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 Energy storage system (ESS) plays a significant role in maximizing the use of 

renewable energies to ensure a balance between power generation and demand. 

ESS assists in maintaining grid stability by providing backup power during 

fluctuations or outages and smoothing out the variability of renewable energy 

source (RES). However, EMS fails to effectively balance dynamic interactions 

due to the unpredictable nature of renewable energy sources (RES) which 

results in a suboptimal performance. This research proposes an adaptive T-

distribution dung beetle optimization-based agile perturb and observe 

technique (ADBO-APO) for EMS. Photovoltaic (PV) module, battery, and 

wind turbine are the three sources utilized to establish an effective EMS in a 

grid-connected system. The ADBO is applied to manage the switching between 

battery storage and wind turbines. The APO is utilized for triggering the 

bidirectional DC-DC switch to obtain stable power from wind, PV, and battery. 

APO enhances EMS by involving perturbation levels for optimal power 

extraction. It improves the stability and efficiency across variable energy 

sources. The proposed ADBO-APO achieves a superior average index of 

1.2598×104 when compared to the existing method, levy flight quasi 

oppositional based learning smell agent optimization (LFQOBL-SAO). 
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1. INTRODUCTION 

Renewable energy source (RES) plays a significant role in power production due to their clean and 

environment-friendly nature. Because of its high dependence on climate and weather conditions in various 

cases, the finest possible system is the renewable energy hybrid system with energy storage systems  

(ESS) [1], [2]. Photovoltaic (PV), wind turbines, and battery are considered the primary favorable RES because 

they generate a huge infinite amount of clean energy [3], [4]. PV solar energy is one of the most widely 

employed technologies with approximately 1 Terawatt (TW) of power capacity worldwide. The rapid solar cell 

development and cost reduction have contributed to a rise in grid-connected PV power systems [5], [6]. The 

front-end phase direct current/direct current (DC/DC) is adapted for optimizing the potential of PV cells in 

power variation which enhances the efficiency [7], [8]. The PV system produces DC and requires an inverter 

to generate power for the grid [9], [10]. The microgrid (MG) is established to combine ESSs and distributed 

energy resources (DERs) in a controlled and safe way [11], [12]. The battery EES (BEES) is a primary reliable 

EES utilized in the market, possessing abilities for development in various applications of renewable  

energy [13], [14]. Moving power point tracking (MPPT) is used for tracking maximum power points with 
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subsequent changes in temperature or radiation [15], [16]. Hybrid systems provide numerous advantages to 

enhance rural energy access reliability, dispatchable renewable energy, minimize long-term energy costs, 

enhance the eco-efficiency of energy production, and decrease the dependence on fossil fuels [17]. Also, it 

presents modern energy access to remote areas without the requirement of distribution lines and expensive 

transmission from the central grid [18], [19]. Nevertheless, EMS struggles to effectively balance dynamic 

interactions because of the unpredictable nature of RES which results in suboptimal performance.  

Babu et al. [20] suggested a multi-objective optimization by utilizing a genetic algorithm for an EMS. The 

system of energy storage was comprised of an MG network significant for smooth power transfer and effective 

energy management. The suggested approach utilized long-short-term memory (LSTM) to predict PV and wind 

generation values which help in determining an optimal value for grid power and battery usage. However, the 

genetic algorithm was trapped in local optima because it depended on evolving the solutions through a process 

of selection, mutation, and crossover which did not adequately explore the entire search space. 

Mas’ud et al. [21] presented a levy flight quasi oppositional based learning smell agent optimization 

(LFQOBL-SAO) for PV, battery, and wind systems. An initial solution was generated randomly for hybrid 

systems decision variables which allocated an initial velocity to every solution. The fitness of this mode was 

determined and the molecules with optimal nominee solution were selected as the agent. Nevertheless, 

LFQOBL-SAO based on historical data and predefined flight patterns limited its ability to quickly adjust to the 

new or fluctuating conditions which minimized the effectiveness in dynamic environments. Boualem et al. [22] 

implemented an Elman neural network (ENN) for a grid-connected PV-wind battery system. The state flow 

(SF) was used for EMS to extract the testing and training data for the ENN construction controller. The rule-

based SF reduced the linguistic rules' complexity in intricate scenarios with fewer execution times which in 

turn assured and increased the smart switch among various operation modes. Nonetheless, the SF struggled 

with limited generalization when extracting testing and training data for ENN because it was based on 

predefined state transitions and deterministic rules. 

