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 Because of its sturdy design, affordability, and convenience of use, the three-

phase induction motor is a common kind of electric motor, especially in the 

industrial sector. This motor design is still being improved to make it work 

better. For example, permanent magnets are being added to the rotor, control 

systems are getting better, the number of phases is being increased, and 

motor winding designs are developing. Nevertheless, the creation of the 

motor winding design is the least expensive aspect of all these endeavors. By 

creating a nine-phase winding configuration with a three-layer design in the 

motor, this study aims to enhance the performance of a three-phase induction 

motor. This study examined output power, speed, mechanical torque, and 

motor efficiency in a 3-phase system operation. The study's results indicated 

that the new design motor worked better, with higher output power (4.27%), 

rotor speed (0.61%), and mechanical torque (3.47%), despite a minor 

reduction in efficiency relative to conventional 3-phase induction motors  

(-0.24%). 
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1. INTRODUCTION 

Because of their straightforward design, affordability, sturdy construction, dependability, and ease 

of maintenance, induction motors are widely used in a variety of industries [1]-[5], and they make up a 

sizable portion of modern motor applications [6]. Three-phase induction motors are alternating current 

electric motors frequently employed as drives, particularly in the industrial sector [7]-[9]. Despite their many 

benefits, 3-phase induction motors have a number of drawbacks, such as poorer performance in comparison 

to synchronous motors [1], [2], [7]-[9]. Numerous efforts have been made to date to enhance the performance 

of these motors [10], such as the use of permanent magnet rotors [11], [12], enhanced control systems [2], 

[13]-[27], more phases [28]-[35], and the creation of motor winding designs [36]-[39]. 

Research by developing the use of permanent magnets on the rotor, as in synchronous motors [11], 

[12], can enhance the power factor, torque, output power, and motor efficiency of induction motors. 

However, the use of permanent magnets on the rotor requires additional expensive costs to purchase high-

quality, heat-resistant permanent magnets [11], [12]. Therefore, this technique is only suitable for induction 

motors with large output power capacities, as the increase in motor performance can offset the expensive cost 

of permanent magnets. 

Research by developing a reliable control system on the motor [2], [13]-[27] can also improve the 

quality of output power, torque, and motor efficiency. But the more reliable the control system used, the 

greater the costs incurred [2], [13]-[27]. Therefore, the development of a very reliable control system is also 
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very suitable for use on motors with very large power capacities so that the additional costs incurred are 

comparable to the increased performance provided. 

Research by increasing the number of phases in the stator coil design to more than 3-phase can also 

improve motor performance by increasing torque, output power, and motor efficiency [28]-[35]. The more 

the number of stator coil phases, the better the motor will work. However, increasing the phases more than 3 

phases requires additional costs to create a new power source using an inverter that must be adjusted to the 

number of motor coil phases supplied [28]-[35]. Since it must be modified to meet the power capacity of the 

motor, the expense of developing a new power source rises as the motor's power capacity does. Therefore, 

innovative methods are still needed to improve this motor's performance so that it can operate more 

efficiently and affordably. 

Creating an induction motor's winding configuration was an alternate technique that might boost the 

motor's output power, torque, speed, and efficiency [36]-[39]. This procedure was the most economical in 

comparison to many alternative methods. To improve the performance of a 3-phase induction motor, this 

study designed a stator coil for a 3-phase induction motor using a 9-phase coil design arrangement. The 

three-layer motor coil was created to increase flux density, which enhances the torque and output power of 

the induction motor by taking into account the direction of the current passing through the coil. By utilizing 

the same stator, rotor, coil type, and number of coils per slot as a traditional 3-phase induction motor, this 

creative design does away with the need for costly additional motor expenses. Three-phase electricity is still 

used to operate the motor. Without needing a significant increase in cost, we are certain that the winding 

design presented in this work may be used to enhance performance in other three-phase induction motors. 
 

