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 Approximately 70% of commercial industries worldwide use electron 

accelerator technology for various irradiation processes. The advantages of 

irradiation processes compared to thermal and chemical processes are higher 

output levels, reduced energy consumption, less environmental pollution, 

and producing superior product quality and having unique characteristics 

that cannot be imitated by other methods. Research Center for Accelerator 

Technology (PRTA), BRIN, Indonesia is developing standing wave LINAC 

(SWL) for food irradiation applications at S-band frequencies (±2856 MHz), 

electron energy of 6-18 MeV, and an average beam power of 20 kW. This 

paper aims to model, simulate, and analyze the klystron modulator in the RF 

linear accelerator (LINAC). The klystron modulator is the main component 

of the RF LINAC, which functions to supply klystron power with the order 

of megawatt peak DC, so that the klystron can amplify the low-level RF 

signal from the RF driver into a high-power RF signal with a power of 2-6 

MW peak. The klystron modulator modeling is carried out based on 

mathematical modeling, then simulated using LTspice to analyze the system 

performance of the klystron modulator. The results of the klystron modulator 

modeling simulation show stable system performance and dynamic 

response. So that it meets the specifications of the 6-18 MeV SWL LINAC 

being developed by PRTA-BRIN. 
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1. INTRODUCTION 

Electron accelerators for industrial purposes have been widely used in recent years. Approximately 

70% of electron accelerators worldwide are used for industrial applications [1]. Commercial industries use 

electron accelerators for a variety of applications [2], namely: polymer processing [3], sterilization of medical 

products [4], food irradiation [5], and waste processing [6]. Electron beam irradiation becomes popular due to 

the advantages of the process over thermal and chemical processes [7], including higher output  

levels [8]-[10], reduced energy consumption [9], lower environmental pollution [10], and the ability to 

produce superior product quality with unique characteristics that cannot be replicated by other methods [11]. 

Electron accelerators for irradiation process can have two output modes, namely electron mode and 

x-ray mode [12]. Electron accelerators can be divided into several categories depending on the source of the 

electric field used. The first category is electrostatic accelerators, in which the increase in particle energy is 

achieved through the application of high voltage. Examples include Van de Graaff, cascade, and transformer 
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accelerators [13]. The second category is an induction accelerator, where the electric field is caused by the 

variation of the magnetic field as a function of time [14]. The third category is radio frequency (RF) 

accelerator, where particles gain energy from the cavity supplied by high-frequency electromagnetic  

fields [15], [16]. Among the electron accelerator categories, RF electron linear accelerators (LINACs) can 

produce high-energy beams exceeding 10 MeV while maintaining a compact size. Since the use of electron 

beams remains high, especially in Indonesia, and there is a growing need for higher-energy electron beam, 

Research Center for Accelerator Technology (PRTA), BRIN, Indonesia is developing electron LINAC 

prototype for research purposes. The LINAC development has begun with the design of a 3 MeV LINAC 

cavity for radiography applications [17]. A higher-beam current electron LINAC is currently under design, 

with an energy range of 6–18 MeV and an average beam power of 20 kW, powered by a klystron. 

One of the key components of the LINAC that must be designed is the klystron modulator. Its 

function is to supply the klystron with megawatt-level peak DC power, enabling the klystron to amplify the 

low-level RF signal from the RF driver into a high-power RF signal with a peak power of  

2–6 MW [18], [19]. This paper aims to model, simulate, and analyze the klystron modulator in RF LINAC. A 

simulation of the klystron modulator has been conducted using PSpice tools [20]. Another study utilized the 

LTspice tool to model certain parts of their existing LINAC modulator [21]. However, neither of these 

research works mentions the use of analytical calculations. In this study, the proposed klystron modulator is 

designed to produce a voltage pulse of 104–125 kV and a current of 64.8–85.2 A (based on klystron 

specifications), with a pulse duration of 6 µs and a repetition rate of up to 200 Hz. The simulation 

encompasses all parts of the modulator, from the high-voltage (HV) power supply to the klystron load, using 

LTspice. Analytical calculations were performed prior to the simulation to determine component parameters, 

and parameter optimization was carried out during the simulation. 
 