Azaroual et al. [23] developed a model predictive control (MPC) for EMS in PV, wind, and battery. 

The developed approach was a closed-loop control to variations of RES and prevented battery systems from 

passing into deep discharge. The MPC enhanced the overall system index performance by minimizing the 

amount of energy which avoided the deep battery drain. Nevertheless, MPC faced struggles with the integration 

and coordination of multiple energy sources because of the difficulty in predicting and modeling dynamic 

interactions among different sources which led to mismatches between demand and supply. Ullah et al. [24] 

introduced a hybrid of four control techniques based on fuzzy logic, artificial neural network (ANN), 

proportional integral derivative, and sliding mode controller (SMC) for EMS. The solar power maximization 

issue was solved by utilizing MPPT in an ANN approach. Nonetheless, the hybrid approach faced challenges in 

achieving seamless integration and coordination between different control strategies because of the use of 

different mechanisms in each control strategy which resulted in inefficiencies. In the overall analysis, the 

existing methods are seen to have the following limitations: getting stuck in the local optima, struggling to adapt 

to new or fluctuating conditions, and difficulty in predicting and modeling the dynamic interactions. In order to 

solve these issues, the ADBO-APO is proposed by using three sources which include the battery storage system, 

PV, and wind turbine for EMS which facilitated an improved overall energy management and stability. 

The major contributions of this research are explained as follows: 

- In traditional DBO, a T-distribution is added to enhance the convergence speed during the dung beetles 

foraging stage. ADBO effectively balances energy sources by dynamically adjusting to the changing 

conditions which ensures optimal switching between PV, wind, and battery storage systems. 

- The APO enhances EMS by involving perturbation levels for optimal power extraction which improves the 

stability and efficiency across variable energy sources. 

- In EMS, a bidirectional DC-DC converter is used to enable an effective energy flow in both directions and 

allows storage and energy retrieval among the source and storage devices. 

The remaining portion is structured as: Section 2 explains the proposed method, while section 3 illustrates an 

adaptive T-distribution dung beetle optimization, section 4 provides results and discussion for the existing 

methods and the proposed method, and finally, the conclusion is given in section 5. 

 

 

2. PROPOSED METHOD 

In this research, ADBO-APO is proposed for EMS which contains two RES of PV and wind turbine, 

and 1 storage system of battery. A bidirectional DC-DC converter is used to allow for an effective energy flow 

in both directions. An adaptive t-distribution is used to balance exploitation and exploration which increases 

convergence speed. Figure 1 shows a block diagram for the proposed method. 
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Figure 1. Block diagram for the proposed method 

 

 

2.1.  Modeling of microgrid 

An MG is the distributed energy resources and interconnection of loads that function as a single entity 

associated with a grid. Power converters are significant in MG to integrate renewables into the traditional 

power systems. Energy storage such as a battery is linked to a DC bus via a bidirectional DC-DC converter. 

The description of the PV module, wind turbine, and battery are explained in the following sub-sections. 

 

2.1.1. PV module 

A PV [20] module is a primary component in EMS that converts sunlight into electrical energy by 

utilizing solar cells. The power of PV generation differs because of the meteorological variables of temperature 

and solar irradiation. A solar PV power output is estimated using (1) where 𝑃𝑝𝑣(𝑡) and 𝐶𝑝𝑣 (𝑡) represents PV’s 

output power and rated capacity in 𝑘𝑊, 𝑆𝑡(𝑡) and 𝑆𝑠𝑡𝑑 indicate solar irradiance at PV panels (
𝑘𝑊

𝑚2), and 𝜂𝑃𝑉 

denotes the converter efficiency. 