 

2. THE COMPREHENSIVE THEORETICAL BASIS 

Usually, a three-phase induction motor is built with three identical coils spaced 120 electrical 

degrees apart. It is designed to operate with a three-phase power source that is also out of phase by 

approximately 120 electrical degrees in order to function properly. The motor coils are designed with a 

specific number of poles to ensure that they operate at the required speed [40]. Figure 1 illustrates the design 

of a three-phase induction motor winding in its slot utilizing an 18-slot and 2-pole configuration. It is clear 

from Figure 1 that coil A (from A1 to A2) is the first phase coil, coil B (from B1 to B2) is the second phase 

coil, and coil C (from C1 to C2) is the third phase coil. 
 

 

 
 

Figure 1. The shape of a three-phase induction motor's stator winding design in its 18-slot, 2-pole slot 
 
 

To calculate the slots per pole number (Q1), the slots per pole per phase number (q1), and the 

electrical angle (𝛼𝑒𝑙) between 2 adjacent slots in designing an induction motor winding, the (1)-(3) can be 

done [41]. 

 

𝑄1 =
𝑠1

2𝑝⁄  (1) 

𝑞1 =
𝑠1

2𝑝 𝑚1
⁄  (2) 

𝛼𝑒𝑙 =
𝑝 360𝑜

𝑠1
⁄  (3) 

 

Where s1 is the stator slots number, p is the pole pairs number, and m1 is the stator coil phases number in the 

induction motor. 

Multiphase induction motors are more dependable than 3-phase induction motors because of their 

reduced vibration and noise, their increased stability, their ability to increase flux density, and  

power [28], [31], their improved operating system [42], [43], their ability to increase torque [40], [44], and 

their ability to increase motor efficiency [30], [31]. A symmetrical 9-phase induction motor is a multiphase 

induction motor that is typically constructed with nine identical coils that are separated by 40 electrical 
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degrees. To function properly, it requires a 9-phase power source that is approximately 40 electrical degrees 

out of phase. Figure 2 illustrates an example of the design representation of a 9-phase induction motor in its 

slot with an 18-slot and 2-pole design that is engineered with a 3-layer configuration. 

From Figure 2, it can be explained that the 9-phase coil design consists of 3 layers of 3-phase coils, 

where the first layer consists of 3 coils, namely coil A (A1 to A2), coil D (D1 to D2), and coil G (G1 to G2), 

as seen in Figure 2(a). The second layer also consists of 3 coils, namely coil B (B1 to B2), coil E (E1 to E2), 

and coil H (H1 to H2), as seen in Figure 2(b). The third layer also consists of 3 coils, namely coil C (C1 to 

C2), coil F (F1 to F2), and coil I (I1 to I2), as seen in Figure 2(c). According to (3), the distance between two 

adjacent slots in a coil design with 18 slots and 2 magnetic poles is 20 electrical degrees. Therefore, if the 3-

phase coil in the first layer starts at slot number 1, then the 3-phase coil in the second layer, for a distance of 

40 degrees, starts at slot number 3, and the 3-phase coil in the third layer starts at slot number 5. 

The ability of an induction motor to rotate its load is determined by the magnitude of the 

electrodynamic force (F) produced by the motor coil, resulting in mechanical torque (Tm) that can rotate its 

load. The magnitude of the flux density (B) generated by the coil and the size of this electrodynamic force (F) 

are likewise exactly related; this relationship can be expressed as (4) and (5) [45]. 
 

𝐹 = 𝐵. 𝑖. 𝑙  (4) 
 

𝑇𝑚 =  𝐹. 𝑟 (5) 
 

Where i is electric current (A), l is the effective length of the conductor on the rotor through which the 

electric current passes (m), and r is the rotor radius (m). 

In addition, (6)-(11) can be used to determine the link between the mechanical torque (Tm), 

mechanical power (Pm), output power (Pout), and motor efficiency (Eff) [46]. 
 

