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 Electricity outages are frequently caused due to problems in the electric 

distribution system (EDS). The method presented in this research describes a 

comprehensive dual-phased design to enhance the electric network 

efficiency and reliability. A hybrid particle-firefly optimization method is 

applied in the first phase to allocate reclosers and sectionalizer in an optimal 

accessible path. Furthermore, in the second phase, the medium distribution 

voltage systems that comprise five main circuit breakers and one power 

source are taken into consideration, as well as automatic load shift to an 

alternative power supply and the secondary circuit breaker shut down under 

normal conditions. The authors provide a streamlined technique based on 

swapping out loads to determine the reduction value of the anticipated 

energy not-supplied (ENS) and cost of energy not-supplied (CENS) to 

customers after installing a sectionalizer and recloser in the APO 132/33 kV 

radial distribution network. The optimized CENS with the protective device 

of the distribution system is tremendously reduced compared to the CENS of 

the conventional state, which has no protective scheme. 
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1. INTRODUCTION 

The quality of electrical energy a country produced is a key factor in determining its development 

index. Thus, electric utilities applied new methods to increase the reliability and efficiency of power  

systems [1]. The majority of faults usually have an impact on the power distribution network. The customers 

are continuously interrupted by either permanent or temporary faults. Electric utilities suffer significant 

economic losses due to the frequent power outages. These distribution system outages are primarily caused 

by poor weather, poor infrastructure, birds, lightning, and human error. Modern distribution systems 

therefore provide the consistent delivery of high power quality to customers. When considering the 

distribution system, the time and failures occurrence might be avoided by inserting protective devices such as 

https://creativecommons.org/licenses/by-sa/4.0/
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switches, fuses, fault indicators, reclosers, and sectionalizer in different feeder segments. Thus, at the expense 

of higher expenditure, the systematic placement of these preventive devices boosts system  

reliability [2]. A High-reliability power supply ensures minimal disruptions in the customers' access to 

electricity. Moreover, reliability is often defined as a system's lifetime capacity to perform well in operating 

conditions. The reliability of any power system can be measured using a variety of reliability indices [3], 

including the system average interruption frequency index (SAIFI), system average interruption duration 

index (SAIDI), average service availability index (ASAI), customer average interruption frequency index 

(CAIFI), average energy not served (AENS), average service unavailability index (ASUI), and customer 

average interruption duration index (CAIDI). An isolation of the system's faulty component by a protective 

device in a distribution network prevents interruptions in the upstream system portions [4]. However, until 

the fault is fixed, the consumers linked to the downstream portion experience continuous interruption. When 

switching off the faulty feeder part from the downstream supply, the healthy downstream feeder sections can 

be powered up if an alternative source is available. The overall performance of reliability is improved when 

the outage duration of healthy downstream feeder portions is reduced [5]. Distributed generation (DG) 

resources, which are included in contemporary distribution networks, can provide an alternative supply and 

operate in islanding mode [6]. Therefore, the DG capacity needs to be high enough to exceed the island's 

demand load [7]-[9]. The deployment of protective devices is made more difficult by the bidirectional flow 

of electricity since a feeder section may be fed from either upstream or downstream [10], [11]. Many studies 

have been conducted so far with an emphasis on the ideal placement of protective equipment in a distribution 

system. Researchers [12]-[15] show early studies that helped determine where the protective equipment 

should be placed in a radial distribution system (RDS). A method for sectionalizing switches that takes into 

account maintenance costs, system outages, and investment costs has been suggested in [12], [13], [16]. 

Moreover, the simulated annealing (SA) process has been used to provide a solution to this problem. 