 

𝑃𝑝𝑣(𝑡) = 𝐶𝑝𝑣 ∗ (
𝑆𝑡(𝑡)

𝑆𝑠𝑡𝑑
) ∗ 𝜂𝑙𝑜𝑠𝑠(𝑡) ∗ 𝜂𝐷𝐶/𝐷𝐶

𝑃𝑉  (1) 

 

2.1.2. Wind turbine 

In an EMS, a wind turbine [20] converts kinetic energy from the wind into electrical power. It assists 

in integrating renewable energy sources which optimize energy production and consumption. In a wind turbine, 

the extracted amount of energy is detected by turbine parameters and the speed of wind which is calculated in 

(2) where, 𝐶𝑝 indicates the wind turbine’s power coefficient, 𝑟 represents a radius of wind turbine blades, and 

𝑉 determines the wind speed. 

 

𝑃𝑊(𝑡) =
1

2
𝜌𝐶𝑝𝑉𝜔

3𝜋𝑟2 (2) 

 

2.1.3. Battery 

In an EMS, a battery [20] stores electrical energy for later use which provides backup power and 

balances demand and supply. It helps optimize energy usage and increase the system's efficiency and reliability. 

The battery is exhibited as an equivalent circuit with a voltage source 𝐸𝑏𝑎𝑡  in series by an internal resistance 

𝑅𝑏𝑎𝑡 which is represented in (3). 

 

𝑉𝑏𝑎𝑡 = 𝐸𝑏𝑎𝑡 − 𝑅𝑏𝑎𝑡 . 𝐼𝑏𝑎𝑡 (3) 

 

Where, 𝐸𝑏𝑎𝑡  denotes the internal voltage (𝑉), 𝑉𝑏𝑎𝑡 represents terminal voltage (𝑉), and 𝑅𝑏𝑎𝑡 determines 

internal resistance (Ω). The battery’s state of charge (SOC) is computed in (4). The 𝑆𝑂𝐶 (𝑡0) and 𝐶𝑁 represents 

the initial battery SOC (%) and the battery’s nominal capacity (𝐴ℎ). Table 1 displays the components of RES 

with their specifications. 

 

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶 (𝑡0) =
1

𝐶𝑁
∫ 𝑖𝑏𝑎𝑡(𝑡)𝑑𝑡

1

0
 (4) 
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Table 1. Components of RES with their specification 
Components Parameters Specifications 

PV Nominal power 300 𝑊 

Open circuit voltage 5.68 𝐴 

Maximum power current  5.68 𝐴 

Short-circuit current 6.05 𝐴 

Maximum power voltage 49.58 𝑉 

Wind turbine Stator resistance 5.7 𝑚Ω 

Inductance armature 0.14  
Number of poles 4 

Inertia 0.0000003 

Battery Nominal capacity 2.4 𝑘𝑊ℎ 

Battery depth of discharge 0.8 
Model Lead acid 

Nominal voltage 12 𝑉 

 

 

2.2.  Modeling of bidirectional DC-DC converter 

It is an EMS that allows for effective energy flow in both directions which enables the storage and 

energy retrieval among the source and storage devices. This capability supports dynamic energy balancing 

which increases flexibility and optimizes the usage of RES. A trial sustainable power test source contains 3 

significant portions: RES (wind turbine and PV), comprising battery and super-capacitor-based ESS (SC-ESS), 

load, and appropriate power electronics converters. A switch over the SC, PV, and battery are 𝐶1, 𝐶2, 𝑃1, 𝐵1, 

and 𝐵2 used to activate the buck-boost process. The switches turn ON and OFF are used according to load and 

power transfer availability. To activate the unidirectional current flow, the 𝐷𝑆1, 𝐷𝑆2, 𝐷𝐵1, 𝐷𝐵2, and 𝐷𝑃1 are 

switching devices associated across the corresponding switches. 
 

