International Journal of Power Electronics and Drive System (IJPEDS)
Vol. 16, No. 2, June 2025, pp. 1184~1195
ISSN: 2088-8694, DOI: 10.11591/ijpeds.v16.i2.pp1184-1195 O 1184

Enhancement of large PV-integrated grid stability using an

advanced UPQC

Vijay Kumar Kalal, Shankaralingappa Channappa Byalihal
Department of Electrical and Electronics Engineering, Dr. Ambedkar Institute of Technology,
Visvesvaraya Technological University, Bengaluru, India

Article Info

ABSTRACT

Article history:

Received Sep 27, 2024
Revised Jan 16, 2025
Accepted Mar 1, 2025

Keywords:

Modified unit vector template
generation

This paper presents an enhancement to the stability of large PV-integrated
grids using an advanced power quality control system. The proposed unified
power quality conditioner (UPQC) system control technique combines
synchronous reference frame (SRF) theory and modified unit vector
template generation (MUVTG), supplemented by an additional proportional-
integral-derivative (PID) controller to regulate reactive power flow to the
grid. The results indicate a reduction in the total harmonic distortion (THD)
levels. The study also demonstrates the system’s stability for different
harmonic orders and various cases of voltage sag and swell, in compliance
with IEEE standards. The proposed approach effectively addresses power
quality issues and achieves a THD of 0.30%, meeting the IEEE-519
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standards using MATLAB Simulink.
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1. INTRODUCTION

The integration of solar photovoltaic arrays into electrical grids has significantly increased due to
their provision of clean, renewable energy [1]. However, large-scale solar plants connected to the grid face
challenges in maintaining stable electricity generation due to power quality problems, such as voltage sags,
swells, and harmonic distortions [2], [3]. These issues compromise the reliability and performance of the
systems, underscoring the need for effective mitigation technologies [4]. Unified power quality conditioners
(UPQC) have emerged as a promising solution, capable of addressing multiple power quality problems [5]-
[8]. Integration of a 1.5 MW solar photovoltaic system, designed to overcome power quality problems [9].

UPQC system utilizes a blend of synchronous reference frame (SRF) theory and modified unit
vector template generation (MUVTG), combined with a proportional-integral-derivative (PID) controller for
effective reactive power flow control [10], [11]. SRF theory aids in synchronizing control signals with the
grid voltage waveform, ensuring precise control under variable grid conditions [12], [13]. MUVTG is
employed to generate reference templates that align accurately with specific grid disturbances, facilitating
effective compensation [14], [15]. The PID controller is integral to the system's performance, regulating
reactive power flow to the grid, providing robust and dynamic responses, and ensuring system stability across
varying conditions and loads [16]-[18]. The integration of these technologies aims to reduce total harmonic
distortion (THD) levels, meet industry standards, and enhance grid performance, ultimately promoting the
use of renewable energy through advanced power quality management.
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2. LITERATURE REVIEW

A comprehensive literature review is essential for examining the integration of a 1.5 MW solar
photovoltaic array with advanced power quality control systems to adherence the benchmarks like THD
levels and IEEE-519 standards is crucial for maintaining industry compliance. The fault tree analysis [19] is
utilized to identify critical faults in large-scale grid-connected PV systems, such as solder bond failures and
interconnect issues. A fault diagnostic technique [20] using signal excitation was developed to detect and
identify defective modules in large-scale PV installations, improving fault detection and operational reliability.

Integrating a UPQC with a PV system [21], was proposed using a hybrid maximum power point
tracking technique and d-q control to enhance power quality and clean energy generation. UPQC linked with
PV and battery energy systems, to stabilize voltage and minimize distortions, significantly reducing THD and
improving power factor [22]. Power quality concerns are addressed in grid-connected PV systems with a
UPQC, achieving effective voltage harmonic mitigation and grid synchronization [23]. Enhanced
UPQC [24], utilizes distributed generation to supply reactive power assistance to the grid, using advanced
control methods for better load management and system stability to improve resistance against voltage sags,
verified through simulations in MATLAB-Simulink [25]. These studies collectively contribute to advancing
PV system reliability and power quality management, crucial for sustainable energy development.