Additionally, this problem has been solved using the SA method. For the best placement of the switches in an 

RDS, an alternate power supply source potentially to adjacent feeders has been proposed in [13]. For the best 

switch placement, the direct search technique has been suggested in [17]. Meneses and Mantovani [18] 

suggested a new model for assessing the effects of the DG islanded distribution system. Also, the paper 

developed a new model to identify the concession made between dependability and operating expense for the 

135-bus system. Through the application of the ideal configuration of protection devices, a novel method has 

been suggested by Ray et al. [19] to improve the dependability characteristic of an RDS. Pombo et al. [20] 

proposed a novel method that deals with reliability, equipment cost, and DG unavailability to determine the 

best location for automatic control DG-enhanced switches in an RDS. Two distinct models have been put up 

by Velasquez et al. [21] to improve the DG reliability of an RDS. The first model is used to arrange reclosers 

in the RDS optimally, while the second model is used to run the DG in island mode. A novel method has 

been suggested by Issicaba et al. [22] for assessing how long-term load shedding affects reliability indices of 

a DG augmented RDS. The success rate of the islanding procedure has been increased through the 

application of an advanced under-frequency load shedding method. Alam et al. [23] present a broad, unique 

concept for the ideal placement of switching equipment in an RDS. This formulation is valid for systems 

without DG units; hence, it cannot manage the bidirectional power flow. 

The aforementioned research has made a substantial contribution to the RDS's ideal placement of 

protective equipment. Nevertheless, it might not be easy to position the sectionalizer and recloser units at the 

feeder end of the substation network. So, it is necessary to create a new model that can handle circumstances 

in which sectionalizer and recloser units are present at any bus (not only the terminal bus). The innovative 

model presented in this study was created exclusively for the ideal positioning of reclosers in a substation 

network to minimize cost of energy not supplied (CENS) and energy not supplied (ENS). The following list 

provides an overview of the paper's major contributions: 

a) To address the optimal placement concerns of reclosers in a number of zones and islands of a radial 

distribution system, including DG, using an analytical model. 

b) The proposed optimization accommodates the placement(s) of protective devices linked at any node(s) of 

the distribution framework, not just the end node. 

c) A proposed objective function is applied to optimize the profitability of the substation to reduce CENS, 

ENS, and additional system costs. 

 

 

2. FIREFLY MODEL 

Firefly algorithm is an optimization solution that was developed from the inspiration of the flashing 

attributes of certain winged insects called fireflies. They illuminate the flashlights to draw mates or preys. 

The flashlight is also used to pre-warn the fireflies about potential threats. The algorithm was first developed 

by Cham et al. [24] as a metaheuristic algorithm which can be used in solving diverse stochastic problems. 
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The impact of brightness I, irradiated by firefly m, on firefly n, is directly proportional to the 

brightness of firefly m and inversely proportional to the square of the distance between them [25], [26]. The 

attractiveness between firefly m, and firefly n, is given by (1). 
 

𝐼𝑟 =
𝐼𝑚

𝑟𝑚𝑛
2   (1) 

 

Where: 𝐼𝑟  = is the attractiveness between the two fireflies; 𝐼𝑚= is the brightness of a firefly m; and r = is the 

distance between the two fireflies. 

For k number of fireflies, with solution, xm, for firefly m, there is a relationship between the 

brightness I of the firefly m, and the objective function f(xm). The brightness I, indicates the position of the 

objective function f(xm), of any firefly. Therefore, the brightness I, of any firefly is given by (2). 
 

𝐼𝑚 = 𝑓(𝑥𝑚)  (2) 
 

Since there is a variation in the attractiveness of fireflies, the brighter fireflies tend to attract the less 

bright ones to them. The degree of attractiveness of each firefly is denoted by “τ”. Nevertheless, the degree of 

attractiveness τ, is inversely proportional to the distance between the fireflies. Attractiveness is given by (3). 

 

τ𝑟 = τ0𝑒−𝛾𝑟2
  (3) 

 

Where τ0 is the attractiveness of the firefly at distance r = 0 and 𝛾 is the media light absorption coefficient. 

The movement of a less attractive firefly m, at position xm, to a brighter firefly n at position xn, is 

described and represented by (4). 