2.2.1. Analysis of DC-DC bidirectional converter  

A storage system is a characteristic set-up to interface with the battery and SC to MG. The battery is 

a long-time ability of output power, a high-energy model by high density and slow response. SC is a high-

power device with rapid response, high-energy efficiency, and exceptional power output abilities. In a power 

electronic system, a buck/boost converter is used. Both battery and SC are associated with low converter 

voltage. It is considered that 𝐷𝐵1, 𝐷𝐵2, 𝐷𝐶1, and 𝐷𝐶2 are the duty cycles of 𝐵1, 𝐵2, 𝐶1, and 𝐶2. During the 

charging mode, the converter acts as a buck converter and power flow passes from the DC bus to storage units 

through the transfer function of DC voltage for SC and battery which is shown in (5). The boost converter 

functions during the discharging mode and the power transfers from SC or battery to DC bus with subsequent 

conversion ratio, as expressed in (6). 
 

𝑇𝑉𝐷𝐶 = 𝐷𝐵2 and 𝑇𝑉𝐷𝐶 = 𝐷𝐶2 (5) 
 

𝑇𝑉𝐷𝐶 =
1

1−𝐷𝐵1
 and 𝑇𝑉𝐷𝐶 =

1

1−𝐷𝐶1
 (6) 

 

2.2.2. PI controller and SOC ESS 

This converter operates in two modes: buck and boost. In the buck mode, the output voltage is 

decreased relative to input voltage while in boost mode, while output voltage is increased relative to the input 

voltage. Moreover, the boost mode obtains the final voltage which is higher than the supply end voltage. The 

significant parameter to estimate the battery state is SOC which is represented in (7). Where, 𝐼𝑏𝑎𝑡  represents 

the battery charging current and 𝑄 indicates battery capacity. Based on SOC, demand and battery power 

availability are to be charge-discharge. The battery’s energy limitations are resolute based on SOC limits which 

are formulated in (8). The 𝑆𝑂𝐶𝑚𝑖𝑛  and 𝑆𝑂𝐶𝑚𝑎𝑥 indicates the minimum and maximum positions. 
 

𝑆𝑂𝐶 = 100[1 + (
𝐼𝑏𝑎𝑡𝑑𝑡

𝑄
] (7) 

 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 (8) 
 

 

3. ADAPTIVE T-DISTRIBUTION DUNG BEETLE OPTIMIZATION (ADBO) 

An effective EMS is developed by utilizing 2 different RES and 1 storage device. The PV module and 

wind turbine are the two different RES and a storage device is a battery utilized for storing the excess power 

from the wind and PV module. DBO [25] is a population-based algorithm that is primarily inspired by stealing, 

ball-rolling, foraging, dancing, and dung beetle reproduction behavior. 
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3.1.  Ball-rolling dung beetle 

Dung beetles navigate via celestial cues during a rolling procedure to maintain the rolling of the dung 

ball in a straight line. Hence, the ball-rolling dung beetle position is reorganized which is represented in (9) 

and (10). The 𝑡 indicates the present number of iterations, 𝑥𝑖(𝑡) determines position data of 𝑖𝑡ℎ dung beetle at  

𝑡𝑡ℎ iteration, 𝑏 denotes constant value, 𝛼 represents natural coefficient, 𝑋𝜔 depicts the global worst position, 

and ∆𝑥 indicates light intensity. Dung beetle’s ball-rolling position is restructured and formulated in (11). 

Where 𝜃 𝜖 [0, 𝜋] indicates the deflection angle. 
 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝛼 × 𝑘 × 𝑥𝑖(𝑡 − 1) + 𝑏 × ∆𝑥 (10) 
 

∆𝑥 = |𝑥𝑖(𝑡) − 𝑋𝜔| (11) 
 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + tan(𝜃)|𝑥𝑖(𝑡) − 𝑥𝑖(𝑡 − 1)| (12) 

 

3.2.  Brood ball 

Selecting an appropriate spawning site is essential for dung beetles to offer a safe atmosphere for their 

offspring. Therefore, a boundary selection model is used in DBO to pretend female dung beetles are expressed 

in (13). The 𝑋∗ indicates the present local optimum position, 𝑈𝑏∗ and 𝐿𝑏∗ denotes the upper and lower bounds 

of the spawning area, 𝑅 = 1 −
𝑡

𝑇𝑚𝑎𝑥
, 𝑇𝑚𝑎𝑥  indicates the maximum number of iterations, 𝑈𝑏 and 𝐿𝑏 determines 

the upper and lower bounds of search space. A spawning area’s boundary range is dynamically changed with 

values. Hence, the egg ball position also changes during an iteration procedure which is formulated in (14). 

