1) 
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Since every capacitor in the proposed inverter has the same amount of charge, the voltage of every capacitor 

may be determined as follows: 

 

𝑉𝐶1 = 𝑉𝐶2 =
𝑉𝐷𝐶

1−𝐷
 (2) 

 

As a result, the highest maximum voltage is equal to the total voltages across the previously stated 

capacitors. Thus, the following methods can be used to obtain it: 

 

𝑉𝑂,𝑀𝑎𝑥 =
2𝑉𝐷𝐶

1−𝐷
 (3) 

 

Table 1 shows equations demonstrating the relationship between the output voltage and the 

modulation index. Variations in the duty cycle (D) may affect the peak value of the waveform. Table 2 shows 

the disparities in maximum output voltage. When the modulation index surpasses 0.5, the level shift PWM 

(LS-PWM) approach creates a 5-level waveform for the inverter output from a sinusoidal reference voltage 

signal. When the modulation index falls below 0.5, the converter output switches to a three-level waveform. 

 

 

Table 1. The association between a modulation index and the output waveform 
Output voltage Rang of modulation index  Range of output voltage waveform 

𝑉𝑂 =
2𝑀𝑉𝐷𝐶

1 − 𝐷
 

0 to 1 2
0

1

DC
O

V
V to

D
=

−
 

 

 

Table 2. illustrates various modulation index ranges 
Modulation index Output levels Gain voltage 

M > 0.5 5  𝑉𝑂,𝑝𝑒𝑎𝑘

𝑉𝐷𝐶

=
2

1 − 𝐷
 

M < 0.5 3  𝑉𝑂,𝑝𝑒𝑎𝑘

𝑉𝐷𝐶

=
1

1 − 𝐷
 

 

 

2.3.  Design factors 

This section covers the suggested inverter model concerns for switches, input boost inductors, and 

capacitors. As demonstrated by the preceding formulations, equations indicating the voltage stress of the 

switches are constructed. 

 

𝑉4,6 =
1

1−𝐷
𝑉𝐷𝐶, 𝑉1,2,3,5,7 =

2

1−𝐷
𝑉𝐷𝐶  (4) 

 

Additionally, the input boost inductor may be developed by the subsequent equation: 

 

𝐿𝑖𝑛 ≥
𝐷𝑉𝐷𝐶

𝑓𝑠𝛥𝑖𝐿
 (5) 

 

Furthermore, the following definition may be applied to the values of the inverter capacitors: 

 

𝐶1,2,...𝑛 ≥
𝐷(1−𝐷)𝐼𝑜𝐺

𝑓𝑠𝛥𝑉𝐶
 (6) 

 

 

3. METHODOLOGY 

Due to the input and output terminals sharing common ground, the suggested inverter has zero CMV. 

Figure 3(a) shows that the sinusoidal waveform value from point B to neutral point N is zero (VBN). The PV 

array's parasitic capacitor (CPV) is short-circuit due to the inverter's common ground capabilities. Consequently, 

the leakage current through CPV is also zero. As a result, the inverter’s CMV value can be calculated as (7). 

 

𝑉𝐶𝑀.𝑇𝑜𝑡𝑎𝑙 =
𝑉𝐴𝑁

2
+ (𝑉𝐴𝑁) (

−𝐿1

2(𝐿1)
) = 0 (7) 
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3.1.  Modulation and switching rules 

The proposed topology produces a sinusoidal waveform at the output by controlling the IGBTs with 

level shift modulation. Figure 3(b) shows the carrier signal waveforms concerning the reference sinusoidal 

waveform. Four triangular carrier waveforms are included in a 5-level inverter. Every voltage state of the 

inverter corresponds to one or more switching situations. Table 3 shows the switching table with five levels 

from -2 V to +2 V3. 

 

 

 
(a) 

 
(b) 

 

Figure 3. The inverter structure common ground and the level shift PWM, (a) the planned inverter association 

to the AC grid's general schematic and (b) triangle carrier signals compared to the suggested inverter's 

reference sinusoidal waveform 

 

 

Table 3. Switching states for 5-level MLI  
Level / Switches Power switches Inductor 

S1 S2 S3 S4 S5 S6 S7 

0 1 0 1 0 1 0 1 Charge 

0 1 1 0 1 0 1 Discharge 

+1 1 0 1 0 0 1 0 Charge 
0 1 1 1 0 1 0 Discharge 

-1 1 0 1 0 1 1 0 Charge 

0 1 1 0 1 1 0 Discharge 
-2 1 1 0 0 1 0 1 Charge 

+2 1 0 1 0 0 0 1 Charge 

 

 

4. RESULTS AND DISCUSSION 

As previously explained, the proposed inverter operates in continuous boost mode with a constant 

input current and 0% leakage current. Furthermore, the loss value findings using the PLECS software illustrate 

the proportion of losses for each inverter component. The critical parameter values used through the simulation 

are detailed in Table 4. Table 5 contrasts the proposed inverter to a variety of topologies. 