 

𝑥𝑚(𝑡 + 1) = 𝑥𝑚(𝑡) + τ0𝑒−𝛾𝑟2
(𝑥𝑚− 𝑥𝑛 ) +  𝜎𝜀𝑚 (4) 

 

Where τ0𝑒−𝛾𝑟2
(𝑥𝑚− 𝑥𝑛 )is a factor determined by the attraction of firefly at  𝑥𝑛 and 𝜎𝜀𝑚 is a randomization 

parameter. 
 

 

2.1.  Firefly algorithm 

The firefly algorithm is carried out applying the following procedures: 

− Step 1: Initialize the firefly algorithm. 

− Step 2: Increase the counter iteration i = i +1. 

− Step 3: Apply the fitness function from (5) to determine the firefly's fitness in each iteration, and relate 

the same firefly to light intensity. 

− Step 4: Arrange the fireflies according to their light intensities, and then in each iteration, choose the best 

firefly. 

− Step 5: Adjust the perception of the intensity of light of all other fireflies with respect to their distance of 

separation. 

− Step 6: Vary the position of the fireflies with reference to attraction, which is subject to control 

parameters and their corresponding light intensities. 

− Step 7: If the convergence criteria are satisfied, go to step 8 else, go back to step 2. 

− Step 8: Analyze firefly particle outcomes of the highest light intensity. 

The maximum objective flow problem is evaluated as (5). 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑃(𝑥, 𝑤)  

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑇(𝑥, 𝑤)  =  0  

𝑌(𝑥, 𝑤)  ≤  0 (5) 
 

Where P(x) is the fitness function, which represents the amount of energy not served by the system. T(x,w) 

represents the set of equality nonlinear constraints, while Y(x,w) depicts the inequality nonlinear constraints. 

The vector x represents the dependent variables, while the vector w denotes the control variables. In this 

research work, the control variables include injected reactive power, which compensates for voltage shoot or 

sag, and the number of nodes where protective devices will be installed in the system. These control variables 

are optimized by the firefly algorithm to minimize the energy not served and, consequently, the cost of 

energy not served by the APO 132 kV/33 kV distribution system. 
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2.2.  Particle swarm optimization model (PSO) 

PSO is an optimization technique that was developed from the characteristic movements of animals 

such as fish and birds, which are modeled by Foqha et al. [25]. In particle swarm optimization, the 

coordinates of an individual particle represent the possible solution related to two vectors, which are the 

position 𝑋𝑖 = [𝑥𝑖1, 𝑥𝑖2, … 𝑥𝑖𝑁] and velocity 𝑉𝑖 = [𝑣𝑖1, 𝑣𝑖2, … 𝑣𝑖𝑁]. For every search space, there are two 

vectors related to each particle. A swarm comprises many particles that depict possible solutions, which are 

explored until an optimal solution is found. The position and the velocity vector of the particle are updated 

accordingly, as shown in (6) and (7). 

 

𝑉𝑖
𝑘+1 = 𝑤𝑉𝑖

𝑘 +  𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖
𝑘 +  𝑥𝑖

𝑘) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑘 − 𝑥𝑖
𝑘) (6) 

 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 +  𝑉𝑖
𝑘+1  (7) 

 

Where 𝑐1and 𝑐2 are two constants positive variable, 𝑟1and 𝑟2 are two generated randomly numbers with a 

variable of [0,1], 𝑤 is the weight inertia, 𝑝𝑏𝑒𝑠𝑡𝑖
𝑘 is the particle best position i, generated based on historical 

experience: 𝑝𝑏𝑒𝑠𝑡𝑖
𝑘 = [𝑥𝑖1

𝑝𝑏𝑒𝑠𝑡
, 𝑥𝑖2

𝑝𝑏𝑒𝑠𝑡
, … 𝑥𝑖𝑁

𝑝𝑏𝑒𝑠𝑡
 ], 𝑔𝑏𝑒𝑠𝑡𝑘 is the particle best position based on the entire 

experience of the swarm: 𝑔𝑏𝑒𝑠𝑡𝑘 = [𝑥1
𝑔𝑏𝑒𝑠𝑡

, 𝑥2
𝑔𝑏𝑒𝑠𝑡

, … 𝑥𝑁
𝑔𝑏𝑒𝑠𝑡

 ] and K is the iteration index. The objective 

function the energy not supplied (ENS). The objective is to optimally place protective devices in order to 

minimize ENS by the system to the customers and the optimization model is presented in (8). 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹(𝑥, 𝑤)  