𝐵𝑖(𝑡) represents 𝑖𝑡ℎ sphere position at 𝑡𝑡ℎ iteration, 𝑏1 and 𝑏2 signify two independent random vectors. 
 

𝐿𝑏∗ = max(𝑋∗ × (1 − 𝑅), 𝐿𝑏)

𝑈𝑏∗ = min(𝑋∗ × (1 − 𝑅), 𝑈𝑏)
 (13) 

 

 𝐵𝑖(𝑡 + 1) = 𝑋∗ + 𝑏1 × (𝐵𝑖(𝑡) − 𝐿𝑏∗) + 𝑏2 × (𝐵𝑖(𝑡) − 𝑈𝑏∗ (14) 
 

3.3.  Small dung beetle 

While the small beetles mature within the brood balls, they eventually emerge to search for food. 

Hence, it is required to find the optimal foraging area to guide them for searching food to achieve space 

exploration purposes. However, small dung beetle suffers from slow convergence speed. Therefore, an adaptive 

t-distribution is developed to balance exploitation and exploration which enhances the convergence speed 

during the dung beetles foraging stage. This technique equips DBO with an enhanced ability for global 

development through the initial iterations which is indicated in (15) and (16). 
 

𝑋𝑛𝑒𝑤
𝑗

= 𝑋𝑏𝑒𝑠𝑡
𝑗

+ 𝑡(𝐶𝑖𝑡𝑒𝑟). 𝑋𝑏𝑒𝑠𝑡
𝑗

 (15) 
 

𝐶𝑖𝑡𝑒𝑟 = 1/exp (−4 × (𝑡/𝑀)2) (16) 
 

Where, 𝑋𝑛𝑒𝑤
𝑗

 denotes the position vector, 𝑋𝑏𝑒𝑠𝑡
𝑗

 indicates a global best solution determined in the 

present iteration stage, 𝐶𝑖𝑡𝑒𝑟  represents the adaptive t-distribution parameter, 𝑡(𝐶𝑖𝑡𝑒𝑟) denotes a random number 

presented from adaptive t-distribution, and 𝑀 presents a maximum number of iterations. This adaptive 

approach corresponds to the model’s exploratory and developmental abilities which enhances its convergence 

rate and increases both its effectiveness and efficiency in solving optimization issues. 
  

3.4.  Thief dung beetle location update 

Considering that the position of global optimum acts as the most appropriate target for theft, the 

updated position formula for thief dung beetles is formulated in (17). The 𝑋𝑖(𝑡) indicates the position of 𝑖𝑡ℎ 

thief at 𝑡 iteration, 𝑔 represents a random vector that follows a normal distribution, 𝐷 denotes dimensionality 

issues and 𝑆 represents the constant value utilized in this approach. The ADBO provides an effective EMS via 

its adaptation of rolling behavior which mimics streamlined decision-making as well as resource allocation in 

complex systems and Figure 2 represents the flowchart for ADBO. 
 

𝑥𝑖(𝑡 + 1) = 𝑋𝑏 + 𝑆 × 𝑔 × (|𝑥𝑖(𝑡) − 𝑋∗| + |𝑋𝑖(𝑡) − 𝑋𝑏|) (17) 
 

The process starts with initializing parameters and population while determining the fitness function 

for candidate solutions. The ADBO updates the position of the pushing dung beetle and determines whether a 

condition is satisfied. If the condition holds, the position is updated by employing a specific equation; else, it 

switches to an obstructed state and updates its position. The lower and upper bounds are used for constraining 
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the new position. Next, the t-distribution is used to refine its positions and then global and worst positions are 

updated if the convergence criteria are met. It is met, the algorithm stops processing; else, the process continues.  
 