 

2. RESEARCH METHOD 

Figure 1 shows the block diagram of the klystron-modulator in the proposed methodology. All of 

the parts were pre-calculated and then simulated using LTSpice software individually and in one unified 

system. The modulator converts AC line power into a series of high-voltage, high-current pulses required by 

the klystron [22]. Since the modulator is an important component of the LINAC that operates to supply 

power to the klystron [23], it must be designed carefully, because it will affect the performance and the 

lifetime of the klystron. In the end, the design must be applicable to drive the klystron specified by Table 1, 

which is the klystron specification that will be used for the 6–18 MeV LINAC proposed by PRTA BRIN. At 

least the klystron modulator can produce a voltage pulse of 104–125 kV and a current of 64.8–85.2, with a 

pulse duration of 6 µs and a repetition rate of up to 200 Hz. 
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Figure 1. Block diagram of the klystron-modulator 
 
 

Table 1. The klystron parameters 
Parameters Value 

Peak RF output power 6 MW 
Peak RF input power 60 W max 

Beam voltage 104 - 125 kV 

Beam current 64.8 – 85.2 A 
Pulse width 10 μs (max) 

Duty cycle 0.0026 max 

 

 

3. MODELING OF KLYSTRON-MODULATOR COMPONENTS 

Modulator modeling involves several main components, high voltage power supply (HVPS), pulse 

forming network (PFN), switching system and pulse transformer. Topology and mathematical modeling play 

a crucial role in enhancing the design and functionality of this modulator system. 
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3.1.  HV power supply (HVPS) 

HV charging power supply is one of the important parts in the modulator to provide high voltage 

and ensure the modulator has the power needed to produce high voltage pulses during particle acceleration, 

both electrons and ions [24]. Figure 2. Is a modeling of the HV power supply circuit that functions as a 

capacitor charger on the pulse forming network (PFN) [25]. The type of rectifier used is a 12 pulse rectifier 

equipped with a capacitor filter.  

The HV power supply was simulated using the schematic diagram Figure 2. The three-phase AC 

line from the source is rectified by 12-pulse rectifier into HVDC voltage that charges the pulse forming 

network (PFN) in the next stage. The HVPS must be able to provide several output voltages which are used 

to regulate the klystron voltage according to the desired RF power. In this case, multi-tap transformers are 

used in the design. The output voltage value of the HVPS will become the initial voltage of the PFN. 

Therefore, the voltage requirement for the PFN must be calculated first. The maximum voltage required by 

klystron is 125 kV (Table 1). The pulse transformer ratio was defined to be 1:11, which is the common ratio 

for pulse transformer products. Therefore, we get voltage requirement of 11.36 kV at the primary side of the 

pulse transformer. The 11.36 kV is the pulse voltage output from the PFN, and the charging voltage must be 

higher than that (more than twice), because the PFN makes pulse by storing the energy in to the capacitors 

and discharging them through the inductor-resistor load. The combination of this RLC circuit will shape the 

voltage to become rectangular and the voltage will always below the initial capacitor voltage. The charging 

voltage of the PFN was found by trial in the LTSpice simulation. 
 
 

 

 
 

Figure 2. Modeling circuit diagram of the HV power supply 
 

 

3.2.  Pulse forming network (PFN) 

Pulse forming network (PFN) functions as a form of electrical pulses needed to drive the LINAC [18]. 

PFN will collect electrical energy from the HV charging power supply and store it in the form of potential 

energy [20]. When needed, this energy is released in the form of electrical pulses. The PFN circuit generally 

consists of a number of inductors and capacitors arranged in parallel so that the discharge pulses from the 

capacitors are spaced out and produce square or trapezoidal current pulses with relatively flat peaks [26]. 

The pulse forming network used in this design is the Rayleigh type. Figure 3 shows the schematic 

diagram of the PFN. The 6 stages PFN was chosen in this design, because we assume that it was the optimum 

number for 6 us pulse width modulator, because we are experienced that 6 capacitors (high voltage) and 6 
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inductors will be ideal for the cabinet space, which in this case is 120 cm in length, 100 cm in width, and  

200 cm in heigh. 

To calculate the initial capacitors and inductors values for the Rayleigh PFN, (1) and (2) were  

used [27]. The values were then optimized through trial adjustments in the simulation. T is the pulse duration, 

which is 6 µs; N is the number of stages, which is six stages; and R is the load resistance. 
 

𝐶 =
𝑇

𝑁𝑅
  (1) 

 

𝐿 =
𝑅𝑇

𝑁
 (2) 

 

The load resistance R in this case is the klystron. The R value can be simply calculated using the 

ohm’s law using data from the specification, but after it was calculated, the value is still at the secondary side 

of the pulse transformer. Therefore, it needs to be converted into the primary side using (3). After we 

calculated the C and L values, the values was then optimized through the simulation. 
 

𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑇𝑢𝑟𝑛𝑠

𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑇𝑢𝑟𝑛𝑠
= √

𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝐼𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒

𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝐼𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒
 (3) 

 

3.3.  Switching system (thyratron) 

Thyratron functions as a high voltage switch whose application is used for fast switches such as in 

radar, laser, and accelerator [28]. The working principle of thyratron is almost the same as thyristor, but the 

advantage of thyratron compared to other switches is the ability of its switching system to tolerate high 

voltage and current [29]. Figure 4 shows the modeling of the thyratron structure consisting of an anode, 

cathode, grid 1 and grid 2 [30]. Grid 1 and grid 2 in real situation are supplied by thyratron trigger circuit. 

Thyratron in this modeling functions to transfer electrical energy stored in PFN into high current-high voltage 

electrical power pulses and then forwards the power to the pulse transformer. The thyratron used in this 

modeling is able to withstand a maximum voltage of 80 kV with a current of 3 kA. 
 
 

 
 

 

Figure 3. Modeling circuit diagram of the pulse forming network (PFN) 
 

 

 
 

 

Figure 4. Modeling circuit diagram of the thyratron 

 

3.4.  Pulse transformer 

The pulse transformer is an important component in the modulator that functions to increase the 

power pulse voltage from the PFN so that it is in accordance with the needs of the klystron. In addition, the 

pulse transformer also functions to reduce the amount of ripple so that the output pulse is smoother [31]. 

Pulse transformers can transfer maximum energy from the PFN to the load efficiently (maximum η) in a 

certain pulse duration τ [32], when meeting the following conditions: 
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𝑅𝐿 =  √
𝐿𝐿

𝐶𝐷
 (4) 

 

𝜏 = √2𝐿𝑝𝐶𝐷 (5) 

 

𝜂 =  [1 − (√
2𝐿𝐿

𝐿𝑃
)]  𝑋 100 % (6) 

 

where, Lp is the primary inductance, Ls is the secondary inductance, LL is the Leakage inductance, and CD is 

the winding capacitance which depends on the pulse transformer design [33]. Figure 5 shows the modeling of 

the pulse transformer, the variables of the pulse transformed was adjusted in the simulation in order to get the 

right values for the system [34]. 
 

3.5.  Klystron (load) 

Table 1 is the parameter of the klystron used for the 6-18 MeV LINAC in this study. The klystron 

amplifies the input RF signal into a high-power RF output by modulating the electron beam inside the 

klystron so that the electron beam will form bunches with certain intervals, when passing through the last 

cavity of the klystron, this bunch will transfer its kinetic energy to the cavity so that the cavity will produce 

high power RF waves [35]. Klystrons have the ability to emit accurate, coherent, and high power microwave 

energy up to several gigahertz [36]. Figure 6 shows a klystron modeling in LTspice simulation. The model 

was based on the calculation of the V/I characteristics of the klystron, through (7) [37]. 
 

𝐼 = 𝐾𝑉
3

2⁄  (7) 
 

Where, 𝐼 is the klystron beam current [38], V is the klystron beam voltage. The constant 𝑘 is a 

function of the geometry of the cathode-anode structure and is called perveance. This model was later used as 

a load on the modulator. 
 
 

 

 
 

Figure 5. Modeling circuit diagram of the pulse transformer 
 

 

  
 

Figure 6. Klystron modeling 
 

 

3.6.  Simulation steps 

Figure 7 shows the schematic of overall simulation. At the first, the klystron model was 

implemented. It needs to be simulated first so that we sure that the V/I characteristic of the klystron is correct. 

After that, we implemented the pulse transformer model. LL, LP, and CD values were calculated and 

implemented. Next was the implementation of the thyratron model, in this case the thyratron trigger (grid 1 
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and grid 2) were set to trigger the thyratron every 5 millisecond in order to get 200 pulse per second 

(repetition rate). The next step was to implement the C and L values in the PFN model. The six-phase 

transformer of the HVPS was then initially set to the output voltage of twice of 11.36 kV. 
 