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑃(𝑥, 𝑤)  =  0 

𝑅(𝑥, 𝑤)  ≤  0  (8) 

 

The coordinate optimization of overcurrent sectionalizer is calculated as (11). 

 

𝑀𝑖𝑛 𝐹 = ∑ 𝑊𝑗𝑇𝑘 
𝑛
𝑗=1   (11) 

 

𝑇𝑜𝑝 = 𝑇𝑀𝑆𝑖 (
∝

(
𝐼𝐹𝑗

𝐼𝑃𝑗
)

𝑘

−1

)  (12) 

 

∝= 0.14 𝑎𝑛𝑑 𝑘 = 0.02   

𝑃𝑆𝑀 =
𝐼𝐹𝑗

𝐼𝑃𝑗
   (13) 

 

𝑇𝑜𝑝 = 𝑇𝑀𝑆𝑖 (
∝

(𝑃𝑆𝑀)𝑘−1
)  (14) 

 

𝑇𝑜𝑝 = 𝑎𝜌(𝑇𝑀𝑆𝑖)  (15) 
 

Where, as in (16). 

 

𝑎𝜌 =
𝛼

(𝑃𝑆𝑀)𝑘−1
  (16) 

 

Hence, the objective function can be formulated as (17). 

 

𝑀𝑖𝑛 𝐹 = ∑ 𝑎𝜌(𝑇𝑀𝑆𝑖)𝑛
𝑖=1   (17) 

 

Constraint, as in (18). 

 

𝑇𝑀𝑆𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑀𝑆𝑖 ≤ 𝑇𝑀𝑆𝑖

𝑚𝑎𝑥  (18) 

 

Where the parameters Wj and Tj are the weight and operating time of the sectionalizer and recloser. ∝ and k 

are steady parameters, which is 0.14 and 0.02, respectively. TMSi and Ipi are the time multiplier setting and 

pickup current of the itch sectionalizer while Ifi is the fault current flowing through the sectionalizer. PSM is 

the plug setting multiplier, and IPi is the primary or main pickup current. 
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2.3.  Hybrid firefly-PSO algorithm 

By combining the FA and PSO, the hybrid firefly-PSO algorithm aims to take advantage of both the 

global search capabilities of PSO and the local refinement capabilities of FA, making it a powerful tool for 

solving complex and high-dimensional optimization problems. The below are description of how the 

hybridization works: 

− Initialization: The initial population is created by using a combination of random positions and velocities 

from the PSO framework, with fireflies initialized at random locations in the search space. Each particle 

represents a potential solution for the optimization problem (e.g., optimal network configuration, 

placement of sectionalizer/reclosers, transformer settings). 

− Movement and attraction: Each particle in the swarm moves based on both the principles of PSO (i.e., 

velocity update using personal and social bests) and the principles of FA (i.e., fireflies move towards 

brighter particles). This dual mechanism allows the algorithm to balance exploration (global search) and 

exploitation (local search). 

− Dynamic adjustment: The hybrid algorithm can dynamically adjust the influence of each component PSO 

or FA based on the problem's complexity. For example, the Firefly component might dominate early on to 

explore the search space more widely, while PSO can refine solutions in the later stages to focus on local 

optimality. Each firefly (solution) moves towards a brighter (better) firefly based on the objective 

function. This allows fireflies to fine-tune sectionalizer and recloser positions for minimal outage time. 