 

 
 

Figure 2. Flowchart for ADBO 
 

 

3.5.  Adaptive perturb and observe (AP&O) 

This research utilizes AP&O for optimal MPPT in various weather conditions. This approach is 

applied to manage a duty-cycle perturbation step size which results in faster convergence tracking. A 

hypotenuse length of every triangle is computed according to Pythagoras theorem which is computed in (18). 

This theorem is determined by find the adaptive ∆𝐷 at 𝑖𝑡ℎ perturbation which is computed in (19). 
 

ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒 𝑙𝑒𝑛𝑔𝑡ℎ = √𝑉2 + 𝑃2 (18) 
 

∆𝐷(𝑖) = ∆𝐷𝑚𝑖𝑛 + 𝜎𝑅(𝑖) (19) 
 

Where, ∆𝐷𝑚𝑖𝑛  represents the lowest value included at every step, 𝜎 indicates scaling factor, 𝑅(𝑖) 

denotes the ratio among hypotenuse length for MPP triangle (𝐿𝑀𝑃𝑃) hypotenuse length of OP triangle (𝐿𝑂𝑃) 

which is formulated in (20). 𝑉𝑀 and 𝑃𝑀 indicates PV voltage and maximum power point, 𝑉𝑝𝑣 and 𝑃𝑝𝑣 represents 

the voltage and power of the PV panel at the associated perturbation instant. Using AP&O in EMS enables 

dynamic adjustments of duty-cycle perturbation step sizes based on the present operating conditions which 

enhances efficiency and stability while varying loads and environmental factors. 
 

𝑅(𝑖) =
𝐿𝑀𝑃𝑃

𝐿𝑂𝑃
=

√𝑉𝑀
2 +𝑃𝑀

2

√𝑉𝑝𝑣
2 +𝑃𝑝𝑣

2
 (20) 

 

 

4. RESULTS AND DISCUSSION 

This section represents the simulation results of the proposed ADBO-APO to establish the EMS 

effectively. To obtain the results, MATLAB R2020a is used with 64 GB RAM, a Windows 10 operating 

system, and an I5 Intel processor. The specification parameters of ADBO-APO are: a temperature of 35 °C, a 

base wind speed of 8 m/s, an initial SOC of 9%, a battery response time of 0.4 s, and an irradiation  

of 1000 (
𝑊

𝑚2). 

 

4.1.  Performance analysis 

Figure 3 indicates a performance analysis of solar irradiation for the proposed ADBO-APO. The solar 

irradiation begins at 100 (
𝑊

𝑚2), increasing to a peak of around 950 (
𝑊

𝑚2) steadily at approximately 0.4 seconds, 

then briefly inclining and stabilizing nearby to 900 (
𝑊

𝑚2) before falling back to 100 (
𝑊

𝑚2) by 0.8 seconds, and at 

least drops to 0 (
𝑊

𝑚2) by 1 second. By analyzing these patterns, solar energy systems manage fluctuations and 

ensure a more stable and effective energy output. 
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Figure 4 depicts the performance analysis of wind speed for the ADBO-APO method. This graph 

shows the variation in wind speed over a 1-second interval. The speed of wind starts at around 13 m/s which 

remains constant till 0.3 seconds, then drops to 0 m/s and stays till 0.6 seconds. After 0.6 seconds, the speed of 

wind is increased rapidly to 15 m/s approximately and remains constant for the remaining interval. Figure 5 

depicts the performance analysis of existing DBO’s load demand, PV, wind, and battery without EMS. The 

load demand shows significant peaks around mid-day and afternoon hours. The PV power follows a similar 

pattern peaking during daylight hours. Figure 6 represents the proposed ADBO-APO’s load demand, PV, wind, 

and battery with EMS. The EMS ensures a stable and balanced power supply by dynamically handling the 

sources which maintains a consistent load with minimal deviations. 

Figure 7 represents the performance analysis of PV power. The blue line indicates the existing DBO 

approach while the orange line determines the proposed ADBO-APO approach. The proposed method shows 

a smoother and higher peak power generation which enhances the efficiency with better utilization of sunlight 

throughout the day. 