𝑃𝑚 = 𝑇𝑚 . 𝜔𝑟 (6) 
 

𝑃𝑜𝑢𝑡 = 𝑃𝑚 − 𝑃𝑟𝑜𝑡  (7) 
 

𝐸𝑓𝑓 = (𝑃𝑜𝑢𝑡  /𝑃𝑖𝑛)𝑥100% (8) 
 

Where: 
 

𝑃𝑖𝑛 = √3  . 𝑉𝐿𝐿 . 𝐼𝐿 . 𝐶𝑜𝑠 𝜑 (9) 
 

𝜔𝑟 = 2. 𝜋. 𝑁𝑟/60 (10) 
 

Nr is rotor rotation speed (rev/min), Prot is rotational losses, and 𝜔𝑟 is angular velocity. In order to boost flux 

density, which raises torque, output power, and motor efficiency, the motor coil's number of phases can be 

increased to more than 3 phases [28]-[35]. 
 

 

  

(a) (b) 

 
(c) 

 

Figure 2. The shape of a symmetrical 9-phase induction motor's stator winding design in its slot, which has 

18 slots and two poles, and is designed with three layers: (a) first layer, (b) second layer, and (c) third layer 



Int J Pow Elec & Dri Syst  ISSN: 2088-8694  

 

Enhance the performance of 3-phase induction motors with the utilization of … (Zulkarnaini) 

1531 

3. METHOD 

The study was carried out at the Electrical Engineering Laboratory of the Institute of Technology 

Padang. The performance of a newly developed three-phase induction motor was compared to that of a 

traditional three-phase induction motor. Both motors had the same rotor, stator, number of poles, coil type, 

number of coils per slot, and coil current characteristics. The primary objective of this study was to improve 

motor performance through the design of the stator winding for a three-phase induction motor. The new 3-

phase induction motor's stator winding was constructed using a symmetrical 9-phase winding design, which 

is made up of three layers of coils made from three different 3-phase coil designs, as seen in Figure 2. Figure 

3 shows how the coils of Figure 2 are connected to the three-phase power system that was connected on the 

winding in order to enhance the performance of the new design motor. Figures 2 and 3 show the beginning 

marks for each coil to enter the slot: A1, B1, C1, D1, E1, F1, G1, H1, and I1. On the other hand, each coil's 

final exit marks from the slot are A2, B2, C2, D2, E2, F2, G2, H2, and I2. 'R,' 'S,' and 'T' in Figure 3 indicate 

that the three-phase power system, which included phases 'R, S, and T,' was connected at this particular 

point. The stator winding architecture of a conventional three-phase induction motor used as a comparator 

motor is depicted in Figure 1. A conventional three-phase induction motor's performance was then contrasted 

with that of the newly designed motor. The motors' performance was evaluated by examining how changes in 

the load applied to them affected the motors’ speed, mechanical torque, efficiency, and winding current. 

Figure 4 depicts the type of equipment connection used to evaluate 3-phase induction motor 

performance in a lab setting. Figure 4 illustrates how the 3-phase induction motors were connected to a 1-

phase induction generator that was gradually loaded with incandescent light bulbs. A three-phase electric 

power supply powered a three-phase induction motor that drove the generator. The motor's current, voltage, 

power factor, frequency, and input power were recorded using a digital power meter attached to it, and the 

generator's output voltage, current, power factor, frequency, and generator output power were recorded using 

a digital power meter on the generator. The rotor speed was measured in this test using a digital tachometer. 

The input power measured at the generator is used as the motor's output power, as the 3-phase induction 

motor and the 1-phase induction generator are intimately linked. The results of the motor’s performance 

through the experiment were then presented in the form of a table and a graph of research results for analysis. 

 

 

 
 

Figure 3. Connection between the coil and the 3-phase power system of the newly designed motor, referring  

to the motor coil design in Figure 2 

 

 

 
 

Figure 4. Connection of a 3-phase induction motor with equipment during testing in the laboratory 

 

 

4. RESULTS AND DISCUSSION 

Based on data from laboratory testing, Figures 5 and 6 show how well the two motors performed. 