 

2.4.  Coordination and placement of the protective devices 

The protective devices used in the protective scheme are the auto recloser and sectionalizer. Due to 

unavailability of current breaking capacity of sectionalizer, they were integrated with reclosers in their 

operation. Therefore, all nodes where the protective schemes are installed have the two devices. The distance 

between each node with an installed protective scheme was averaged at 4.8 km, as the optimally effective 

distance between two installed sectionalizer in a circuit is between 3.22 km and 4.83 km. The reclosers’ 

number of operation was set to 3, meaning that the reclosers trip three times, open two times, and reclose two 

times, but the fourth trip takes it into the lockout phase, which may signify a permanent fault on the line. 

Reclosers do not have a standard for setting; rather, their settings depend on the mode and area of application. 

The first trip was set to clear transient faults resulting from lightning, which usually last for about 0.05 

seconds. the first trip’s dead time was set to 0.5 seconds to allow dissipation of ionized gases before 

reclosing. This is done to avoid a recurrent fault due to the ionized gases. The second trip of the reclosers was 

set to a dead time of 10 seconds, which is now longer than the first. This is to cater for temporary faults that 

are not caused by lightning but other factors like tree branches. The third trip of the reclosers was set to 

lockout. If the auto recloser did not complete the count after a duration of 30 seconds, it means the fault has 

been cleared and both the auto reclosers and the sectionalizer reset to their initial state of counting. In other 

words, if the span between the recloser trips is equal to or more than 30 seconds, the sectionalizer restarts 

counting. Since the sectionalizer was set to trip after two counts, the total accumulated time is given by the 

sum of the first reclosing time and the second trip time. Mathematically expressed as (19). 

 

TAT = R1 + F2  (19) 

 

Where TAT is the Total Accumulation Time, R1 is the duration of trip of the recloser, F2 is also referred to 

as the first burn out period where the fuses on the faulted segment are allowed to burn off in order to put out 

the fault. Therefore, the total accumulated time was set below 30 second. 

 

2.5.  Coordination details of reclosers and sectionalizing switches 

The operation of reclosers normally associated with tripping relays. These mechanisms might be 

either electromechanical, hydraulic, or electronic. Multiple reclosers are used in the recloser method, and 

they are spaced apart by customizable intervals of 15 or 30 seconds [27]. Hydraulic reclosers, generally 

performed two seconds delay between reclose and trip, were meant to work in tandem with hydraulic 

sectionalizing switches at beginning. Electronic sectionalizing switches are better suited for installation right 

after a feeder breaker has counted retention durations of two minutes. It uses a 4-shot sequence, with the first 

one or two operations being a rapid trip to clear a fault and the final two or three operations being a delayed 

trip to cause the fuse to blow, assuming the fault is in fact downstream of a fuse. Typically, the recloser 

sequences are designated [2-2] or [1-3], where the first number represents the number of quick trips and the 

second number represents the number of slow or time-delayed travels. The recloser trips on a rapid path 

curve when Loc2 experiences a fault (T1). The recloser closes after a short delay (R1). The recloser travels 

once again on a quick trip curve as the fault continues (T2). The recloser shuts after a little interval (R2). In 

order to enable any downstream fuses to blow up, the recloser is then act as a slow curve. The recloser trips 
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again if no fuse fixes the problem (T3). Since all trips when a tiny wire branch line is subjected to fault 

current are made quickly or instantly, the risk of conductor burn down is eliminated. A [2-2] recloser and a 3 

shot sectionalizing switch are used in the circuit shown in Figure 1. 

If the fault was just transient, it would go off after the first trip (T1), assuming that the period until 

the reclose (R1) is long enough to give the transitory fault enough time to extinguish and go off. Regardless 

of the fault current levels, this plan would function and coordinate effectively. The increased count retention 

time of the electronic sectionalizing switches enables longer reclose times (R1) while preserving count, 

allowing the system to operate in high fault current locations where fuse saving coordination is not possible 

due to fuse and breaker speeds. As a result, the method of employing a breaker set to a [2-2] sequence and a 

2-shot sectionalizing switch is referred to as an electronic fuse scheme [27]. 