Table 2 demonstrates a performance analysis of total harmonic distortion (THD). When compared to 

the existing methods like ant colony optimization-APO (ACO-APO), butterfly optimization algorithm-APO 

(BOA-APO), and DBO-APO, the proposed ADBO-APO achieves a better THD of 0.65%. Due to this, the 

proposed approach enhances the ability in varying conditions and optimizes the system more effectively. 
 

 

  
 

Figure 3. Performance of solar irradiation for the 

proposed approach 

 

Figure 4. Performance of wind speed for the 

proposed approach 
 

 

  
 

Figure 5. Existing load demand, PV, wind, and 

battery without EMS 

 

Figure 6. Proposed ADBO-APO’s load demand, 

PV, wind, and battery with EMS 
 
 

 
 

Figure 7. Performance analysis of PV power 
 

 

Table 2. Performance analysis of THD 
Methods THD (%) 

ACO-APO 4.12 
BOA-APO 3.76 

DBO-APO 2.43 

Proposed ADBO-APO 0.65 
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4.2.  Comparative analysis 

Tables 3 and 4 indicate the comparative analysis of the proposed method with the Genetic algorithm 

and LFQOBL-SAO. Compared to the existing methods [18] and [19], the proposed ADBO-APO achieves 

better performance. Compared to [19], the proposed approach attains a superior average index of 1.2598 × 104 

by enhancing the efficiency of EMS through optimal switching among battery, PV, and wind turbines. 

 

 

Table 3. Comparative analysis of the proposed method with genetic algorithm 
Conditions Methods Grid Purchase cost (Rs) Battery degradation cost (Rs) 

PV module – 1000 𝑘𝑊, 273.5 𝑉 

Battery rating- 500 𝐴ℎ, 700 𝑉 

Wind turbine – 1500 𝑘𝑊, 575 𝑉 

Genetic algorithm [18] 1.61 × 107 1.55 × 1012 

Proposed ADBO-APO 1.27 × 107 1.04 × 1012 

 

 

Table 4. Comparative analysis of proposed method with LFQOBL-SAO 
Conditions Methods Index 

Best Average Standard deviation 

PV module – $ 240 𝑘𝑊 

Battery – 2.4 𝑘𝑊ℎ 

Wind turbine – $ 1250 𝑘𝑊 

LFQOBL-SAO [19] 1.5100 × 104 1.5274 × 104 1.2862 × 10−11 

Proposed ADBO-APO 1.2423 × 104 1.2598 × 104 1.1768 × 10−11 

 

 

4.3.  Discussion 

The advantages of the proposed ADBO-APO method and the disadvantages of the existing methods 

are presented in this section. The disadvantage of existing methods is noted as follows: The [18] was trapped in 

local optima because of its dependence on the evolving solutions through a process of selection, mutation, and 

crossover. The result in [19] was based on historical data and predefined flight patterns and [21] faces struggles 

with the integration and coordination of multiple energy sources. The proposed ADBO-APO overcomes these 

existing method limitations. ADBO enhances the efficiency of EMS by ensuring optimal switching among 

battery and wind turbines. The APO increases the stability of power output from PV/wind/battery systems to 

adjust the DC-DC converter switching which ensures optimal power point tracking. 

 

 

5. CONCLUSION 

This research proposes ADBO-APO to establish an effective EMS by using three different sources 

PV, wind, and batteries. The ADBO-APO leverages its adaptive and cooperative strategies to optimize energy 

distribution and balancing which significantly increases overall reliability and effectiveness under dynamic 

conditions. The findings demonstrate that the proposed ADBO-APO not only enhances the system efficiency 

and reliability but also optimizes conversion and power management over different energy sources. The 

proposed ADBO-APO in relation to the existing method LFQOBL-SAO offers a superior average index of 

1.2598 × 104. These outcomes support claims from previous research which represents that the proposed 

approach provides a significant enhancement in the EMS field. In the future, improved optimization will be 

considered with different controllers to enhance the model performance. 
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