Figure 4(a) illustrates the five-level output voltage characterized by a peak value of 240 V, utilizing 

the parameter specifications provided in Table 4. Figure 4(b) illustrates the variations in output voltage as the 

duty cycle is adjusted in increments of 10%, ranging from D = 80% to D = 20%. A notable attribute of the 

proposed inverter is its ability to regulate the peak output voltage across a broad operational spectrum. 
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Figure 4(c) illustrates the modulation index value altered from 0 to its maximum (M = 1). The converter 

produces a three-level voltage when M < 0.5 and a five-level waveform when M > 0.5, as detailed in Table 2. 

Figures 5(a) and 5(b) present the voltage measurements of the topology capacitors (C1 and C2). 

 

 

Table 4. Simulation parameter estimates of the proposed inverter 
Value Parameter Value Parameter 

3 mH Input inductor (Lb) 24 V Source (Vdc) 
100 Ω + 10 mH Inductive load 1200µF Capacitor (C1 and C2) 
Level shift PWM PWM 10 kHz F(SW) 
80% D 1 M 

 

 

Table 5. Comparison of 5-level boost inverters with other inverter topologies 
Structure S D C L NLevel Gain CC CG 

[27] 3 6 2 2 3 𝐷𝑉𝑑𝑐

(1 − 𝐷)
 

  

[28] 7 0 2 1 5    2𝑉𝑑𝑐   

[29] 6 3 2 1 3 𝐷𝑉𝑑𝑐

(1 − 𝐷)
 

  

Proposed 

5-level 

7 0 2 1 5 2𝑀𝑉𝑑𝑐

(1 − 𝐷)
 

  

*S: Switching number, D: Diodes number, C: Capacitors number, L: Inductors number, NLevel: Number of voltage levels, 

Gain: Boost gain, CC: Continuous input current, CG: Common ground, and M: Modulation index 

 

 

   
(a) (b) (c) 

 

Figure 4. The output voltage waveforms are as follows: (a) D = 80%, M = 1 output voltage waveform,  

(b) duty-cycle charging from D = 80% to D = 20, and (c) modulation index changing from M = 0 to M = 1 

 

 

  

(a) (b) 

 

Figure 5. Voltage waveforms of the virtual DC source capacitors: (a) VC1 and (b) VC2 

 

 

Figure 6(a) illustrates the absence of leakage current across the parasitic capacitance of the input 

source. Furthermore, Figure 6(b) depicts the waveform of the inverter's output current, characterized by the 

attributes previously delineated in Table 4. Additionally, Figures 7(a) and 7(b) disclose that the output voltage 

and current of the inverter exhibit total harmonic distortion (THD) values of 27.10% and 0.65%, respectively. 
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(a)  (b) 

 

Figure 6. The output current waveform, (a) zoomed output current waveform and (b) leakage current 

waveform 

 

 

 
(a) 

 
(b) 

 

Figure 7. Frequency spectrum and THD of the inverter, (a) output sinusoidal waveform and (b) output current 

 

 

4.1.  Comparative and losses analysis 

The next sections provide a comparative comparison of the suggested five-level inverter and other 

innovative topologies. Table 5 indicates the suggested inverter has a high voltage gain and a constant input 

current, which makes it especially appropriate for photovoltaics. Figures 8(a) and 8(b) also show the simulated 

converter. Additionally, Figure 9(a) shows the comparative study of voltage gain. Additionally, the efficiency 

curve of the converter and the percentage distribution of losses among the inverter's components are shown, 

while variable the output power from 0 to 1500 Watts with real conditions conferring to the values in Table 6 

that are shown in Figures 9(b) and 9(c), correspondingly. 
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(a) 

 
(b) 

 

Figure 8. The modeled converter with PLECS software: (a) control system and (b) proposed converter 

 

 

 

Figure 9. Comparison of an assessment of the proposed inverter's voltage gain and loss: 

(a) output voltage gains about the D, (b) loss of each component, and (c) efficiency curve 

 

 

Table 6. Components and factors applied to calculate losses and efficiency 
Parameter Value Parameter Value 

Power switches IGBT-FGH60N60SMD  V(dc) 24 V 
L(in) 3mH (10mΩ internal resistor)  D 80% 

 

 

5. CONCLUSION 

This paper proposes a new five-level step-up common ground inverter with a reduced number of 

power switches specifically developed for photovoltaic and other renewable energy systems. The proposed 

inverter demonstrates the capability to attain elevated output voltages utilizing a single-source inverter 

configuration. Owing to the shared ground connection between the direct current (DC) input and the alternating 

current (AC) output, this inverter has effectively mitigated the issue of leakage current. The various switching 

methodologies corresponding to every output voltage level have been elucidated, yielding benefits such as 

   
(a) (b) (c) 



Int J Pow Elec & Dri Syst  ISSN: 2088-8694  

 

Single-stage transformer less multilevel boost inverter with zero … (Dalya Hamzah Al-Mamoori) 

681 

enhanced voltage balance out among capacitors and straightforward duty-cycle regulation. The architectural 

design of the inverter achieves a doubling of the boost gain (2D/1−D) within a five-level configuration. A 

comprehensive analysis of the inverter and a comparative evaluation of its performance relative to other 

contemporary topologies are provided. Ultimately, simulation outcomes obtained through the 

MATLAB/Simulink environment are presented to validate the inverter's efficiency. 
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