 

 

 
 

Figure 1. Sequence comprising a [2-2] recloser and a two-shot sectionalizing switch 

 

 

3. RESULT AND DISCUSSION 

The APO 132 kV/33 kV distribution system was evaluated over the period of ten years from 2009 to 

2018 to get the profile of effect of interruptions on the energy not supplied and its impact on the economy. 

Figure 2 shows the electrical model network of APO 132/33 kV Substation, and Table 1 shows the location 

and number of sectionalizer and reclosers in the network. The result shows that if the recloser in bus H1 

cannot interrupt the fault current due to malfunction, the recloser backup in bus H2, H3, H21, and H23 will 

take effect. Therefore, the sectionalizer in APO T3 also operates with reclosing function in Bus H2, H3, H21, 

H23, and opens the line. Also, the same approach occurs for sectionalizer in APO T4. 

 

 

 
 

Figure 2. The electrical model network of APO 132/33 kV substation 
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Table 2 presents the results of the average energy not supplied to each customer in the distribution 

network for each year. Results from Table 2 shows that an average customer lacked energy supply most in 

the year 2009, with about 57.33 kWh of energy not supplied throughout the year due to forced failures. The 

average energy not supplied in year 2009 is considerably high as there is a difference of approximately  

5 kWh of its AENS and that of the 2011 which is next to it on the log. This imply that the system was either 

characterized by more interruptions or more duration of interruptions or combination of both in year 2009 

than in any other year. There was a significant reduction of AENS by approximately 10.7 kWh from 2009 to 

2010 but increased again in year 2011 by about 6.2 kWh. This result from the total number of failures and/or 

the duration of outages experienced in those years irrespective of the number of customers served. 

Table 3 presents the results of energy not supplied (ENS) by the APO 132 kV/33 kV distribution 

system. The distribution system had the most energy not supplied in year 2009 with 3.2814 GWh of energy. 

This accounts for about 12.5% of ENS over the ten years period of study. The least energy not supplied by 

the system was recorded in year 2018 with 2.1221 GWh of energy. Energy not supplied reduced fairly from 

2012 to 2018, though in a random manner. This could be as a result of reduced duration of outage in those 

years as compared to years with high value of ENS. Table 3 shows that there is an increase in number of 

customers served by the system for consecutive years but this has no corresponding effect on the energy not 

served by the system. This shows that ENS is directly affected by the total duration of interruptions in a year 

but not the number of customers served that year. With every unit of energy not supplied, there is a 

corresponding cost consequence on the distribution system operator and the customers served. But the 

economic consequence of energy not supplied on utility operator alone was considered in this work. From 

Table 3, it can be seen that the cost of energy not supplied was highest in 2009 with the utility operator losing 

79,7378 million Naira while the cost of energy not supplied was minimum in year 2018 with the utility 

operator losing 51,5663 million Naira. From Table 3, it can be deduced that there is a direct proportionality 

between ENS and CENS. Table 4 shows the ENS of the distribution system when auto reclosers and 

sectionalizes are installed on the feeders. The table shows a drastic reduction in the amount of energy not 

served when compared with the values without protective devices as shown in Table 4. 
 

 

Table 1. Location and number of sectionalizer and reclosers 
Device name Device number Device location 

Recloser 10 H1, H2, H3, H21, H23, H31, H33, H36, H37, and H11 
Sectionalized 3 APO T2, APO T3 and APO T4 

 

 

Table 2. Average energy not supplied (AENS) 
Year AENS = (kWh/customer) 

2009 57.3279 

2010 46.6487 

2011 52.4266 
2012 51.3678 

2013 48.7848 

2014 41.9827 
2015 37.0348 

2016 38.5904 
2017 42.6359 

2018 36.3543 
 

Table 3. Energy not supplied (ENS) 
Years ENS (GWh/year) CENS (Million Naira) 