The output power and mechanical torque of both motors are shown in Figure 5. According to Figure 5(a), the 

output power of the recently created 3-phase induction motor "Pout (M9S)" is higher than that of the 

traditional 3-phase induction motor "Pout (M3)". A normal three-phase induction motor's "Pout (M3)" is only 

586 W, whereas the newly constructed induction motor's "Pout (M9S)" is 611 W, as shown in Figure 5(a). 

Newly designed induction motors typically have faster speeds and higher output power than conventional 3-

phase induction motors, as seen in Figure 5(a). Additionally, as shown in Figure 5(b), the newly developed 
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induction motor has a mechanical torque of 2.09 Nm, which is greater than the 2.02 Nm mechanical torque of 

a standard 3-phase induction motor. While the new 9-phase winding design for induction motors generates a 

flux density inside the 40 electrical degree region, the flux density of a conventional 3-phase induction motor 

is in the 120 electrical degree range. A greater flux density (B) in the new motor design will increase the 

electrodynamic force (F) around the rotor, as seen in (4). As demonstrated in (5), mechanical torque increases 

in tandem with a rise in electrodynamic force (F), and the motor's output power increases as well, as 

demonstrated in (6) and (7). 

Figure 6 displays the winding current characteristics and efficiency of the motors. The efficiency of 

the newly developed 3-phase induction motor "Eff (M9S)" is marginally lower than that of the traditional 3-

phase induction motor "Eff (M3)," as Figure 6(a) illustrates. Furthermore, as Figure 6(b) illustrates, the 

recently created 3-phase induction motor has a higher winding current. In comparison to the conventional 3-

phase induction motor "Eff (M3)," the recently created induction motor has a little lower efficiency "Eff 

(M9S)," but it has a higher output power and speed. Thus, compared to the traditional three-phase induction 

motor, the newly developed induction motor is more powerful. 

Both the conventional and the revolutionary motors have the same structure, with the same number 

of slots and windings in each slot, which enables them to have the same manufacturing costs. As a result, 

there are no extra financial requirements associated with the new motor. Table 1 lists each motor's specific 

performance metrics. The case demonstrates that the new design of the 3-phase induction motor has a greater 

capacity than the conventional 3-phase induction motor. In order to improve motor performance without 

increasing expenses, the motor winding design from this study can be applied to another three-phase 

induction motor winding design. We are certain that this developed winding design will enhance the 

performance of the other three-phase induction motors. 

 

 

  

(a) (b) 

 

Figure 5. Output power and mechanical torque characteristics of both motors: (a) output power versus rotor 

speed and (b) mechanical torque versus output power 

 

 

  
(a) (b) 

 

Figure 6. Features of both motors' efficiency and winding current: (a) efficiency versus output power  

and (b) winding current versus output power 
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Table 1. Specific performance achievements of motors 
Object Conventional design New design Enhancement (%) 

The quantity of poles 2 2 0 
The quantity of windings in each slot 114 114 0 

The quantity of slots 18 18 0 

Output power (W) 586 611 4.27 
Rotor speed (r/min) 2776 2793 0.61 

Mechanical torque (Nm) 2.02 2.09 3.47 

Efficiency (%) 58.39 58.25 -0.24 
Current (A) 1.8 1.9 5.56 

 

 

5. CONCLUSION 

According to the study's conclusions, the 3-phase induction motor's performance was enhanced by 

the proposed new winding design, which increased output power by 4.27%, rotor speed by 0.61%, and 

mechanical torque by 3.47%. This was achieved by redesigning the winding with a 9-phase winding design. 

But efficiency decreased by 0.24%. The proposed method does not necessitate costly additional expenditures 

for the motor because it still uses a three-phase power source and has the same stator, rotor, number of turns, 

and coil type as a traditional three-phase induction motor. We are certain that the other three-phase induction 

motors can be made to operate better by using this procedure. 
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