As of June 30, 2023, the National Solar Mission is an initiative by India to promote solar energy,
achieving 70.10 GW of installed capacity, which can surpass 500 GW according to the ministry of new and
renewable energy India. The intermittent nature of solar energy can cause stability issues when integrated
with the conventional electric grid. Photovoltaic systems must adhere to grid integration IEEE standards
ensuring safe and efficient photovoltaic system integration into the grid.

The literature review primarily focuses on power quality enhancement, with limited consideration of
voltage stability under dynamic grid conditions. Additionally, there is limited research on the integration of
large-scale PV systems into the grid. This paper addresses power quality disturbances in the distribution system
and regulates the reactive power flow into the grid. The main features of the proposed method include:

- Reduction of power quality issues: Mitigates voltage sag, swell, and harmonic disturbances caused by
both linear, non-linear loads and different faults under various scenarios using UPQC.

- Integrates the 1.5 MW photovoltaic system into the grid using the UPQC, ensuring a constant DC voltage
despite voltage power quality issues and harmonics.

- Steady power supply: Ensures consistent power delivery to the grid, even during PV power generation
and voltage fluctuations, enhancing distribution network stability.

- Maintains a THD below 5% at the point of common coupling (PCC).

3. PROPOSED METHODOLOGY

The research focuses on large-scale 1.5 MW solar photovoltaic array that is integrated with the grid
using UPQC to address several power qualities concerns that are often encountered in grid-integrated solar
energy systems which includes voltage sags, voltage swells, and harmonic distortions. Figure 1 shows the
simulation model of proposed system.

3.1. System design

The design of the UPQC is essential, as it requires connecting the solar photovoltaic array system to
a common DC link. This involves choosing the correct ratings for the DC capacitor and voltage for the DC
bus. The details for the 1.5 MW photovoltaic modules and mathematical model of UPQC with grid are
considered in the proposed system [26]. The control technique for the UPQC system combines SRF theory
and MUVTG.

3.2. Synchronous reference frame theory
Using the SRF-based control strategy, the proposed controller manages the shunt APF, as shown in
Figure 2. The SRF method calculates the desired source currents from the load currents by applying a dq0-to-
abc transformation [24].
- Synchronization with grid voltage: SRF theory ensures that control signals match the grid’s voltage
waveform. This means that the control signals Vref and Iref are in synchronization with the grid voltage
Vgrid. Mathematically, this can be represented as (1) and (2).

Vref(t) = Vgrid(t) @D

Iref(t) = grid(t) 2

- Reference signal generation: Mathematically, the reference signals can be represented as (3) and (4).
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V‘ref (t) = Vgrid (t) + 4V 3
Leer © = Igria © + 41 4

- Enhanced control accuracy: By transforming AC quantities into a rotating reference frame (d-q frame),
SRF theory simplifies the control of AC signals. This transformation is represented by (5) and (6).

Va = Vygria cOS ) + Voria sin(6) )
Vo = —Vgria sin(0) + Voria cos () (6)

- Harmonic mitigation: The theory aids in the detection and compensation of harmonics in the power
system. This compensation can be represented mathematically as (7).

Vcomp = Vgria — Viormonic (N

- Voltage and current regulation: SRF theory ensures precise regulation of voltage and current waveforms.
This regulation is represented mathematically as (3) and (4).
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Figure 1. Simulation model of the proposed system

3.3. Modified unit vector template generation (MUVTG)
MUVTG is a technique employed in UPQC, aimed at refining the control of electrical parameters
such as voltage and current. Figure 3 illustrates a basic control scheme for MUVTG in a series active power

filter (APF) [24]. This method is used to generate the required pulse-width modulation (PWM) pulses for
APF control.
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Figure 3. Performance of a UPQC during 0.3 p.u. voltage sag and swell conditions

The reference voltage waveform is represented as Vref (t) and the actual grid voltage waveform as
Vgrid (t). Similarly, the reference current waveform is denoted as Iref (t) and the actual grid current
waveform as Igrid (t). MUVTG can be expressed by (8) and (9).

Vref(t) = Vtemplate (t) +4v

Iref @) = Itemplate ) +41

(8)
©
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Where, V_template (t) and |_template (t) are the ideal reference templates for voltage and current,
respectively. AV and Al are adjustments made to the reference templates based on the specific conditions of
the power system. V_ref (t) and |_ref (t) are the modified reference signals used by the control system.