 

 
 

Figure 7. The schematic of overall simulation 
 

 

4. RESULTS AND DISCUSSION 

After simulations were conducted, we got the best result shown in Figures 8(a) and 8(b). Figures 8(a) 

and 8(b) show the output voltage and current coming out of the pulse transformer and fed to the klystron. From 

the figures, it can be seen that the voltage and current are in accordance with the klystron specification input, 

which are 104 - 125 kV and 64.8 - 85.2 A. The quality of the pulse produced has a flatness of 2% and a rise time 

of <1 µs. The final output results of this pulse transformer show that the designed modulator can be applied to 

the LINAC system really well where it is able to supply the klystron and is able to vary the klystron RF power 

by adjusting the modulator output voltage from 104 to 125 kV. This variation in klystron RF power is very 

necessary for the LINAC feature in determining the desired particle energy mode, which is 6-18 MeV. 

 To reach the output voltage range of 104 – 125 kV, the HVPS needs to have output of 22 – 27 kV. It 

means that the six-phase high voltage transformer needs to have multi-taps to reach the range. Therefore, for 

380 V 3-phase power source, the ratio of the primary and secondary transformer is 1: 56 – 71. To reach this 

range, the transformer should have a multitap coil customized by the manufacturer. Figures 9(a) and 9(b) 

show the simulation results of HV power supply modeling at a maximum voltage of 27 kV. The transformer 

model used is a 6-phase transformer which supplies a 12-pulse rectifier. A 12-pulse rectifier has many 

advantages compared to a 6-pulse rectifier, one of the main ones is that it has a low ripple level so that it 

produces a higher quality output. 

 The C and L values of the PFN of the final simulation were 0.04499 µF and 12.12 µH. They were 

calculated using (1)-(3) with the R value of the klystron is 125 kV divided by 85.2 A. Figures 9(c) and 9(d) 

show the current waves in the thyratron and capacitors when the thyratron is triggered. The current 

magnitude varies with a range of -1 kA to 1.4 kA for the input voltage of 27 kV. In this case, the thyratron 

current is the sum of the currents of the 6 capacitors on the PFN. Figure 9(c) shows that the thyratron current 

experiences an overshoot at the beginning of the pulse, then an undershoot at the end of the pulse. This 

overshoot and undershoot will be eliminated by the pulse transformer in the next stage. From the simulation 

we can get the information that we can use the 30 kV capacitor and also 30 kV thyratron with the current 

capacity more than 1.5 kA, which are easy to get in the markets. 



                ISSN: 2088-8694 

Int J Pow Elec & Dri Syst, Vol. 16, No. 3, September 2025: 1822-1831 

1828 

 Figures 9(e) and 9(f) are the input voltage and current on the pulse transformer with variations in 

PFN input voltage of 22 kV, 24 kV, 26 kV, and 27 kV (HVPS output). From the figure, we can see that 

overshoot and undershoot are gone due to the response of the pulse transformer. For PFN voltages of 22 to  

27 kV, the output produced (vin pulse transformer) is a pulse voltage of 9.8 to 11.5 kV with a duration of  

6.2 µS. While the current is 740 A to 940 A. The optimal values of winding capacitor CD and leakage 

inductance in this simulation are 0.12 µF and 0.3 µH with the inductance Lp is 1 mH. The efficiency of the 

pulse transformer is 97% which is good enough for the system. 
 
 

  
(a) (b) 

 

Figure 8. Output pulse of modulator: (a) voltage output pulse and (b) current output pulse 
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure 9. Current and voltage waveform of the simulation: (a) HVPS transformer output waveform,  

(b) twelve-pulse rectifier output, (c) thyratron current waveform, (d) thyratron current and PFN capacitors 

current waveform, (e) pulse transformer voltage input, and (f) pulse transformer current input 
 
 

5. CONCLUSION 

This study presents the modeling of a 10.7 MW peak line-type modulator that will be proposed for 

6-18 MeV standing wave LINAC as a source of X-rays and electrons for industrial food irradiation applications. 

The modulator in this study is capable of producing a pulse voltage of 104-125 kV and a current of 64.8-85.2 A, 
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with a pulse width of 6 µs and a repetition rate of 200 pulses per second. The main components consist of an 

HV power supply capable of producing a voltage of 22-27 kVDC; six stage line type PFN with the capacitors 

value of 0.04499 µF and the inductor value of 12.12 µH; 30 kV/1.4 kA thyratron; pulse transformer with the 

ratio of 1:11 and the efficiency of 97%. The quality of the produced pulse has a flatness of 2% and a rise time of 

<1 µs. The final output results of this modulator indicate that the designed modulator can be applied to the 

LINAC system really well where it is capable of supplying klystrons for LINAC 6-18 MeV. 
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