2009 3.2814 79.7378 

2010 2.6841 65.2241 

2011 3.0354 73.7601 
2012 2.98 72.414 

2013 2.8383 68.9719 

2014 2.4446 59.4031 
2015 2.1582 52.4443 

2016 2.2494 54.6613 
2017 2.4859 60.4081 

2018 2.1221 51.5663 
 

 

 

Table 4. Energy not supplied (ENS) and cost of energy not supplied (CENS) with protective scheme using 

hybrid firefly-particle swarm optimization 
Year ENS with optimized protective 

scheme (GWh/year) 

CENS with optimized protective 

scheme (Million Naira) 

2009 0.3059 7.4326 
2010 0.2787 6.7728 

2011 0.294 7.1435 

2012 0.2883 7.0047 
2013 0.2783 6.7639 

2014 0.2389 5.8055 

2015 0.2373 5.7656 
2016 0.2437 5.9215 

2017 0.2563 6.2284 

2018 0.237 5.7595 
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Figure 3 shows the distribution of energy not supplied in the distribution system over the ten years 

study period. The maximum value of energy not served was recorded in year 2009 with a value of 0.3059 

GWh, followed by 2011 which has an energy value of 0.294 GWh. The least value of energy not served was 

obtained in year 2018, recording a value of 0.237 GWh. Cost evaluation was conducted on the system’s 

energy not served. This project work also assumes a uniform tariff on a unit energy for the ten years period as 

there is a somewhat ambiguous economic instability in Nigeria for that period of time which is beyond the 

scope of this research. Therefore, the tariff charged by the Abuja Distribution Company is used for the ten 

years period. The tariff used in this work is N 24/ kWh. Cost analysis was carried out on the distribution 

system when protective devices were installed on the faulty feeders. Optimization of cost was also carried out 

using the hybrid firefly-particle swarm optimization (HFPSO) technique. The CENS presented here are 

strictly those resulting from forced system failures. Figure 4 shows the amount (in million Naira) the cost of 

energy not served as a result of forced failures, when protective devices are installed on the faulty feeders, 

and the cost is optimized using the hybrid firefly-particle swarm optimization technique. The maximum 

monetary loss from unsupplied energy by the distribution system was obtained in year 2009 `recording about 

7.4 million Naira loss while the lowest was obtained in year 2018, with approximately 5.7 million Naira loss. 

The CENS highlights the cost of ENS when the protective devices have been installed along the line of the 

feeders. However, it is imperial to put into consideration the cost of having these protective devices installed 

along the feeders else there would be a lack of thorough costing analysis when contemplating the 

implementation of protective scheme. 
 

 

 
 

Figure 3. ENS using hybrid firefly-PSO 
 

 

 
 

Figure 4. CENS using hybrid firefly-PSO 
 

 

4. CONCLUSION 

The purpose of this research was to apply hybridized firefly-particle swarm algorithm to evaluate 

EENS reduction in an MV distribution system following the installation of a sectionizer. The algorithm does 

not need complex computations, this technique is modified for use in the current power networks. The 

proposed approach enables the placement of sectionalizer in the most effective location for radial and linked 

various types of distribution systems. The value of EENS to consumers is our optimization criterion since it 

is the most significant index in Nigeria. The total average active loads of transformer substations that are 
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disconnected during a fault for the duration of the service period are taken for consideration, which is based 

on national energy guidelines for distribution system operation and maintenance. The findings of this study 

are summarized as: 

− A streamlined analytical procedure that considers the total average active loads of transformer substations 

disconnected after the fault for the service duration was presented for assessing the value of EENS to 

consumers. 

− For radial and interconnected types of distribution systems, the best location of a single sectionalizer was 

determined using the proposed approach. An algorithm for calculating EENS and CENS for customers 

was developed for APO substation. The algorithm is applied in order to reduce the EENS and CENS in an 

MV distribution network after the installation of a sectionalizer. 

− The proposed algorithm is flexible for two and more sectionalizer. 

The optimized CENS with protective device of the distribution system is tremendously reduce compared to 

the CENS of the conventional state which has no protective scheme. 
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