3.4. Reactive power control

The integration of a PID controller into a UPQC system significantly enhances its capability to
regulate reactive power, respond dynamically to grid changes, and maintain overall system stability. Its
simplicity and effectiveness make it a critical component in the pursuit of high-performance power quality
management. The output of a PID controller, u(t), can be expressed as (10).

u(t) = Kp » e(t) + Ki » [0 to t] e@dr + Kd (4°/ ) (10)

Here, u(t) stands for the control output, K, K;, and Ky are the proportional, integral, and derivative gains,
respectively, and e(t) is the error signal, which is the difference between the desired setpoint and the actual
measured process variable.

- Error signal: The error signal e(t) is expressed as (11).

e(t) =r(t) —y(®) (€3Y)

Where r(t) is the reference value (set point); y(t) is the measured process variable.
- Proportional term: The proportional term provides an output that is proportional to the current error value:

P(t) = Kp *e(t) 12)

- Integral term: The integral term provides an output that is proportional to the cumulative sum of past
errors, thus addressing the accumulated offset:

I(t) = Ki = [[Otot] e(r)dr (13)

- Derivative term: The derivative term provides an output that is proportional to the rate of change of the
error, predicting future error based on its current rate of change:

D(t) = Kd = ((de(t))/dt) (14)
- Combined PID output: Combining these three terms gives the total output of the PID controller:
u(t) =P)+1I1(t) + D(t) (15)

These equations collectively describe how the PID controller calculates its control output based on
the error signal, aiming to minimize the error and thus maintain the stability and performance of the UPQC
system. Combining SRF theory and MUVTG, supplemented by a PID controller, enhances reactive power
flow control in large-scale solar photovoltaic systems.

4. RESULTS AND DISCUSSION

Simulation results from the MATLAB/Simulink environment shows the effectiveness of the
proposed UPQC-DG controller. This system provides reactive power support to the grid. It involves
modeling and testing a three-phase, single-stage UPQC-DG system under various dynamic conditions, such
as grid voltage sag, voltage swell, load unbalancing, and changes in solar irradiation.

4.1. Case-1

Figure 3 demonstrates the capabilities of a UPQC in managing grid voltage fluctuations. It shows
how the UPQC stabilizes the load voltage by rapidly adjusting its injected voltage in response to a 0.3 p.u.
voltage sag and swell. Specifically, the UPQC quickly increases its voltage output to counteract sags, and
decreases it to mitigate swells.

4.2. Case-2

Figure 4 illustrates the performance of a UPQC in addressing a 0.5 p.u. voltage sag and swell on
the power grid. The UPQC exhibits robust control. Specifically, it injects additional voltage at around
1.2 seconds to counteract the sag, and reduces the injected voltage at approximately 1.6 seconds to mitigate
the swell.

Int J Pow Elec & Dri Syst, Vol. 16, No. 2, June 2025: 1184-1195
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4.3. Case-3

Figure 5 showcases the capabilities of a UPQC in managing a 0.6 p.u. voltage sag and swell across
three phases of a power grid. At around 1.2 seconds, it increases the voltage to counteract the sag,
maintaining the load voltage almost constant. Conversely, at about 1.6 seconds, it reduces the injected
voltage to mitigate the swell, minimizing disruption to the load.
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4.4. Case 4

Figure 6 highlights the performance of a UPQC in managing a 0.7 p.u. voltage sag and swell across
three phases of an electrical grid. The UPQC precisely counters these severe disturbances, maintaining a
near-constant voltage at the load. At around 1.2 seconds, it quickly injects additional voltage to stabilize the
grid during the sag. Then, at about 1.6 seconds, it reduces the injected voltage to mitigate the swell, ensuring
the load voltage stays within safe operational limits.
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45. Case 5

Figure 7 illustrates the effectiveness of a UPQC in managing severe voltage disturbances,
specifically a 0.8 p.u. sag and swell across three phases of a power grid. Facing its most challenging scenario
yet, the UPQC responds with substantial voltage injections and reductions to counteract extreme grid voltage
fluctuations. Across all tested scenarios, from 0.3 p.u. to 0.8 p.u. voltage sags and swells, the proposed UPQC
system has proven highly effective in maintaining stability of the system by stable load voltages, ensuring
that fluctuations in the grid voltage have minimal impact on the load.
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Figure 6. Performance of a UPQC during 0.7 p.u. voltage sag and swell conditions
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Figure 7. Performance of a UPQC during 0.8 p.u. voltage sag and swell conditions

4.6. Analysis of grid voltage harmonic distortion

Figure 8 displays a time-domain signal of grid voltage across 125 cycles, showing a sinusoidal
shape with visible harmonic distortions. The FFT analysis of this voltage, highlighting a strong fundamental
frequency at 50 Hz with a magnitude of approximately 413.4. It identifies harmonics up to the 50" order,
with a THD of 20.62%.
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4.7. Load voltage response to power quality issues

Figure 9 illustrates the load voltage over a span of 125 cycles, clearly showing fluctuations
indicative of voltage sags and swells. The FFT analysis of the load voltage, with a fundamental frequency at
50 Hz, around 413.9. Unlike Figure 9, the harmonic spectrum here is broader, yet the THD is significantly
lower at 0.30%. This enhanced THD level after compensation indicates that measures such as using unified
power quality conditioners (UPQCs) or other power conditioning equipment are effectively maintaining
voltage quality.
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Figure 8. FFT analysis of grid voltage harmonic distortion
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Figure 9. FFT analysis of load voltage during showing voltage sags and swells

Table 1 showcases the effectiveness of various techniques in reducing THD at the PCC. For
instance, the inductive hybrid UPQC method exhibits a substantial decrease in THD from 20.52% to 2.53%,
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indicating its effectiveness in mitigating voltage distortion. Similarly, the UPQC system control method,
integrating SRF theory, MUVTG, and a PID controller, achieves a remarkable reduction in THD from
20.62% to 0.30%, underscoring its efficiency in enhancing power quality. These results highlight the
importance of employing advanced control techniques, such as those based on SRF theory and MUVTG,
supplemented by PID controllers.

Table 1. Effectiveness of power quality enhancement techniques: pre and post compensation THD analysis

Techniques PCC voltage THD in %

Before compensation  After compensation
Inductive hybrid UPQC [15] 20.52 2.53
UPQC with MUVTC and SRF [26] 20.62 2.06
Recent advances in synchronization techniques [27] 55.27 4.66
A systematic design methodology for DC-link voltage control [28] 125 45
Proposed system 20.62 0.30

4.8. Analyzing power system stability against asymmetrical voltage disturbances

Figure 10 illustrates a power system's response to asymmetrical voltage sags and swells across three
phases, despite these fluctuations, the load voltage remains relatively constant, emphasizing the effectiveness
of the voltage regulation strategies in place. The voltage injected by a UPQC, which correlates with the
disturbances showcasing its role in actively compensating for the asymmetrical conditions to maintain
stability at the load.

Figures 11 and 12 display the real and reactive power at the PCC on both the grid and load sides,
measured in Kilowatts (kW) and kilovolt-amperes reactive (KVAR) respectively. In Figure 11, both real and
reactive power on the grid side exhibit distinct fluctuations around specific times (around 1 second and 1.5
seconds), potentially indicating load changes or power control actions, with real power showing dips and
peaks, and reactive power displaying a significant dip before returning to baseline. This suggests the
activation of mechanisms like reactive power compensation to maintain stability.

Figure 12 presents a more stable scenario on the load side where both real and reactive power levels
remain nearly constant throughout the observed period, indicating stable demand or generation and possibly
effective power management strategies. This stability might reflect well-managed reactive characteristics of
the load, implying that any reactive components are efficiently controlled, contributing to the reliability and
efficiency of power delivery to end-users.
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Figure 10. Dynamic response of a power system to asymmetrical voltage sags and swells
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This research has successfully demonstrated the enhancement of large PV integrated grid stability
using an improved UPQC system by incorporating a PID controller in the control loop, the system
efficiently regulates the reactive power supplied. The UPQC-PV system employs the SRF theory for shunt
APF and a MUVTG for series APFs, supplemented by power angle control to efficiently distribute the
reactive power load between both shunt and series APFs. This configuration guarantees a stable power
supply to the grid despite PV generation and voltage fluctuations, enhancing the distribution network's
overall stability. The effectiveness of the system has been validated through MATLAB simulations under
steady-state conditions and in dynamic scenarios during voltage sags, swells, and achieves a THD of 0.30,
meeting the IEEE-519 standards.
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